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TRISEQUENTIAL PROPOSITIONAL CALCULUS

Introduction

The method of sequents for the classical logical calculi has been made
the first time by G. Gentzen [5] for formalizing the concept of proof which
occurs in deductional practice. In some way, dual method to Gentzen’s
sequential method is so called tableau method or method of dyadic trees.
This method was invented independetly by: E. Beth [2], J. Hintikka [7]
and K. Schiitte [17].

In sequent method of constructions of logical calculi the main conception
is sequent. Sequent is defined as a pair or finite sequence of finite sets of
formulae. In method of dyadical trees essence is employing of marking of
formulae and prooving of tautological formulae (tautology of formulae), it
is based on the overfilling of formulae ,,marked noncorrect®.

The method of sequents for construction of n-value logics define
V. G. Kirin [8], G. Rousseau [12], [13], [14] and Z. Saloni [15], [16].

Here the sequent is defined and interpreted in way which is similar to
the way in 2 — valued logic. In logical calculi which occured above is needed
some numbers of logical one — argument and constans.

The method of trees or tableau method — n — value propositional calculi
was introducted by S. J. Surma in works [19] and [20]. This method like
in case of two — valued logic needs the conception of marked formula, or
some finite set of generators from metalanguage which is the same. The
purpose of this work is to show for the trisequential logics so — called
trisequents method dually to the method of Surmas trees.

This method does not demand to employ the operators of marking the
formulae. And also we do not demand constans and 1 — argument concec-
tives . The main conception of this method is trisequent, which is equivalent
to sequent for instance from works [10], [12], [15] with another interpreta-
tion. ‘
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1. Algebraic preliminaries
Let Q=(Q,:m€EN) be a familly of sets of operation symbols (cf. Cohn

[5D. |

By an Q - algebra we mean an ordered pair A=(A,op), where A is a
set and op=(0p,:Q,—~AA™:meEN) is a family of functions for AGB™
denoting the set of functions f: Am—A,

Let V be a denumerable set of propositional variables. We define the
valuation of Q - terms over V in the Q - algebra A=(A,(op,,:mEN)) to
be a unique function satisfying the following conditions:

- [x]a=v(x) for every vE(A)Y

[W(ty, 1, ..., t) (V) =0PR(W)([1:](V), [2] (V) ., [t] (V)
for all weQ_,mEN,vE(A)Y
2. Propositional S — calculus (semantical part)
Let 3={1,2,3}. By a specification we mean an ordered triple
$=(3,D,0),
where DC3 is a set of distinguished elements and

U _ m
CEmENé@) for C being a set.
By a type determined by specification S=(3,D,C) we mean a family Q8=
=(R35:meEN) of disjoint sets such that |
Q35=CN33 for every meEN

By a metrical algebra associated to a specification S=(3,D,C) we mean

an QS — algebra.
As=(3,(op,:mN)) such that op,(f)=f
for every fEQS, mEN
By a propositional calculus (more precisaly propositional S — calculus)

we mean an ordered quadruple
P.=(S,L,[?],Pr) where
(i) S=(3,D,C) is a specification,
(ii) L, called a language of P_, is an ordered pair L=(V,F) such that V

is a denumerable set of variables, F is the set of Q — terms called the
set of formulae.

(iii) [?]):3VxQS - term—3
[(v,x)]=v(x)
[V, F(ty, b, ., t D]=E([(v, 1], [(V, 1)), -0, [V, t)])

(iv) data contained in Pr will be defined in the next subsetion. Pr contains
an information about mechanism for acceptation or refutation of
formulae.
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Let P.=(S,L,[?],Pr) be propositional S — calculus, where S=(3,D,C)
and L=(V,Fs). Let i€D. By semantical i — tautology of propositional S —
calculus we mean a formula a€Fg such that for every v&3V

[a](v)=i
3. Propositional calculus (formal part)

Let X, X,,X; be finite sets, some of them may be empty of formulae,

i)e.
X,CF; for i=1,2,3. \

A sequent is an ordered 3 - triple (X,X,,X;) which will be denoted
X, +X,+X,. We will write X;, a for X;U{a}. The sequents will be denoted
by X with indices if necessary.

By an overfilled sequent we man a sequent X= X1+X2+X3 such that
X;NX,#0 some j, k in{1,2,3}.

To present the rules given in the sequel in a concise form we shall
adopt the following notation.

Let Z=X,+X,+X; be a sequent and a;,a,,....,a, be Q —term,
X€3,, and let FEQS. Let moreover Z,=X’,+X’,+X’; be a sequent such that
X'i=X;U{ay: pi(x) =i}

Then the scheme of the introduction rule for the connective F to X;=1,2,3
of the sequent Z=X,+X,+X; will be the following:

{Z,:x€3m, (op3(F)) (x)=j}
..... + X (8,8, .0 0+

(r)

for j=1,2,3.
By an unordered tree we shall mean a collection
T=(D,D’,1,R,x,) such that:

(1) A set D, of elements called points, the set D’CD:

(2) A function, 1, which assings to each point xED, s positive integer
1(x) called the level of x,

(3) A relation RCD2:xRy we read ,x is a predecessor of y” or ,y is
successor of x”,
This relation must obey the following conditions:

(i) There is a unique point x, of level 1. This point we call the origin
of the tree.

(i) Every point Xx€D, x#x,; has at most a unique successor

(iii) For any point x, y, if y is a successor of x then 1(x)=1(y)+1

(iv) D’={y: {x:xRy}=0}

(v) card {x:xRy}=<3m

By a proof tree in the sequential calculus we mean a tree

T=(P,P’,1,R,x,) where:
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(1) P is the set of sequents
(2) P’CP and P’ is the set overfilled sequents
(3) The relation R is defined by following equivalence %,RX, there exists
the rule r&(r) such that Z, is the conclusion of the rule r and X, is
one of its premises
The sequent Z=X,+X,+X; is a terminal sequent if there exists a formula
a€QS—term and j,1<j<3 so that for every i, 1<i<3,i#}, X;=0 and X;={a}.
A propositional formula a is a theorem in the trisequential logic if and
only if there exist sets of the overfilled sequents from which there are
proofs of the following terminal sequents.
21 X11+X12+Xi3

for every i, 1<i<k, 2<k=<3
Theorem: The formula a is a theorem of the trisequential propositional
calculus if and only if a is a tautology.
Proof.
Let first a be unprovable, and assume it is so because in each proof — tree
with terminal sequent
: a+0+0
there is a non — overfilled initial sequent — the other case can be handled
similarly. Now let T be a maximal proof — tree with a+0+0 as a terminal
sequent. The maximality implies that in T the initial sequents do not
contain logical connectives and the assumption implies that there exists a
maximal branch B of T consisting of non — overfilled sequents only. Let
the sequents of B be in descending order
R 1 19 s et L Rl
Then for each 1<k<m,Zk appears as one of the premises in some scheme
rule the conclusion of which is Zk+1

Now let us define the valuation v:V—3 as follows.

For proposition variables not appearing in £=X]+X}+Xj we fix their
values arbitrarily, otherwise v(p)=i if and only if pEX;. Since Z! is not
overfilled , this defines univocally. Moreover Z! contains no logical connec-
tives, therefore the following claim holds for k=1:Claim. Let
Sk=XF+X5+X5.

sFor each i€3, if beXk then [b](v)=i.
Next we check the Claim for each k<m. Suppose it holds for some k<m.
Since Zk+1 is the conclusion of a schema rule and =k is of its premises,
beX!"! implies beX® except for exactly one formula b. Let’s assume
beX*"!. Now if, b=w(a,,a,,...,a,) then by the definition of the schema
rules EX“1 E)('j‘z,...,arEX‘j‘r for some . j;,jp...5§, €3 suchi’ that

Op(W) (i1 Jos-+-» Jr) =1
Now the induction hypothesm gives [a;](V)=] 1,[a2](v) =j5y....,[2,](V) =], thus



Trisequential Propositional Calculus 13

[b](v)=(opi(W)) ([a,](v),[a;] (v),....[a,]v))
proving the Claim for k+1.
Since {a}=X7, for k=m the Claim gives [a](v)=1 which shows that a
is not s tautology. Therefore if the formula a is a tautology then it is a
theorem of the trisequential propositional calculus.
To prove the opposite implication, suppose that a is provable, but it is

not tautology. Then there exists a valution v:V—3 such that [a](v)<1 for _ :

2<1<3. It can be checked similarly as above, that if the Claim holds for
some sequent in the derivation — tree, then it holds for at least one of its
predecessor sequents. Consequently, there is a maximal branch in the
proof — tree on which the Claim holds. Then this branch cannot contain
an overfilled sequent, which is a contradiction.

BIBLIOGRAPHY

[1] J. Barwise, Handbook of Mathematik Logic, North — Holland Pu. Co, Amsterdam — New
York Oxford, 1978.

[2] E.W. Beth, Semantic Entailment and Formal — Derivability, Mededel Kon. Ned. Akad.
Wetensch. Afd. Letterkunde N. S. 19, 309-342.

[3] P. Borowik, On Gentzen’s Axiomatization of the Reducts of Mony — Valued Logic,
Abstract The Journal of Symbolic Logic, 48, (4) 1983, 1224-1225.

[4] P. Borowik, Reichenbach’s Propositional Logic in Algorithmic Form, Colloqma Mathema-
tica Societatis Janos Bolyai, 44 Theory of Algorithmus, 1984. ’

[5] P. Cohn, Universal Algebra, D. Reidel Pu, Co., Dordrecht — Boston — London, 1981.

[6] G. Gentzen, Untersuchungen iiber das Logische Schliessen, Math. Z. 30, 1934-5, 176
210 and 405-431.

[7] J. Hintikka, Form and Content in Quantification Theory, Acta Phil. Fen 8, 1955, 7-55.

[8] V.G. Kirin, Gentzen’s Method of the Many — Valued Propositional Calculi, Zeitschrift fir
Math. Log. und Grund, der Math., 12 1966, 317-332

[9] H. Rasiowa, On m — Valued Predicate Calculi, IV th Intern.
Congress of Logic, Methodology and Philosophy of Sciences, Bucarest, 1971.

[10] H. Rasiowa, R. Sikorski, On the Gentzen Theorem, Fundamenta Mathematicae, 48,
1960, 57-69.

[11] H. Rasiowa, R. Sikorski, The Mathematics of Metamathematics, PWN Warszawa 1963.

[12] G. Rousseau, Sequents in Many — Valued Logic, I. Fundamenta Math., 60, 1967, 23-33.

[13] G. Rousseau, Correction to the Paper ,Sequents in Many — Valued in Logic 1, Funda-
menta Math., 61-1968, 313,

[14] G. Rousseau, Sequents in Many — Valued Logic, II Fundamenta Math., 67, 1970.

[15] Z. Saloni, Gentzen Rules for m — Valued Logic, Bulletin de L’Academie Polonaise des
Sciences, Serie des Sciences Mathematiques, Astronomiques et Physiques, 20, 1972,
819-826.

[16] Z. Saloni, The Sequent Gentzen System for m — Valued Logic Bulletin of the Section of
Logic, 2 N. 1, 30-37.

[17] K Schte, Vollstindige, Systeme modaler und intuitionistischer Logic, Sprmger - Verlag,
Berlin — Heidelberg — New York 1968.

[18] R.M. Smullyan, First — Order Logic, Springer — Verlag, Berlin Heidelberg N. York 1968.



14 Piotr Borowik

[19] S.J. Surma, A. Method of the Construction of Finifa Lukasiewicza in Algebras and its
Application to a Gentzen - style Characterization of Finite Logics. Reports on Mathema-

tical Logic, 2. 1974, 49-54.
[20] S.J. Surma, An Algorithm of Axlomatlzmg Every Finite Logic, Reports on Mathematlcal

Logic, 3, 1974, 57-62.

STRESZCZENIE

Celem tej pracy jest pokazanie trdjsekwentowej metody dla tréwartoécnowcgo rachunku zdan,
ktéra jest dualng metodg do tzw. ,.drzew Surmy”. Metoda ta nie wymaga dodatkowych
operatoréw oznaczajgcych formuty, Podstawowym pojgciem w tej metodzie jest tréjsekwent,
réwnowazny temu pojgciu uzywanemu przez innych autoréw, jednakze ma inng interpretacjg.



