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The geometry of squares
Robert Sochacki, Leszek Jaworski

In this paper we define the notions which are equivalent to any primary
notion of Hilbert’s geometry (see [1]). We will use only the notion of square
and relation of congruency of squares, as primary notions in this system.

Our system will be based on Leéniewski’s Mereology. You will find a
detailed lecture in [8]. The logical constans are: the equivalence symbol <,
the negation symbol —, the implication symbol =, the disjunction symbol
A, the conjunction symbol V, the universal quantifer V, the existential sym-
bol 3. The variables bound by quantifier are placed directly after the sign
of this quantifier, when variables are more than one, they shall be separated
by commas.

We remind that the only primary notion of Le$niewski’s mereology is
relation <, sign X <Y is read: the object X is a proper or itmproper part
of the object Y.

The first three axioms of mereology are:

AI X < X.
AIl (X<YAY<Z)= X< Z.
AIIl (X<YAY<X)=>X=Y.

The relation < is a partial order, because it is reflexive (Al), transitive
(AIl) and asymmetric (AIIl). To define the last axiom of mereology two
relations will be defined first:

DI X&Y < 3ZZ < X,Y.

This relation means: the object X is disjoint from the object Y. Let
the expression f(X) mean: the object X has the property f. Then the new
relation has the following form:

DII Xé6f & VZ[f(Z)=> Z< X]AVY[Y < X = 3JU(f(U) AUSY)]
Now we can introduce the last axiom of mereology:

AIV JY[f(Y) = 3, X X6F.
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According to AIV, for each object, which has the property f there exists
one and only one object X which is in the relation § with the property f.
This object will be denoted by the symbol 3", f(A) and will be called
the set of all those objects which have the property f, or the mereological
sum. In accordance with DII the object X is therefore the set of all objects
having the property f if and only if every object having that property is a
part of Z and for every part of X there is an object not disjoint from it,
which has that property.

Axiom AIV tells, that for each property which has at least one object
there exists exactly one set determined by that property. As we see, the
sets are determined by the property, but different as in The Set Theory.
In the square geometry equivalent notions of point, line and plane are
respectively: a notion of sphere with (the) given diameter d, notion of
unlimited tunnel with set diameter too and unlimited layer with thickess
size d. The expression X < Y will be read: the object X is coverable
by the object Y or the object Y covers the object X. In this system we
are going to use the method introduced in [4]. We will use small letters
T,y,2,u,v,w,...for squares, big letters X,Y,Z, U, V, W, ... with adequate
symbols we will use for defined objects.

Squares congruance z and y we denote z = y. Let us remind that
notion: the square and the relation of congruance are primary notions. The
further relations defined in this paper are denoted by small Greek letters
with an index. Let us assume now that the conjunction apb and apc we will
note apb, ¢ (similarly for more variables), the note a, boc will be equivalent
to the conjunction of conditions agc and bgc (similarly for more variables).
In this paper the problem of axioms is omitted (the axioms of the theory of
squares are pesented in [10]). We will use some qualifications (which will
be put in quotation marks) for better understanding of the relations. It
means that qualifications are not definited notions in this system and we
will use them only for good interpretation of the introduced symbols.

1. Square cylinder

Before we define square cylinder we introduce a few auxiliary relations.

Definition 1
zo1y & Jzz,y < z.

Two squares are complanar if and only if they are a part of a square.

Definition 2
oy & Vu < z-(u < y) AJ(b,c,d)[~(chd) Ac,d <bAc<zAd<yAb<
Yala=zVa=y)]
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In conformity with Definition 2 the square z is externally tangent to a
square y by a “side”. It holds if and only if for each square u, if u is a part
of the square z then w is not a part of the square y and such squares b, ¢, d
exist that the squares ¢ and d are disjoint and the square b is a part of the
mereological sum of z and y and the squares ¢, d are a part of the square b
and the square c is a part of z and the square d is a part of y (fig. 1).

| Fig:. 1

Definition 3
zo3y < z < yAdzzpaz,y

The relation p3 states, that the square z is internally tangent by a
“side” to the square y (fig. 2).

Fig. 2

Definition 4
T4Yz ¢ 02y A Yugay(z < u = ug,z)
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The notation zp4yz is read: the square x is ezternally tangent to the
squares y and z by the same “side” (fig. 3).

Fig. 3

Definition 5
zosy < véy A dzzp4zy.

The relation ps describes the square x which adheres internaly with
“side” to the square y, but the square = does not have to be a part of the
square y, just like in Definition 3.

Definition 6
roey © ¢ < YAz #yAI2Vu = z(ugrz = upay).

The above expression zggy is read: the square y is symmetrical exten-
ston of the square z (fig. 4).

Fig. 4




64 The geometry of squares

Definition 7
zo7y & VzpexVupey(2du).

The relation g7 between the squares z and y takes place if and only if
they are concentric (fig. 5).

Nz M

Definition 8
uggzy < o2y Au < Y (a=zVa=y)AIDbc)bc<unb<zAc<
y/\—-(b&c)].

The square u is in relation pg with the squares z and y if and only if
the squares z and y are externally tangent and square u is a part of the
mereological sum of z and y and such squares b and c exist, that they are
a part of u and b and ¢ are a part of y. The square u will be called here a
connector of z and y (fig. 1 where u is b).

Definition 9
Togy & —(zo1y) A Jz[z022 A Vu(ugszz = udy)].

In this relation g9 there are such squares z and y that the square z is
tangent to the “plane” of the square y by the “side” or its part and =
and y are not complanar (fig. 6).
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u Fig. 6

Definition 10
z010y & Yu(zosu = yoou) A Yv(yosv = z0gv)

The above definition describes the relation g9 which concerns the squ-
ares ¢ and y tangent themselves by “sides” or by “vertices”, where the
squares = and y have a couple of “parallel sides” (fig. 7).

Fig. 7
Definition 11
zony & T £ YyAzory Az =y AJzzpi02, Y.

The expression zp,1y is read: the squares x and y are cocylindrical.
The relation between the squares z and y holds if and only if z and y
are congruent and they have common “axis of symmetry”. This axis of
symmetry includes centres of “sides” of these squares (fig. 8).
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Fig. 8
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Definition 12
T012Y & Vue1zVvo1y—(udw).

Above were desribed bi-level squares. The squares z and y are bi-level
if and only if every two squares u and v, complanar with the squares z and
y respectively, are disjoint.

Definition 13
uQ13TY < TPy A uenz,y AVu(venz,y = ugv) .

This definition characterizes the relation g;3 which concerns the square
u oscillating between the squares z and y. In conformity with the Definition
12, the square u oscillates between z and y if and only if , it is cocylindrical
with them and every square which is cocylindrical with the squares z and
y is also cocylindrical with the square u (fig. 9).

\

X

Fig. 9
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Definition 14
10142y < up13zy A I(a,b)[a = b A ~(apo1b) A ~(ap12b) A aprou A borou] .

The square u being in the relation g4 with the squares z and y will be
called here as bisetriz oscillator of the squares z and y.

Definition 15
up1scy < I(c, b)(c, bo1azy A up14ch).

The expression upjszy is read: the square u is between the square z
and y. It holds if and only if there exist such squares ¢ and b that the
square u oscillates between them.

Definition 16
Zowezy & Z =3 ,(a=2VapiszyVa=y).

Now we have defined square cylinder Z. It is determined by two cocy-
lindrical squares z and y. In conformity with the Definition 16 the square
cylinder Z is the meorological sum of the squares z and y and all squares
being between z and y. Let us assume that squares z and y generate

cylinder Z (fig. 10).

el
N/

Fig. 10

/%$‘>
S/

Definition 17
W(Z) & 3(z,y) Zo1ey.

The symbol W (Z) means that, the object Z is a square cylinder. The
object Z is a cylinder if and only if there exist squares z and y which
generate the square cylinder Z.
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2. Sphere

Before we define adequate equivalent symbol to the point we give some
auxiliary relations.

Definition 18
XwY & 3(u,v,w, z)(Xo1euv A Y p16wz A uprw).

This expression is read: the cylinders X and Y are concentric. It means
that squares which generate them are concentric (fig. 11).

Fig. 11

Definition 19
XwY & I(u,v,w,z)(Xpo1euv AY prewz A u = w).

The note Xw,Y is read: the cylinders X and Y are congruent. It holds
if and only if squares which generate them are congruent too.

Definition 20
XwiY © XY A XwyY.
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The relation w3 describes the congruent and concentric cylinders (fig. 12).

Fig. 12

Definition 21
XwY © W(Y)AVUwsYX <UAVVVZw3Y (V< Z) =V < X].

The expression Xw,Y is read: X is a sphere inscribed into the cylin-
der Y, but X is the biggest object inscribed into this cylinder in sense of
Definition 21 (fig. 13).

Fig. 13

Definition 22
K(X) < Y Xw,Y

The symbol K (X) means, that the object X is a sphere.
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3. Tunnel and layer

Definition 23
XoY & W(X)AW(YINVW(U)[U < X = (U <Y)]AI(D,B,C)[B,C <
DABLKXACKXADKLY (A=XVA=Y)

This relation states that two cylinders X and Y are tangential exter-

nally with “base sides” (fig. 14).
o D

@ Fig. 14
e

Definition 24
XY @ X <Y ANIZZa X,Y.

- It is read: the cylinder X is a part of the cylinder Y and is tangential
to it with the “base side” (fig. 15).

Fig. 15
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Definition 25
XasYZ & W(Z) AXoY A VUCE]Y(XO!QU = UOQZ)

The expression X agY Z is read: the cylinder X is tangent externally
by the same “base side” to cylinders Y and Z (fig. 16).

(D

Fig. 16

-
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Definition 26

XagY & X =3 4[AU(AwsU AUwY A3VVa3UY)).

The layer X determined by the cylinder Y will be the mereogical sum of
all the spheres which are inscribed into such cylinders which are congruent
to the cylinder Y. For those cylinders a cylinder exist which is tangential
externally by the “same base” side to those cylinders.

Definition 27
V(X)e I¥Y XauY

The expression V' (X) is read: the object X is a layer.

Definition 28
XosY & 3Z2(Zoz XY VIU[(Uar X A ZagUY) V (Uoy Y A ZazUX)]).

The expression XasY is read: the cylinders X and Y have “parallel
axes” .

Definition 29
zagY &z <Y AI(u,v)(Yorguv Az = u).

The above relation states: the square z is one of the squares which are
generating the cylinder Y.
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Definition 30
Xa7Y & —(X®Y) A (Xa1Y) A XagY AT(u,v)(vasX A vasY Awpav).

This relation states about two cylinders which are tangent externally
with “side surfaces”. This situation is real when complanar squares exist
generating both cylinders, which are tangent externally “sides” (we exclude
cylinders tangent externally “sides” to “base side” or “base side” with “side
surfaces”) (fig. 17).

Fig. 17

N TR

Definition 31
XagY & X®Y ANI(u,v,w,Z)(uagX ANvagY AwagZ A Zaz X, Y N wpquv).

In the relation ag cylinders X and Y are tangent internally “side sur-
faces” (fig. 18).

Fig. 18
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Definition 32
XagY o WX)AWYAX <KYAX#%Y AUV VU = (VarX =
VOtsU)].

The expression XagY is read: the cylinders X and Y have one axis
and the cylinder X is a proper part of the cylinder Y (fig. 19).

Fig. 19
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Definition 33
XopY © XwY AdZX,YagZ

Relation ayg tells about two common-tunnel cylinders X and Y (fig. 20).

Fig. 20

Definition 34

XoqpY &A= ZA[EIZ(ALU4Z A ZOtl()Y)].
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The expression X @,Y is read: the X is a tunnel determined by the cy-
linder Y. It holds if and only if the X is the meorological sum of all spheres
which are generated by the common-tunnel cylinders with the cylinder Y.

Definition 35
T(X) & dY X oY

The symbol T'(X) is read: the object X is a tunnel. The object X is
a tunnel if and only if a cylinder Y which determined this tunnel exists.

4. Relation of incidency

In this paragraph we will assume that sphere, tunnel and layer have the
same radius, it means that they are generated by congruent cylinders. With
this condition, relation of incidency has the form:

Definition 36
X0Y © K(X)AT(Y)AX <Y

This defnition describes the sphere which laying in the tunnel Y.

Definition 37
XY & K(X)AV(Y)AXKLKY

The expression X ;Y is read: the sphere X lays at the layer Y.

5. Relation of in-between position

We will define relation of concentricity of the cylinder Y and the sphere X.

Definition 38
X,Ubly = HZ(XLU4Z/\ XQ)1Z).

This expression means that the sphere X and the cylinder Y are con-
centric if and only if when a cylinder which generates this sphere exist and
it 1s concentric with that cylinder.

Definition 39
Yus X7 & 3(5,A,B,C)(X,Y, ZB 1S AAum X A Bu Y ACui Z A Bay A, C).

The note Y ua X 7 is read: the sphere Y is laying between the spheres
X and Z. It is true when the spheres X, Y, Z are laying in common-tunnel
and such cylinders concentric with those spheres exist, that cylinder con-
centric with the sphere Y is tangent with external “base-side” to cylinders
concentric with those spheres X and Z.
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6. Relation of congruency of sectors

Now we introduce the notion of a closed-sector with two ends at spheres
X and Y. It will be the set of all spheres laying between his ends with its
ends too. The definition of a closed-sector has the form:

Definition 40
Zoy XY © X Y AISX,)YBSAZ=3,(A=XVA=YV Au XY).

Definition 41
S(Z) & IX,Y)Zp XY

The note S(Z) is read: the object Z is the sector.

Definition 42
XY & E(U, V)(Xw4V AYwsV A ULL)QV).

The expression XY is read: the spheres X and Y are congruent. It
takes place if and only if when congruent cylinders which are generating
those spheres exist.

Definition 43
Xp3Y & BU(XLL)4U ANUagY A UCYQY).

The expression X ¢3Y is read: the sphere X is a part of the cylinder Y
and tangent with it at the center of one of the base sides.

Definition 44
XY © 3(A,B)(X¢1AB A A, BesY).

This relation characterises the sector X which is inscribed into the
cylinder Y in such a way, that ends of sector X are tangent to center of
cylinder’s “bases”. Now we can define relation congruency of sectors in this

paper.

Definition 45
ApsB < (U, V, X, Y)[ApyUVABo1 XY AU X AJ(Q, Z) (Qw2 Z ANA@ QA
B4 Z)).

Two sectors are congruent when, their ends are congruent and we can
inscribe them into two congruent cylinders as in Definition 44.

We have showed, that geometry of squares can give all the intuitive
definitions equivalent to the elementary notions and the relations of the
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Hilbert geometry. Let us remind, that the relations of congruent angles can
be defined using congruency of sectors. System of axioms for the geometry
of squares will be state partially of axioms in [10] and additionally Hilbert’s
axioms for Euclid geometry.
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