Prace Naukowe Wyzszej Szkoly Pedagogicznej w Czestochowie
Matematyka VIII, Czestochowa 2000 - 2001

Certain Classes of Elimination Operators
Grzegorz Bryll, Robert Sochacki
Let S be a non-empty set. Operator E : 25 — 25 is called an elimina-

tion operator, when for any X,Y € 25 the following conditions are fulfilled
(compare [3], [4]):

XCY = E(X)CE(Y), (1)
E(X) C E(E(X)). |

The result of the formulas is that E(E (X)) = E(X).
Operator E is general weaker than operator Int of topological interior,
which is characterised by the following conditions (compare (2]):

Int(X) C X,

Int(XNY) = Int(X)NInt(Y), (2)
Int(X) C Int(Int(X)),
Int(S) =0 8,

for every X,Y € 2°

In this paper, the class of all elimination operators over a given uni-
versum shall be researched as well as the class of completely multiplication
elimination operators and isomorphic relationships of these classes with
certain classes of sets families shall be analysed. Elimination operators are
useful and applicable to researches concerning refutation of formulas [1].

Class of all elimination operators over a given universum

Family of theories (systems) of any elimination operator E is defined in the
following way:

Definition 1
Th(E)={X €25 : E(X)= X}.
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Thus, theory is any set X, closed due to E operator. Theories are for
example sets § and E(X).

The set of all elimination operators is marked by (2, i.e.:

Definition 2
Q= {E|E : 25 - 25 and E is an elimination operator in S}.

It easily can be proved that:

Lemma 1
(E1,E; € QA Ey # Ey) = Th(Ey) # Th(E>).

In the set €2, an order relation can be introduced by adopting the
following definition:

Definition 3
E), < E; & VX CS(E1(X) C ExX)), Ep,Ey €9

It is visible that the relation < is reflexive, anti-symmetric and transitive,
thus it constitutes an order.

Between elimination operators and their relative families of theories,
the following relation appears:

Lemma 2
E), < E3 & Th(Ey) C Th(Es3), for every Ey, Eq € Q.

This lemma clearly results from assumed definitions and formula (1).

Let us notice that on the basis of any family R C 29, a relative elimina-
tion operator ER can be constructed by adopting the following definition:

Definition 4
Ep(X)=U{Y :Y CX AY € R}, for any X € 25.

ER operator fulfils the conditions given in formula (1). It shall be called
elimination operator based on R. Of course, Eg € Q if R C 2°.

Let us consider the following class of families of sets:

Definition 5
K={RC25:VYR)(RiCR=UR; €R)}.

Thus, class K is the class of families closed for summation operation.

It shall be proved that:
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Lemma 3
Re K= Th(ER) = R,

Proof:

Let us assume that R € K and X € Th(ER). Thus, due to Definitions
1 and 4, we obtain: X = ER(X) =U{Y : Y C X AY € R}. The family
{Y:Y CXAY € R} is marked by R;. Since R; C R, thus, due to the
assumption R € K and Definition 5, we receive |JR; C R, namely X € R.
So, we have demonstrated inclusion Th(ER) C R.

Let us then assume that Z € R. Because Z C |J{Y : Y C ZAY € R},
thus due to Definition 4: Z C ER(Z). However, on the basis of for-
mula (1) we obtain ER(Z) C Z and simultaneously ER(Z) = Z, namely
Z € Th(ER). Thus, inclusion R C Th(ER) was proved, it completes the
proof.

Lemma 4
E € Q= Th(E) € K.

For any elimination operator, the family of theories of that operator is thus
closed because of summation. Thus, the sum of any family of theories (for
a given F) is also a theory!.

The following theorem giving a relationship between ordered sets
and K:

Theorem 1
Function ¢ : Q@ — K defined by the formula

¢(E) = Th(E) (3)
is an isomorphism between relational systems (2, <) and (K, C).

Proof:

The result from Lemma 1 and formula (3) is that Th(E) € K, for
every £ € (2. On the basis of Lemma 1, it can be claimed that function
¢ is injection, but on the basis of Lemma 3, the function is surjection.
Moreover, taking into consideration Lemma 2, we come to the conclusion
that ¢ is isomorphism, it completes the proof.

'Dual thesis proceeds consequence operator: multiplication of any family of theories
(due to consequence operator C) is a theory, too.
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Class of completely multiplicatory elimination operators

Let us assume two following definitions:

Definition 6
Kn={ReK:VRi(Ri CR=R; €R)}.

Thus, the class Kn is of all closed families due to summation and simulta-
neously closed due to multiplication operation.

Definition 7
Qu={Ee€N:VTC25 N{EX): X e T} C E(ND]}-

Class Q2 shall be called the class of all completely multiplicatory elimina-
tion operators.
Further, the following lemma shall be used:

Lemma 5
For any E € Q and any T C 25:

E(NT) S N{E(X): X € T}.
It shall be proved that:

Lemma 6
E € Q) = Th(FE) € Kn.

Proof:

From the assumption E € s and Definitions 7, 8, the following for-
mulas result: E €  and N{E(X) : X € T} C E(NT), for every T C 25.

Let us assume, additionally, that Ry C Th(E). Since R; C 25, thus
ME(X) : X € Ry} C E(NRy). If, however, X € R; is, on the basis
of Definition 1 and additional assumption, we obtain F(X) = X, and
simultaneously N{X : X € R;} C E(NR1). On the basis of Lemma 5 and
additional assumption, we also obtain inclusion E(R;) C ({X : X €
Ri1}. Two last inclusions give the following equation E(R;) = MRy,
which gives the result (\R; € Th(E). By this, implication Ry C Th(E) =
MR € Th(E) was proved for any R; C 25. On the basis of Definition 6,
it is claimed that Th(E) € K, it completes the proof.

Lemma 7
Re Knh= ER € Q.

Elimination operator based on R, which belongs to Kn, constitutes thus
completely multiplicatory operator.
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Proof:

It results from the assumption R € Kn that R € K, where from Lemma
3 we receive Th(ER) = R. Because ER(X) = U{Y : Y C X AY € R}
(Definition 4), thus ER(NT) =U{Y : Y CNTAY € Th(ER)} =
WY :YCNTAER(Y)=Y},forany T C 29

Let Ry = {ER(X) : X € T} and let us additionally assume that
Z € Ry. Thus Z = ER(X;) for some X; € T. Thus, we obtain ER (Z) =
ER(ER(X1)) = ER(X1) = Z, namely, Z € Th(ER), and hence Z € R.
Thus, inclusion R; € R was justified, which, on the basis of initial as-
sumption and Definition 6, (JR; € R is obtained. Thus, due to formula
Th(ER) = R, we obtain that (YR, = ER((R1). Taking into consideration
the assumption, the last equation may be written as: N{ER(X) : X €
T} = ER(N{ER(X) : X € T}). Since ER(X) C X for every X C S, thus
MN{ER(X): X € T} C{X : X € T} = NT), from which the following
results: ER(({ER(X) : X € T} € ER(NT). Thus it was proved that
{ER(X) : X € T} € ER(NT), for any T C 25. Hence, on the basis of
Definition 7, it is claimed that ER € Q. ]

The relationship between {2); and Kn classes provides the following
theorem.

Theorem 2
Function ¢ : Qp — Kn defined by the formula

Y(E) = Th(E) (4)
is an isomorphism between relational systems (Qpr, <) and (Kn, ©).

Proof:

On the basis of Lemma 6 and formula (4), we obtain: E € Q) =
Y(F) € Kn. It results from Lemma 1 that function 1 is injection, however,
on the basis of Lemma 7 we claim that this function is surjection. Moreo-
ver, the following equation proceeds: E; < E; < ¢(E;) C 9¥(FE»), for any
E,,E; € Q) (see Lemma 2). Thus function 1) is an isomorphism between
(QM) S) and (K:f'l’ g)'

The result from the Theorems 2 and 3 is the following corollary.

Corollary 1 9% = ¢/Qu.
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