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Some Peculiarities and Qualities
of Queueing Systems with Random Volume Demands
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Queueing theory is actually used for information systems characteri-
stics determination. It is a division of probability theory, it’s models are
named queues or queueing systems. Basic random variables analysed in
the theory are:

1) number of demands presenting in the system (on service or wariting
for service);

2) waiting time and sojourn time of demands in the system;

3) probability of demand losses (which are possible due to different re-
strictions);

4) probability of different exceeds of certain borders, which are known
(for example, probability, that waiting time will be more than T').

Let us assume, that every demand may be characterised by some ran-
dom volume (, which does not depend on volumes of other demands, nor
on moments, in which demands come to the system. Generally service
time £ of the demand depends on it’s volume { only. The joint distribution
function of ( and £ random variables is

E(z, 8 =R <2, b < L)

It’s clear, that above assumptions permit to production of new division
in queueing theory which may be used for buffer space determination when
information system designing. Note, that such problems can’t be generally
solved by means of classical queueing theory.

For solving the problem we have introduce o(¢) random process, where
o(t) is a total sum of demands presenting in the system volumes. This
process was named summarized volume. It’s clear, that in some queuing
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models o(t) process may be restricted by some constant value V > 0, which
is named memory volume [3]. Then losses of demands may be possible due
to such restriction. Obviously, that these losses differ from ones taking
place due to restrictions of waiting places in queues.

On the other hand the dependence between ( and ¢ random variables
does solving the problem of determination of o(t) process characteristics
not trivial even in the case of V = oo.

Now let us define main classes of problems connected with random
volume demands queueing systems.

The general problem is illustrated by fig. 1.

o

memory of
sresT system ————

A

> Queue @
Ent‘mncg - stream of Volume /
notifications @

n places

Fig.1

Every demand coming to the system may be lost at the time moment
7 of it’s coming, if

1) there is no place in the queue at this time moment;

2) the volume z of the demand is such, that z +o(77) > V (in the case
of V < o0).

Now we may represent the next classes of queueing models with random
volume demands.

1. Models of queues with districted memory volume (V < oo0). For
- such queues solution of the problem is possible when random va-
riables ¢ and ¢ are independent (F(z,t) = L(z)B(t), where L(z) =
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= P{¢ < =}, B(t) = P{¢ < t}). In the case of F(z,t) # L(z)B(t)
the solution is possible for queues similar to M/G/n/0, M/G/co
classical models and for queues similar to classical processor sharing
models. Models of this class sufficiently describe service processes in
communication nodes.

2. Models of queues with unrestricted memory volume (V = oc) and
dependent random variables ( and ¢ (F(z,t) # L(z)B(t)). For such
models in many cases characteristics of o(t) process can be obtained.

Note, that in the case of F(z,t) = L(z)B(t) and V = oo the problem
becomes trivial.

To demonstrate the importance of solving the discussed problem let
us consider two different M/M/1/00 queueing systems with unrestricted
summarized volume.

In both systems demands volume has an exponential distribution with
parameter f > 0 (L(z) = 1 — e~ /%). In the first system service time is
independent of demand volume and has an exponential distribution with
a parameter pu > 0 (B1(t) = 1 — e #*). Then for the first system we have
Fi(z,t) = L(z)B;(t) = (1 — e~ ¥%)(1 — e #*). In the second system service
time is proportional to the demand volume, i.e. £ = ¢{,c > 0, so that

t t
By(t) =P{{ <t} =P{c( <t} =P {c < E} =L (2) =1=¢eft°
Let p = f/c. Then the both systems become equivalent from the point
of view of classical queueing theory.
But for the first stationary moment of summarized volume Eo
(o(t) = o in the sense of a weak convergence) we have respectively:

1 1 2 -
By, = = o e Eaz__.u

Fi-2 = -5
where p =a/p = af/c < 1,a is a parameter of an entrance flow.

So we can see, that the mean stationary volume in the second queue is
2 — p time more that one in the first queue.

This simple example demonstrates us, that it is important to take into
consideration the dependences between demand volume and it’s service
time when designing information and communicating systems.
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