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Application of Chebyshev collocation method
to solving the heat equation

Jurij Povstenko

Investigating various problems in mathematics and physics it is often
necessary to solve a partial differential equation of the following form

dy(z,t) _ ( ] ?E)
3t _f tlxiy’azi"'?azn b)

-1<z<1, O0<t<oo (1)

with rather complicated function f.
Problems on other finite interval @ < £ < b may trivially be reduced
onto the standard interval —1 < z < 1 by mapping

LU —-a=b

= @

T

Equation (1) must be supplemented with an initial condition

y(z,0) = yo(z)

and appropriate boundary conditions.

Sometimes, in particular cases, a method of separation of variables may
be used for solving equation (1). According to this method we look for a
solution as a product

y(z,t) = a(t) b(z).
If a solution is parametrized by a natural number n, then

o o]

yiz )= z an(t) bn(z).

n=0

In reality we cannot calculate an infinite series, hence calculations are done

using a finite sum
M

y(z,t) = ) an(t) ba(e), (3)

n=0

where a number M is determined by the demanding accuracy.
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For example, let us consider the heat equation

Oy(z,t) _ Oy(a,t
B . oiibgh o]

with very simple boundary and initial conditions

-1<z<1, 0<t<oo (4)

z=-1 TELEM (5)
z=+1: y=0, (6)
=0 y = 0. (7)
In this case
(o o]
y(z,t) = ) exp (—uﬁt) (Cr cos pnpx + Dy sin pn ),
n=0
where
jin =07,

It is convenient to separate a linear part of a solution. Thus, we finally
obtain the solution of the heat equation (4) satisfying the boundary and
initial conditions (5)—(7):

-—1-(1— )__i’f:}_ (—— £ zt) si [M(m—i—l)] (8)
%155 z) = n=1mrexp nemw n |2 .

When the right—-hand side of equation (1) is complicated, this equation
should be solved numerically. A Chebyshev collocation method [2] is very
effective in this case. If we consider the complicated mathematical problem
and use complicated numerical method to obtain its solution, at first we
must consider the partial case, namely, the test problem which can be solved
analytically. Thus, we can verify does this numerical method work, what
is its accuracy and how much time does it need for its realization?

To illustrate the possibility of Chebyshev collocation method we shall
solve the same boundary value problem for the heat equation using this
method. The solutions (8) and (9) allow us to compare results obtained by
two different methods and to answer the abovementioned questions.

Now we seek a solution in the form

N
y(z,t) = ) an(t) Tn(z), (9)

n=0

where Ty, (z) are the Chebyshev polynomials of the first kind. A difference
between equations (3) and (9) is as follows. Equation (4) is satisfied by the
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whole sum (9), while every term of the sum (3) is a solution of this equation.
In the first stage of solving the problem both the functions a,(t) and b, (z) in
equation (3) are unknown, later on they are found from equation (4) which
is satisfied at all times £ > 0 and at all points of an interval (—1,1). In
equation (9) functions a,(t) are unknown, but the Chebyshev polynomials
Tn(z) are set from the very beginning. Equation (1) must be satisfied by
the sum (9) at all times ¢ > 0, but only at some points of an interval
(—1,1) called the collocation points. How many collocation points should
be choosen and how should they be placed in the interval (-1,1)7 As we
consider a sum from n = 0 to n = N, we have N + 1 coefficients a,,. Two
boundary conditions lead to two equations for a,. Hence, there should be
N — 1 collocation points. The best choice of collocation points is a choice
of zeros of the corresponding Chebyshev polynomial.

Here we recall some results concerning the Chebyshev T},(z) and Ge-
genbauer G (z) polynomials which are used in the following. .

The Chebyshev polynomials are orthogonal over the interval (—1,1)

with respect to a weight function w(z) = _\/i_—jj 3]:

1 Ao 0 m#En
/Tm(:c)Tn(:c)———;= ™ m=n=10
| -z 5 m=n#0
The first two Chebyshev polynomials are
To(z) =1, Ti(z)==, (10)

other can be obtained from the recurrence equation
Tni1(z) = 22Tn(z) — Th_1(z). (11)

We also need some properties of the Gegenbauer polynomials G)\(z)
which are orthogonal over the interval (—1,1) with respect to a weight
function depending on the parameter ), i.e. w(z) = (1 — z2)*~1/2;

1
[ Gr@)GAe) (1 - PPV do =

-1

0 m#mn
={ VvrT(\+1/2)T(2) + n) e
(n+ Nl T(N) T(2N) b

where I'(z) is the gamma function.
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The recurrence equation
(n+1)Gpiy(z) = 2(n + Nz Gp(z) — (n+2X — 1) Gp_, (2) (12)
is fulfilled with
Gi(z)=1, Gi(z)=2)\z. (13)

The Gegenbauer polynomials allow us to calculate the derivatives of
the Chebyshev polynomials according to the relation [1]

d"Esi(2)

2 =" (- )InGr,,  n2m. (14)

Thus, using equations (12) and (14) we can obtain the recurrence equation

for the mth derivative of the Chebyshev polynomials

dm'Tn+m+]_ iy 2$n +m+1 men+m_
dz™ n+1 dz™

(n+m+1)(n+2m—1) d"Tpim-— B
m+m-—1)(n+1) dz™

(15)

The following formulae are useful to satisfy the boundary conditions at
z ==l

T, (1) = (£1)", (16)

T, (£1) = (£1)"*'n? (17)

Ty (+1) = (1) 3n%(n? - 1), (18)

Ty (+1) = (1) Zr(n? ~ 1 - 9), (19)

and generally

d" Tnlxl)

dz™

(n+m —1)! (m — 1)!

B (n—m)!'(2m —1)! ’

n>m. (20)

From the boundary conditions (5), (6) and formulae (9) and (16) we
have two equations

Z(_l)nan =1,

n=
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or after differentiation with respect to ¢
N

2 P

=0

Z:dan= 0.

Next, we introduce equation (9) into the heat equation (4) and (as there are
N + 1 unknown coefficients a,, n =0,1,..., N) demand that this equation
is satisfied at N — 1 points &;

da,

o oo

(21)

(22)

da 4o " ;
Z dt" THEF=ES o, TG 1 F£ 1,2, N ~ 1. (23)
n=0 n=0
A particularly convenient choice for the collocation points ; is
g,~=cos%7, GUEOROBNG0. AV — 1. (24)

Considering N —1 equations (23) and two equations (21) and (22) we obtain
a system of N + 1 linear equations with N + 1 unknown functions da, /dt.
Solving this system with respect to da,, /dt we arrive at a system of ordma.ry
differential equations

d
—gtﬁ=Fn(t,ag,a1,a2,...,aN), n=012...,N (25)
with initial conditions
t=0: ag = 0. (26)

The coefficients a,, are obtained as a numerical solution of equations
(25). Table 1 represents the results of such a solution for various values of

N.

Table 1
N=28 t = 0.9 = 1.0
n o Qy,
0 0.412796124597 | 0.474632083693
1 -0.498657645514 | -0.499990388494
2 0.092264100976 | 0.026840649208
3 -0.001572884367 | -0.000011262142
4 -0.005168470998 | -0.001504446775
5 0.000245876899 | 0.000001760523
6 0.000109378559 | 0.000032075147
7 -0.000015347018 | -0.000000109887
8 -0.000001133133 | -0.000000361273
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Table 2 contains comparison between results obtained from equations
(8) and (9) for various times having used the values of coefficients a,, listed

in Table 1.

Application of Chebyshev collocation method ...

N=14 t = 016 =30

n Qn Gn

0 0.412545689816 | 0.474536953303
1 -0.498697819610 | -0.499990640845
2 0.092529648555 | 0.026941304489
3 -0.001525648034 | -0.000010965284
4 -0.005184082247 | -0.001510088512
) 0.000238557511 | 0.000001714586
6 0.000109903616 | 0.000032189902
{1 -0.000015648596 | -0.000000112472
8 -0.000001163050 | -0.000000361681
9 0.000000571894 | 0.000000004111
10 0.000000003108 | 0.000000002510
11 -0.000000013380 | -0.000000000096
12 0.000000000211 | -0.000000000012
13 0.000000000215 | 0.000000000002
14 -0.000000000008 | 0.000000000000

t=20.5

Table 2

Exact

Approximate

N =38

N =14

-1.0
-0.8
-0.6
-0.4
-0.2
0.0
0.2
0.4
0.6
0.8
1.0

1.000000
0.841362
0.688849
0.547836
0.422338
0.314611
0.225029
0.1562191
0.093203
0.044053
0.000000

1.000000
0.841519
0.689158
0.548288
0.422908
0.315253
0.225678
0.152774
0.093645
0.044290
0.000000

1.000000
0.841397
0.688915
0.547926
0.422443
0.314720
0.225132
0.152278
0.093266
0.044086
0.000000
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t=1.0

T

Exact

Approximate

N=28

N=14

-1.0
-0.8
-0.6
-0.4
-0.2
0.0
0.2
0.4
0.6
0.8
1.0

1.000000
0.883307
0.768250
0.656307
0.548644
0.446011
0.348664
0.256338
0.168282
0.083326
0.000000

1.000000
0.883382
0.768393
0.656503
0.548875
0.446255
0.348895
0.256535
0.168425
0.083402
0.000000

1.000000
0.883320
0.768275
0.656340
0.548684
0.446053
0.348703
0.256371
0.168306
0.083339
0.000000
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Thus, the choice N = 8 ensures three accurate numbers, while the

choice N = 14 ensures four accurate numbers.
Considering various physical problems (for example, phase transition
— melting or solidification) it is often necessary to solve the heat equation

Oy(§,t) _ ’y(&.1)

0<t 7
ez LT N (27)

in a domain with moving boundaries
a(t) < & < b(t). (28)

Equations (27) and (28) must be supplemented with initial condition

¥(£,0) = yo (), (29)
a(0) =ag,  b(0) = by (30)
and appropriate boundary conditions
y(a(t),t) = ¢(2), (31)
y(b(t),t) = ¥(¢). (32)

It is convenient to reduce the problem on the interval a(t) < ¢ < b(t)
onto the standard interval —1 < z < 1 by mapping (compare equations (2)

and (33))

_ 2% —a(t) - b(t)

xr

b(t) — a(t)

2

(33)
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but the heat equation (27) becomes more complicated

dy(z,1) 4 &y(z,t)

5  {bH)—a®f 022

_Oy(z,t) [ V(t) +d'(2) b'(t) — a'(t)

: 34
oz |[b(t) —a@) | b(t) — alt) i
=1'8'% <+l 0<t<oo.
For simplicity we consider a linearly expanding domain with
a(t) = —(1 + vt), b(t) =1+ vt (35)

and supplement the transformed heat equation (34) by the same simple
boundary and initial conditions as in the previous problem with constant
boundaries:

r==<] g1 (36)
o Wi yi=i0; (37)
t=0;: ¢ =0, (38)

The coefficients a, of the Chebyshev sum (9) are obtained as a nu-
merical solution of corresponding system of ordinary differential equations
similar to the system (25) but with more complicated functions Fj,.

Tables 3 represents the results of such a solution with N = 16 for
various values of £ and corresponds to the velocity v = 5.
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Table 3

= 16 ¢=0.1 ¥=1.0

n an Uy

0 0.304746800768 | 0.455985145231
1 -0.495629137273 | -0.612872714879
2 0.245560188273 | 0.077222759271
3 -0.033553081825 | 0.151006409048
4 -0.049029440250 | -0.052603118874
5) 0.036163171329 | -0.049873114893
6 -0.004675005264 | 0.028412230652
7 -0.007206358867 | 0.014630234545
8 0.004224405734 | -0.012466451534
9 -0.000016098813 | -0.003378723310
10 -0.000909251302 | 0.004555939254
11 0.000309554294 | 0.000503068237
{ 0.000077377939 | -0.001398454299
13 -0.000077705466 | 0.000016787663
14 0.000008807871 | 0.000393560915
15 0.000009656620 | -0.000031946410
16 -0.000003883770 | -0.000101610617
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N
Table 4 shows the values of the function y(z,t) = Y an(¢)T,(z) for
n=0

v = 5 and various values of time ¢.

Table 4
t =41

T § Y
-1.0 | -1.5 | 1.0000000000
-0.8 | -1.2 | 0.8382833986
-0.6 | -0.9 | 0.5525618355
-0.4 | -0.6 | 0.2654931598
-0.2 | -0.3 | 0.0886136651
0.0 | 0.0 | 0.0200305208
0.2 0.3 | 0.0032220022
0.4 0.6 | 0.0007344405
0.6 0.9 | 0.0004725351
0.8 1.2 | 0.0002169918
1.0 1.5 | 0.0000000000
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t=1.0

T § Y

-1.0 | -6.0 | 1.0000000000
-0.8 | -4.8 | 0.9987012753
0.6 | -3.6 | 0.9802912902
0.4 | -2.4 | 0.8770675672
0.2 | -1.2 | 0.6109958900
0.0 | 0.0 | 0.2788310198
0.2 | 1.2 0.0737838302
0.4 | 2.4 |0.0105157857
0.6 | 3.6 | 0.0008418829
0.8 | 4.8 | 0.0000095677
1.0 | 6.0 | 0.0000000000

Previous experience testifies that the choice N = 16 ensures four of five
accurate numbers of the solution.
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