SCIENTIFIC ISSUES
Jan Długosz University
in Częstochowa
Mathematics XVIII (2013)

ON ASSOCIATIVE RATIONAL FUNCTIONS WITH ADDITIVE GENERATORS

KATARZYNA DOMAŃSKA

Abstract

We consider the class of rational functions defined by the formula

$$F(x,y) = \varphi^{-1}(\varphi(x) + \varphi(y)),$$

where φ is a homographic function and we describe all associative functions of the above form.

1. Introduction

The functional equation of the form

$$f(x+y) = F(f(x), f(y)),$$

where F is an associative rational function is called an addition formula. For the rational two-place real-valued function F given by

$$F(x,y) = \varphi^{-1}(\varphi(x) + \varphi(y)),$$

where φ is a homographic function (such F is called a function with an additive generator), the addition formula has the form

$$\varphi(f(x+y)) = \varphi(f(x)) + \varphi(f(y))$$

and it is a conditional functional equation if the domain of φ is not equal to \mathbb{R} . Solutions of the above conditional equation are functions of the homographic type. Some results on such equations can be found in the article [2]. It seems to be interesting which homographic functions lead F of above form to be associative.

The following lemma will be useful in the sequel.

Lemma. Let $A, B, C, D \in \mathbb{R}$ be given and let $AD \neq BC, C \neq 0$. For φ given by

$$\varphi(x) = \frac{Ax + B}{Cx + D},$$

K. Domańska – Jan Długosz University in Częstochowa.

holds

$$\varphi^{-1}(\varphi(x) + \varphi(y)) = \frac{C(BC - 2AD)xy - AD^{2}(x+y) - BD^{2}}{AC^{2}xy + BC^{2}(x+y) + (2BC - AD)D^{2}}$$

Proof. We have

$$\varphi(x) + \varphi(y) = \frac{2ACxy + (AD + BC)(x + y) + 2BD}{C^2xy + CD(x + y) + D^2}$$

and

$$\varphi^{-1}(x) = \frac{-Dx + B}{Cx - A}.$$

A simple calculation shows that the above equation holds true.

2. Main results

We proceed with a description of the class of rational functions with additive generators.

Theorem 1. The following functions (with natural domains in question) are the only associative members of the class of rational functions with additive generators:

$$F(x,y) = \frac{xy}{\alpha xy + x + y} \quad , \quad \alpha \in \mathbb{R};$$

$$F(x,y) = \frac{x + y + 2\lambda xy}{1 - \lambda^2 xy} \quad , \quad \lambda \neq 0;$$

$$F(x,y) = \frac{(1 - 2\alpha\beta)xy - \alpha\beta^2(x + y) - \beta^2}{\alpha xy + x + y + 2\beta - \alpha\beta^2} \quad , \quad \alpha \in \mathbb{R}, \, \beta \neq 0.$$

Proof. Assume that F is associative and has the additive generator

$$\varphi(x) = \frac{Ax + B}{Cx + D},$$

where $A, B, C, D \in \mathbb{R}$ and $AD \neq BC, C \neq 0$.

We infer from Lemma that

$$F(x,y) = \frac{C(BC - 2AD)xy - AD^{2}(x+y) - BD^{2}}{AC^{2}xy + BC^{2}(x+y) + (2BC - AD)D}$$
(1)

First assume that D=0. If B=0 then AD=BC in contradiction to the assumption. Hence $B\neq 0$. Putting D=0 in (1) we obtain

$$F(x,y) = \frac{BC^2xy}{AC^2xy + BC^2(x+y)}$$

Consequently putting

$$\alpha = \frac{A}{B},$$

we infer that

$$F(x,y) = \frac{xy}{\alpha xy + x + y}, \qquad \alpha \in \mathbb{R}.$$

Let now $D \neq 0$. We get

$$\varphi(x) = \frac{\hat{A}x + \hat{B}}{\hat{C}x + 1},$$

where

$$\hat{A} = \frac{A}{D}, \hat{B} = \frac{B}{D}, \hat{C} = \frac{C}{D}.$$

Replacing \hat{A} by A, \hat{B} by B and \hat{C} by C we have by (1)

$$F(x,y) = \frac{C(BC - 2A)xy - A(x+y) - B}{AC^2xy + BC^2(x+y) + 2BC - A}.$$
 (2)

From Theorem 1. (proved in article [1]) we obtain that every F of the above form is associative. Consequently, in the case B=0 (if B=0 then $A\neq 0$) we have

$$F(x,y) = \frac{-2ACxy - A(x+y)}{AC^2xy - A} = \frac{x+y+2\lambda xy}{1-\lambda^2xy}$$

with $\lambda = C$.

In the case $B, C \neq 0$ in (2) we have

$$F(x,y) = \frac{\left(1 - 2\frac{A}{B} \cdot \frac{1}{C}\right)xy - \frac{A}{B} \cdot \frac{1}{C^2}(x+y) - \frac{1}{C^2}}{\frac{A}{B}xy + x + y + 2\frac{1}{C} - \frac{A}{B} \cdot \frac{1}{C^2}} = \frac{(1 - 2\alpha\beta)xy - \alpha\beta^2(x+y) - \beta^2}{\alpha xy + x + y + 2\beta - \alpha\beta^2}$$

with $\alpha = \frac{A}{B}$, $\beta = \frac{1}{C}$.

It is easy to check (see Theorem 2 or Theorem 1 in [1]) that each of the function above yields a rational associative function. Thus the proof has been completed. \Box

Now we indicate homographic functions φ which by the formula

$$F(x,y) = \varphi^{-1}(\varphi(x) + \varphi(y))$$

lead to associative functions F.

Theorem 2. For following homographic functions (with natural domains in question) we obtain all rational associative functions with an additive generator

$$\varphi(x) = \frac{1}{x}$$
$$\varphi(x) = \frac{\alpha x + 1}{\alpha x}$$

$$\varphi(x) = \frac{\lambda}{x+\lambda}$$
$$\varphi(x) = \frac{\lambda x}{\lambda x + 1}$$
$$\varphi(x) = \beta \frac{\alpha x + 1}{x+\beta},$$

where $\alpha, \beta, \lambda \in \mathbb{R} \setminus \{0\}$ are arbitrary constants.

Proof. It is easy to check that each of the function above yields a generator to the rational function which is associative. Moreover they are generators of

$$F(x,y) = \frac{xy}{x+y};$$

$$F(x,y) = \frac{xy}{\alpha xy + x + y} \quad , \quad \alpha \neq 0;$$

$$F(x,y) = \frac{xy - \lambda^2}{x + y + 2\lambda} \quad , \quad \lambda \neq 0;$$

$$F(x,y) = \frac{x + y + 2\lambda xy}{1 - \lambda^2 xy} \quad , \quad \lambda \neq 0;$$

$$F(x,y) = \frac{(1 - 2\alpha\beta)xy - \alpha\beta^2(x+y) - \beta^2}{\alpha xy + x + y + 2\beta - \alpha\beta^2} \quad , \quad \alpha, \beta \neq 0.$$

respectively. From Theorem 1 it is the assertion of Theorem 2. Thus the proof has been completed. $\hfill\Box$

References

- [1] K. Domańska, An analytic description of the class of rational associative functions, Annales Universitatis Paedagogicae Cracoviesis Studia Mathematica 11 (2012), 111-122.
- [2] K. Domańska, On some addition formulas for homographic type functions, Scientific Issues, Jan Długosz University in Częstochowa, Mathematics XVII, (2012) 17-24.

Katarzyna Domańska

JAN DŁUGOSZ UNIVERSITY,

Institute of Mathematics and Computer Science,

42-200 Częstochowa, Al. Armii Krajowej 13/15, Poland

E-mail address: k.domanska@ajd.czest.pl