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An algebraic characterization of some
reducts of three—valued logics

Piotr Borowik

Introduction. The aim of this paper is to present certain class of log-
ics over finite algebras, in particular over three-valued algebras. The logics
certain properties of those algebras having an automorphism, congruences
or subalgebras, reduce to logics over finite algebras with the universe in-
cluding fewer elements. So that some three—valued logics. In the paper
[7] the method of axiomatizing the logic arbitrary two—valued algebra has
been presented, provided that the set of tautologies of this logic is non —
empty.

The axiomatization of the logic over three-valued algebras, particular
over the reducts of these algebras may, be reduced in some cases to the
problem of two—valued logics.

1. Preliminaries.

Let N be the set of nonnegative integers, let V. = {p; : i € N} be a
denumerable set of propositional variables and let F' be am m — ary logical
connective, where m is a fixed natural number > 2. S is the set defined by
inductively in the following way:

(1) ;e Sforallie N

(2) if a1,a3,...,a,, are elements of S then

F(ay,az,...,0y) is an element of S.
(3) S is the least set safisfying (1) and (2).

The elements of S are called formulae over V' and F. The pair § =
(S, F) is called the language over V and F.

A logical matrix for the language S is any triple £ = (E, E*, f), where
E ={1,2,...,n} for some natural number n > 2 E* = {r,r+1,...,n} for
some natural number r,1 < r < n,and f: E™ — FE is a function.
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For any function e, defined by inductively by:

(1) eu(p) = v(p)
(2) ey(Flay,az,...,0m)) = fles(a1),ex(az),...,ey(an)) for

Ay, 02,...,0, € Sa

instead of e,(a) we will also write [|a||(v). The formula « is a tautology
over £ if e,(a) € ET for every v in V. By a rule we mean here a subset of
25 x S usually written in the form:

a1, Q2,...,0

B

The symbol

a, F(a,p)

B

will denote the rule r = {({a, F(e,3)},8):a € 5,8 € S}.
The rule 7 in § = (5, F) is reliable in the algebra £ = (E, f) if and only if
whenever premises of this rule belong to set of tautologies over £, then the
conclusion of rule r belongs to the set of tautologies too.
Rule r over the language & = (5, F) is normal in the algebra £ = (E, f)
if and only if, for every function v : V — E and every premise a and
conclusion (3 of the rule r,

if ||a|| (v) € E* then ||8||(v) € E* too.

Of course, if the rule = is normal in &, then it is reliable.

Let F' be a binary logical connective. We shall say that F' possesses
the property (x) if

for every valuation v : V — E and for all @ and b in 5, the following
two conditions are equivalent:

(1) [[F(a,B)lI(v) belongs to £
(2) llall(v) < porr < |{|Bl|(v).

Lemma 1
If F is a binary logical connective possessing the property (%), then the
following two conditions are equivalent:

(1) the rule ﬂ%ﬂl is normal

(2) the conditions z > r and y < r imply f(z,y)<r -forallz,y € E.
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Proof. Suppose that (1) does not hold.

Hence there is a valuation v : V — FE and formulae a, such that
lell(v) > 7, [|F(e, B)lI(v' > 7, and ||B|(v) < r. We have [|[F(a,B)|| =
f(z,y) for & = ||a||(v),y = ||8||(v), contradicts (2). It is obvious that (1)
implies (2).

2. Some homomorphism between matrices.

Let My = (Ey, EY, f1) and M, = (Es, E3, f2) be logical matrices over the
same language § = /5, F'). We say that 9%, is homomorphic to M, if and
only if there is @ homomorphism h from 90%; to 9M,.

A homomorphism from M, to M, is any function h : E; — E, such
that

(h1) A(ET) C E3

(hz) the diagram

k3 h E

is commutative.

Example.

Let the function f: E? — E be such that f(z,y) € E* if z < y and
f(z,y) ¢ E* if ¢ < y. Then the algebra is homomorphic to the algebra
E; = ({0,1},{1},9), where

1 if - avgly
0 otherwise

oz, = {

Corollary 1.
If an algebra £ = (E, E*, f) is homomorphic to the algebra,
I =({0,1},{1},9), then the rule

a, F(a,b)
b



P. Borowik 27

is normal in the algebra £.

Lemma 2.

Suppose that for i = 1,2, E; =1,2,...,n,and f; : E? — F; is defined
by
n; if z = Y
a,a<n; if z>y9

fi(xv y) = {
Then algebras £; and £; are not homomorphic for any ny # ns.

Proof.

Suppose that algebras &, and & are homomorfic, n; > n, and let
the function h : F; — E; be a homomorphism of algebra £; into alge-
bra £. Then there exists h(z) = h(y) = z. Of course, fi(y,z) < n; and

h(fl(y’x)) < na. HOWQVGI', h(f](y,x)) = f2(h(y)’ h(i‘)) - f2(27 Z) = ng,
which is impossible. =

Corollary 2.
If f(z,y) = nfor x < y and there exists ¢ € E such that f(z+1,z) =n
then the algebra E = (FE,{n}, f) is homomorphic to the algebra £’ =

(E — {n},{n — 1}, f1), where fy = f | E — {n}.

3. Functionally non—complete logic.

The algebra A = (A,{f; :¢ < k}), where k € N and k > 0, is functionally
non-complete if and only if there exists a function
g : A™ — A which is not defined by the set of functions {f; : 1 < k}.

We say that the logic constructed over the language & = (S5, F) is
functionally non—complete if and only if the language & = (5, F) has an
adequate model in functionally non-complete algebra £ = (E, f).

An example of functionally non—-complete three—valued logics is the
Lukasiewicz’s three-valued implication—negation calculus. The connectives
of implication and negation are interpreted as the functions ¢(:, :) and n(:),
respectively, and are defined by the following tables:

¢l 23 z | n(z)
113 3 1] 3
212 3 3 2.1..2
3(1 2 3 3| 1

It is well known that the set of the functions {c,n} defined above is func-
tionally non — complete, but the set of tautologies over £ = ({1, 2,3}, {3}, {¢,n})
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is finitely axiomatizable by the rule

a,C(a,f)
ﬁ ?
where ¢ is the Lukasiewicz’s implication.
Of course, the reduct of the logic over the functionally non—complete algebra

in which the rule is not reliable is not finitely axiomatizable by this rule.
Can we claim that if the deriving rule

a, F(a, B)
B

is normal in the algebra & = ({1,2,3},{3},{f,n}), then the reduct of the
logic over £ is finitely axiomatizable by this rule. The answer to this qestion
is negative. Let the functions f and n be defined by the following tables

fl1 2 3 z | n(z)
112 2 2 1] 3
2122 2 2( 1
312 2 2 3| 2

The set of tautologies over the £ = ({1,2,3},{f,n}) is a denumerable set
of formulae having the form N2a, N°a,...,N*"*lq, ... where a = F(8,7)
for all 8,y € §, |

Nl(a) = N(a)
N¥*l(a) = N(N(a)),

the interpretation of N is the function n, and the interpretation of F' is the
function f. It is clear that this reduct is not finitely axiomatizable by the
deriving rule. Thus we have proved the existence of both the axiomatizable
and non-axiomatizable reduct of logic over the algebra £3 by the deriving

rule:
a, C(a’ B)
ﬁ b
Everywhere in the above examples, the sets of tautologies are non empty.
One can still choose among the reducts of the three-valued logic with a sin-
gle connective a class of reducts which are homomorphic to reducts of some
two—valued logic, so that the axiomatization reduces to an axiomatization
of the reduct of the two-valued logic. This axiomatization is presented in

the paper [7]. In order to prove the above we will give some following facts.
An algebra &' = (E, f | E') is a proper subalgebra of £ = (E, f) if and only
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if 0 # E' C F and the set E’ is closed with respect to the operation f | E’,
where f | E’ is the restriction of f to the set E’.

A relation e C F x E is a proper congruence of the algebra £ if and
only if 7 is not the identity relation, and (z1,z2) € 7, (y1,y2) € r implies
(f(xl,yl), f(.’l)z, y2)) €r for every r1,%2,%1,Y2 € E.

A function s : E 23 E is a proper automorphism of the algebra £ if and
only if s is not the identity function, and for every z,y € F,

s(f(z,y)) = f(s(z),s(y))

Theorem 1.

Let L(£) be a set of tautologies over £. If L(£) # 0 and the algebra £
is functionally non—complete, then at least one of the following conditions
is satisfied:

(1) the only proper subalgebras of £ are
({1,3}, {3}, f 1 {1,3}),
({2,3}, {3}, f1{2,3}) and
({3}, {3}, 7 1 {3}),

(2) the algebra £ has only one automorphism which is defined by the
following table:

zy|1 273
s(z){2 1 37
(3) the algebra & has congruences which are defined by the following
decompositions of the set E :

(a) E{1,2}u {3}
(b) E={1}u{2,3}
(c) E={1,2,3}u{2}

Proof. Suppose that none of conditions (1), (2), (3) is fulfilled. Then by
the Rosenbera — Russeau theorem the algebra £ is functionally complete,
which is impossible. =

Lemma 3.

If the algebra &£ has the congruence defined by decomposition (i) and
L(€) =0, then z,y € {1,2} implies f(z,y)=3

Proof. Trivial. =
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Lemma 4.
Let the algebra & satisfies the assumption of lemma 3. If z € {1,2} or
y € {1,2}, then f(z,y) belongs to exactly one of the sets {1,2} or {3}.

Proof. Trivial. =

Lemma 5.

Let £ = ({1,2,3},{3},f),f: E* — E. If the algebra £ has the auto-
morphism (*), then the algebra £ has a congruence defined by the decom-
position (i).

Proof. Trivial. =

Lemma 6. .

If the algebra & = ({1,2,3}, {3}, f) has a congruence defined by the de-
composition (i), and the constant 3 is definable in the algebra &, then the al-
gebra £ is homomorphic with exactly one of the five algebras ({0,1}, {1}, f;)
for : = 1,2,3,4,5, where the f;’s are defined by following tables:

Al01 flo1 flo1 f]0 1 fs]o 1
01 0 o010 o011 o010 o1 1.
1foo 1{t1 101 1{0o1 1]10

Proof. The proof is based on Corollary 2. The homomorphism h is
defined in the following way:

0 if z€{1,2
h(:c):{l ;f wzé }.

Theorem 2.

Let E = ({1,2,3},{3}, f) include either the automorphism (x) or the
congruence defined by the decomposition (i), and let the set L(E) be non-
empty. Then every logic L over the £ has the set of tautologies identical to
a certain reduct of the two—valued sentence logic.

Proof. Immediately from the lemma 4,5,6. »
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Abstract

The present paper contains an investigation of functionally non- com-
plete reducts of three—valued logics. The axiomatization of some three-
valued logics may be reduced to the axiomatization of the two—valued log-
ics.
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Streszczenie

Niniejsza praca zawiera pewne rozwazania funkcyjnie niepelnych reduk-
tach logik tréjwartosciowych. Aksjomatyzacja pewnych logik tréjwartoécio-
wych moze by¢ zredukowana do aksjomatyzacji okreslonych logik dwuwar-
tosciowych.



