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Remarks on BCl-algebras

Izabela M. Dudek and Wiestaw A. Dudek

Introduction. A general algebra (G, ,0) of type (2,0) is called a
BClI-algebra if the following conditions are satisfied:

(1) ((z*xy)*(z*2))*(2%y)=0,
(2) (z*(z+y))*y=0,

(3) z*z=40,

(4) zxy=yx*xz =0 implies z =y,
(5) zx0=0 impliesz=0.

If an algebra (G, *,0) of type (2,0) satisfies conditions (1), (2), (3),
(4) and

(6) Drx=0,

then it is called a BCK-algebra.

Every BCK-algebra is a BCI-algebra (see [6]), but there are BCI-algebras
which are not BCK-algebras. BCI-algebras which are not BCK-algebras are
called proper. For example, every abelian group (G, +,0) defines on the set
G a proper BCl-algebra with the operation z*y = z —y. Such representa-
tion have all BCI-algebras which are quasigroups (cf. [3]), i.e. BCI-algebras
in which for every a there exists only one & such that az = 0, or equiv-
alently, BCI-algebras satisfying z * (z * y) = y (cf. [2]). The class of such
BCl-algebras forms a variety (cf. [3]).

It is easy to verify that a group of the exponent 2 is a proper BCI-
algebra. On the other hand, every BCl-algebra satisfying the condtion
0 %2 = z or the condition (z *y)* 2z = z *(y * 2z) is a group in which
z*z = 0 (see [5]). Also every para-associative BCl-algebra, i.e. a BCI-
algebra satisfying the (¢, j, k)-associative law
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(7) (z1*z2) xz3 = 2 % (2 * ),

where {i,7,k} is a fixed permutation of {1,2,3}, is a group of the exponent
2 (see [1]).

1. Alternative and flexible BCI-algebras

In this part we shall investigate BCI-algebras in which one of the following
conditions is satisfied:

(8) (y*x2)*z=yx*(z*z),
(9) (z*x2)*xy=zx(zx*y),
(10) (z*xy)*sz=z*(y*2z)

(i.e. right alternative, left alternative and flezible BCI-algebras).
Lemma 1. A right alternative BCl-algebra (G, *,0) is a Boolean group .

Proof. Since elements are arbitrary, then (8) implies (y x z) xz = y * 0,
(0xz)*2 =0 and O0x2 = 2 0. Putting y = 0 in (2) we obtain
(z * (z *0)) * 0 = 0, which implies z * (z x 0) = 0 (by (5)). Hence
0=2*(z+0)=2z+(0*z) and (0*z)*xz =0 imply z = 0xz (by
(4)). Theorem 2 from [5] completes the proof. O

Lemma 2. A left alternative BCIl-algebra (G, ,0) is a Boolean group.

Proof. If a BCI-algebra (G, *,0) satisfies (9), then 0 = z x (z * 0) and
0%z =z x0. From (2), (9) and (3) follows

O=(zx(z*xy))*xy=((z*x2)*xy)+y=(0+y)+y.

Therefore
O0=zx(z%0)=(0x2)xz=(zx0)*z.

Hence = 2 0 = 0 xz (by (4)), which implies (cf. [5]) that (G, *,0) is
a group of the exponent 2. ]

Lemma 3. A flexible BCI-algebra (G, *,0) is a Boolean group.

Proof. Because (G, *,0) satisfies (10), then 0%z = z x 0. Using (2), (3)
and (10) we obtain

O=(z*x(z*z))*z=(z+0)xz=z*+(0*2)=z*(z*0),
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which gives 0 = (z*0)xz = z*(z*0). This by (4) implies 2 = 20 = 0*z.
Theorem 2 from [5] completes the proof. a

Since every group of the exponent 2 is an associative BCI-algebra in
which (8), (9) and (10) are satisfied, then from the above lemmas follows

Theorem 1. A BCl-algebra (G, *,0) is right alternative, left alternative
or flexible if and only if it is a group of the ezponent 2. O

2. Lukasiewicz algebras

Any BCK-algebra (G, *,0) can be considered as a partially ordered groupoid
(cf. for example [7]). This partial order is defined by the formula:

Ly z+y=0.

Obviously, a BCI-algebra can be partially ordered by the same order, but
0 in a BCl-algebra is not the smmallest element, in general. It is only the
minimal element.

A BCK-algebra (G, *,0) is called commutative if z Ay = y Az for
all z,y € G, where z A y is defined as y x (y x z). If in a BCK-algebra
(G, *,0) for all z,y € G there exists z € G such that z < z and y < 2z,
then this BCK-algebra is called directed.

FEvery commutative BCK-algebra is a lower semilattice with respect to
A (cf [7]). A commutative directed BCK-algebra is a distributive lattice
with respect to A and V , where z V y is defined as c* ((c*xz) * (c* y))
and ¢ is any upper bound for z and y (cf. [9]). Moreover (cf. [8]), a
commutative directed BCK-algebra is a Lukasiewicz algebra, i.e. a general
algebra (G, *,0) of type (2,0) such that

(11) ((z*2)*x(z*xy))*(y*x2)=0,

(12).. 240 =2,

(13) (z*xy)*xz=0,

(14) z*(z*xy)=yx*(y*z),

(15) zxy=(z+y)*(y*z)
hold for all z,y,2 € G.

The converse statement is not true. There are Lukasiewicz algebras

which are not directed BCK-algebras. For example, the set G = {0,1,2}
with the operation defined as follows '
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N = O ¥
N = OO
N O Of =
S = O

is a Lukasiewicz algebra. It is also a commutative BCK-algebra, but it is
not directed because 1 and 2 have not an upper bound.

Theorem 2. Fvery Lukasiewicz algebra is a commutative BCK-algebra.

Proof. The condition (11) is the same as (1). Putting z = 0 in (11) we
obtain ((z*0)*(z*y))*(y*0) = 0, which (by (12)) implies (z*(zxy))*y = 0,
i.e. (2) is satisfied. Putting ¢ = y = 0 in (11) and using (12) we obtain
(3). Now, if 2y =y*2 =0, then (12) and (14) imply

r=z+0=zx(z+xy)=yx(yrz)=ys+0=y.
Hence (4) holds. Replacing y in (14) by 0 and using (12) with (13) we

obtain 0 = 0% (0 z). This (by (2)) implies 0 = (0% (0 x2))*x2z = 0%z,
which proves (6). The commutativity follows from (14). O

Corollary 1. A Lukasiewicz algebra is a BCl-algebra. ]

Corollary 2. A para-associative Lukasiewicz algebra is trivial, i.e. has
only one element.

Proof. Because a Lukasiewicz algebra (G, *,0) is a BCI-algebra, then the
para-associativity implies that this algebra is a group in which zxz = 0

(cf. [1]). Thus
D=(z+y)*z=(y*z)*z=y*(z*z)=y*0=y
by (13) and (12), which completes the proof. 0

As a simple consequence of Theorem 1 we obtain

Corollary 3. A right alternative (respectively: left alternative or flexible)
Lukasiewicz algebra is trivial. 0

Observe that the axioms system (11) - (15) for a Lukasiewicz algebra is
not independent. Indeed, in every BCI-algebra we have (z*y)*z = (zxz)*y
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(cf. [7]), which implies (z*y)*2 = (z*x2)*y = 0+xy = 0. Hence a
Lukasiewicz algebra can be defined by (11), (12), (14) and (15), i.e. (13)
may be omitted.

3. Weak BCC-algebras

By a weak BCC-algebra we mean an algebra (G, ,0) of type (2) satisfying
(3), (4),

(16) ((z+9)x(z+p)*(5+2) =0,
(A7) weli= 2.

Every BCl-algebra is a weak BCC-algebra, but not conversely (cf [10]).
One can prove (cf. [10]) that a weak BCC-algebra is a BCl-algebra iff it
satisfies (2). A weak BCC-algebra is called @ BCC-algebra if it also satisfies
(6). A BCC-algebra satisfying (2) is obviously a BCK-algebra.

Proposition 1. An associative weak BCC-algebra is a Boolean group.

Proof. If a weak BCC-algebra is associative, then (18) may be written in the
form ((z*y)*z)*((y*z)*z) = 0, which for z = 0 implies (z*y)*(y*z) = 0.
This, by symmetry and (4), gives z *y = y * x. Thus an associative weak
BCC-algebra is an abelian semigroup with the neutral element. Since for
every a,b € G there exists * = a *b € G such that a * z = b, then this
semigroup is a group. By (3) it is a Boolean group. O

Proposition 2. A right alternative weak BCC-algebra is a Boolean group.

Proof. Putting # = y in (8) we obtain 0z = z. Replacing in (16) =z
by 0, y by  and z = y*x we obtain (y*((z*y)*y))*x(z*y) =0,
which together with (8) and (4) implies z * y = y * 2. This together with
(16) (for z = 0) gives (2). Hence a weak BCC-algebra satisfying (8) is a
BCl-algebra (cf. [10]). Lemma 1 ends the proof. o

Proposition 3. A left alternative weak BCC-algebra is a Boolean group.
Proof. Since (9) gives 0 x & = z, then (16) for y = 2 together with (4)
implies z* 2 = 2 x 2 for all 2,z € G. Now, putting 2 = 0 in (16) and

using z * y = y * & we obtain (2), which completes the proof. a

Proposition 4. A weak BCC-algebra is a Boolean group iff it satisfies (at
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least) one of the following identities:

(18) zx(yxz)=y,
(19) (zxy)*xz=1y.

Proof. A Boolean group satisfies these identities. Conversely, if a weak
BCC-algebra (G, *,0) satisfies (18), then 0*y = y for all y € G. More-
over, the equations b = z *xa and a = b* 2 have a uniquely determined
solution z € G. Indeed, for every a,b € G and 2 = a * b we have
bxx =bx(axb) =a and z2xa =2z x(bxz) =0 If 2+xa = y=*a,
then 2 = a*(z*a) = a*(y*a) =y. Thus (G, *,0) is a quasigroup.
Hence (16) can be written in the form (2 * y) * (2 * y) = @ * 2. Therefore
(y*z)*xz = (y*2)*(0*z) = y*0 = y*(z*z) for all z,y € G, which proves
that (G, *,0) is a right alternative weak BCC-algebra. By Proposition 2
it is a Boolean group.

In the case of (19) the proof is analogous. O
Theorem 3. A para-associative weak BCC-algebra is a Boolean group.

Proof. We shall consider six cases of the para-associativity.

12 The case of the (1,2,3)-associativity is described by Proposition 1.

20 Since every (1,3,2)-associative groupoid is also right alternative, then
this case follows from our Proposition 2.

3% Every (2,1, 3)-associative groupoid is left alternative. Thus such weak
BCC-algebra is a Boolean group by Proposition 3.

49 Since the (2,3, 1)-associativity implies z = 0* 2 and z * (y * z) = y,
then this case can by reduced to Proposition 4.

59 The (3,2,1)-associativity for = y implies 0% 2z = z. For y = 0 it
gives z * z = z * . This together with (16) for 2 = 0 implies (2). Hence
every (3,2,1)-associative weak BCC-algebra is a BCl-algebra, and in the
consequence (cf. [1]), it is a Boolean group.

6° Analogously as in the previous case, the (3,1,2)-associativity implies
z+xy = y+xz and 0* 2z = =z, which together with (16) gives (2). The
conclusion follows from [1]. O

Proposition 5. A commutatine weak BCC-algebra is a BCK-algebra.

Proof. A commutative weak BCC-algebra (G, ,0) satisfies (14), which
for £ =0 gives 0% (0*y) = 0. This and (16) imply (6) because

0xy=((0%x0)*x(0*xy))*x(yx0)=0.
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Moreover, (z xy)*z = ((z *y) * (0% y)) x(y*0) = 0. But this and (14)
give (2). Indeed, (z*(z*y))*y=(y*(y*2))*xy =0. Thus (G, *,0) is
a BCK-algebra. a

In the theory of BCK-algebras an important role play (cf. (cf. [7]) the
following two identities:

(20) (z*xy)*xy=zx*y,
(21) zwfyrz)=2,

A BCK-algebra satisfying (20) is called positive implicative. A BCK-
algebra satisfying (21) is called implicative.

In the same way as Theorem 3 in [6] one can prove

Proposition 6. A weak BCC-algebra satisfying (20) or (21) is a BCC-
algebra. O

Note that for BCC-algebras the above two identities are not equivalent.
Moreover, as show the following two examples, there are positive implicative
BCC-algebras which are not BCK-algebras.

*x10 1 2 3 kB lr.2:. 4
010 0 0 O 0j]0 0 0 O
111 0 0 1 111 0 1 0
212 2 0 1 212 2 0 0
313 3 3 0 3(3 3 1 0

Axioms (3), (4), (6) and (17) are obvious. Since {0,1,2} are BCK-
algebras, we must verify (16) only in the case when at least one of elements
z,y,z is equal to 3. But it is a routine calculation. These algebras are
not BCK-algebras because in the first we have (2% (2%3))*3 # 0. In the
second (3*(3%2))+2 # 0. It is not difficult to see that these BCC-algebras
are positive implicative and z * (y * z) # = for some z # y.
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Remarks on BCI-algebras
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Abstract

We prove that every left or right alternative BCI-algebra is a Boolean
group, but a left or right alternative Lukasiewicz algebra has only one
element. Also every para-associative weak BCC-algebra is a Boolean group.

Uwagi o BCI-algebrach
Izabela M. Dudek, Wieslaw A. Dudek

Streszczenie

Dowodzimy, ze kazda lewostronnie lub prawostronnie alternatywna BCI-
algebra jest grupa Boole’a, ale lewostronnie lub prawostronnie alternaty-
wna algebra Lukasiewicza ma tylko jeden element. Takze kazda paralaczna
staba BCC-algebra jest grupa Boole’a.



