Remarks on BCI-algebras

Izabela M. Dudek and Wiesław A. Dudek

Introduction. A general algebra (G, *, 0) of type (2, 0) is called a BCI-algebra if the following conditions are satisfied:

- (1) ((x*y)*(x*z))*(z*y) = 0,
- (x*(x*y))*y=0,
- (3) x * x = 0, (4) x * y = y * x = 0 implies x = y,
- x * 0 = 0 implies x = 0.

If an algebra (G, *, 0) of type (2, 0) satisfies conditions (1), (2), (3),(4) and ((3) * 0) = 0 * ((3) * 0) = 0 * ((3) * 0) = 0 * ((3) * 0) = 0

(6)
$$0 * x = 0$$
,

then it is called a BCK-algebra.

Every BCK-algebra is a BCI-algebra (see [6]), but there are BCI-algebras which are not BCK-algebras. BCI-algebras which are not BCK-algebras are called proper. For example, every abelian group (G, +, 0) defines on the set G a proper BCI-algebra with the operation x * y = x - y. Such representation have all BCI-algebras which are quasigroups (cf. [3]), i.e. BCI-algebras in which for every a there exists only one x such that ax = 0, or equivalently, BCI-algebras satisfying x * (x * y) = y (cf. [2]). The class of such BCI-algebras forms a variety (cf. [3]).

It is easy to verify that a group of the exponent 2 is a proper BCIalgebra. On the other hand, every BCI-algebra satisfying the condtion 0 * x = x or the condition (x * y) * z = x * (y * z) is a group in which x * x = 0 (see [5]). Also every para-associative BCI-algebra, i.e. a BCIalgebra satisfying the (i, j, k)-associative law Proof Because (C. 470) valishes (N) then

(7)
$$(x_1 * x_2) * x_3 = x_i * (x_j * x_k),$$

where $\{i, j, k\}$ is a fixed permutation of $\{1, 2, 3\}$, is a group of the exponent 2 (see [1]).

1. Alternative and flexible BCI-algebras

In this part we shall investigate BCI-algebras in which one of the following conditions is satisfied:

- $(8) \quad (y*x)*x = y*(x*x),$
- (9) (x*x)*y = x*(x*y),
- $(10) \quad (x*y)*x = x*(y*x)$

(i.e. right alternative, left alternative and flexible BCI-algebras).

Lemma 1. A right alternative BCI-algebra (G, *, 0) is a Boolean group.

Proof. Since elements are arbitrary, then (8) implies (y * x) * x = y * 0, (0 * x) * x = 0 and 0 * x = x * 0. Putting y = 0 in (2) we obtain (x * (x * 0)) * 0 = 0, which implies x * (x * 0) = 0 (by (5)). Hence 0 = x * (x * 0) = x * (0 * x) and (0 * x) * x = 0 imply x = 0 * x (by (4)). Theorem 2 from [5] completes the proof.

Lemma 2. A left alternative BCI-algebra (G, *, 0) is a Boolean group.

Proof. If a BCI-algebra (G, *, 0) satisfies (9), then 0 = x * (x * 0) and 0 * x = x * 0. From (2), (9) and (3) follows

$$0 = (x * (x * y)) * y = ((x * x) * y) * y = (0 * y) * y.$$

Therefore

$$0 = x * (x * 0) = (0 * x) * x = (x * 0) * x.$$

Hence x = x * 0 = 0 * x (by (4)), which implies (cf. [5]) that (G, *, 0) is a group of the exponent 2.

Lemma 3. A flexible BCI-algebra (G, *, 0) is a Boolean group.

Proof. Because (G, *, 0) satisfies (10), then 0 * x = x * 0. Using (2), (3) and (10) we obtain

$$0 = (x * (x * x)) * x = (x * 0) * x = x * (0 * x) = x * (x * 0),$$

which gives 0 = (x*0)*x = x*(x*0). This by (4) implies x = x*0 = 0*x. Theorem 2 from [5] completes the proof.

Since every group of the exponent 2 is an associative BCI-algebra in which (8), (9) and (10) are satisfied, then from the above lemmas follows

Theorem 1. A BCI-algebra (G, *, 0) is right alternative, left alternative or flexible if and only if it is a group of the exponent 2.

2. Lukasiewicz algebras

Any BCK-algebra (G, *, 0) can be considered as a partially ordered groupoid (cf. for example [7]). This partial order is defined by the formula:

$$x \le y \Longleftrightarrow x * y = 0.$$

Obviously, a BCI-algebra can be partially ordered by the same order, but 0 in a BCI-algebra is not the smmallest element, in general. It is only the minimal element.

A BCK-algebra (G, *, 0) is called *commutative* if $x \wedge y = y \wedge x$ for all $x, y \in G$, where $x \wedge y$ is defined as y * (y * x). If in a BCK-algebra (G, *, 0) for all $x, y \in G$ there exists $z \in G$ such that $x \leq z$ and $y \leq z$, then this BCK-algebra is called *directed*.

Every commutative BCK-algebra is a lower semilattice with respect to ∧ (cf [7]). A commutative directed BCK-algebra is a distributive lattice with respect to \land and \lor , where $x \lor y$ is defined as c * ((c * x) * (c * y))and c is any upper bound for x and y (cf. [9]). Moreover (cf. [8]), a commutative directed BCK-algebra is a Lukasiewicz algebra, i.e. a general algebra (G, *, 0) of type (2, 0) such that

- ((x*z)*(x*y))*(y*z)=0, (11)
 - $(12) \quad x * 0 = x \,,$
 - by (13) and (12), which considered the months unner (13)(x*y)*x=0,
 - x*(x*y) = y*(y*x),(14)
 - x * y = (x * y) * (y * x)(15)

hold for all $x, y, z \in G$.

The converse statement is not true. There are Lukasiewicz algebras which are not directed BCK-algebras. For example, the set $G = \{0,1,2\}$ with the operation defined as follows material amounts and that available of the control of the

which gives
$$0 = (z*0)*x = x*2*x!0*0 | x* | bys(4) implies x = x*0 = 0*x.$$
Theorem 2 from [5] completes $0 = 0 = 0$ | $0 = 0 =$

is a Lukasiewicz algebra. It is also a commutative BCK-algebra, but it is not directed because 1 and 2 have not an upper bound.

Theorem 2. Every Łukasiewicz algebra is a commutative BCK-algebra.

Proof. The condition (11) is the same as (1). Putting z = 0 in (11) we obtain ((x*0)*(x*y))*(y*0) = 0, which (by (12)) implies (x*(x*y))*y = 0, i.e. (2) is satisfied. Putting x = y = 0 in (11) and using (12) we obtain (3). Now, if x*y = y*x = 0, then (12) and (14) imply

$$x = x * 0 = x * (x * y) = y * (y * x) = y * 0 = y$$
.

Hence (4) holds. Replacing y in (14) by 0 and using (12) with (13) we obtain 0 = 0 * (0 * x). This (by (2)) implies 0 = (0 * (0 * x)) * x = 0 * x, which proves (6). The commutativity follows from (14).

Corollary 1. A Lukasiewicz algebra is a BCI-algebra.

Corollary 2. A para-associative Lukasiewicz algebra is trivial, i.e. has only one element.

Proof. Because a Lukasiewicz algebra (G, *, 0) is a BCI-algebra, then the para-associativity implies that this algebra is a group in which x * x = 0 (cf. [1]). Thus

$$0 = (x * y) * x = (y * x) * x = y * (x * x) = y * 0 = y$$

by (13) and (12), which completes the proof.

As a simple consequence of Theorem 1 we obtain

Corollary 3. A right alternative (respectively: left alternative or flexible)
Lukasiewicz algebra is trivial. □

Observe that the axioms system (11) – (15) for a Lukasiewicz algebra is not independent. Indeed, in every BCI-algebra we have (x*y)*z = (x*z)*y

(cf. [7]), which implies (x * y) * x = (x * x) * y = 0 * y = 0. Hence a Łukasiewicz algebra can be defined by (11), (12), (14) and (15), i.e. (13) may be omitted.

3. Weak BCC-algebras

By a weak BCC-algebra we mean an algebra (G, *, 0) of type (2) satisfying (3), (4),

- (16) ((x*y)*(z*y))*(x*z) = 0,
- (17) x * 0 = x.

Every BCI-algebra is a weak BCC-algebra, but not conversely (cf [10]). One can prove (cf. [10]) that a weak BCC-algebra is a BCI-algebra iff it satisfies (2). A weak BCC-algebra is called a BCC-algebra if it also satisfies (6). A BCC-algebra satisfying (2) is obviously a BCK-algebra.

Proposition 1. An associative weak BCC-algebra is a Boolean group.

Proof. If a weak BCC-algebra is associative, then (18) may be written in the form ((x*y)*z)*((y*x)*z) = 0, which for z = 0 implies (x*y)*(y*x) = 0. This, by symmetry and (4), gives x*y = y*x. Thus an associative weak BCC-algebra is an abelian semigroup with the neutral element. Since for every $a, b \in G$ there exists $x = a*b \in G$ such that a*x = b, then this semigroup is a group. By (3) it is a Boolean group.

Proposition 2. A right alternative weak BCC-algebra is a Boolean group.

Proof. Putting x = y in (8) we obtain 0 * x = x. Replacing in (16) x by 0, y by x and z = y * x we obtain (y * ((x * y) * y)) * (x * y) = 0, which together with (8) and (4) implies x * y = y * x. This together with (16) (for z = 0) gives (2). Hence a weak BCC-algebra satisfying (8) is a BCI-algebra (cf. [10]). Lemma 1 ends the proof.

Proposition 3. A left alternative weak BCC-algebra is a Boolean group.

Proof. Since (9) gives 0 * x = x, then (16) for y = x together with (4) implies z * x = x * z for all $x, z \in G$. Now, putting x = 0 in (16) and using x * y = y * x we obtain (2), which completes the proof.

Proposition 4. A weak BCC-algebra is a Boolean group iff it satisfies (at

least) one of the following identities: he always a solution with the least of the following identities:

- (18) x * (y * x) = y,
- (19) (x*y)*x = y.

Proof. A Boolean group satisfies these identities. Conversely, if a weak BCC-algebra (G, *, 0) satisfies (18), then 0 * y = y for all $y \in G$. Moreover, the equations b = x * a and a = b * x have a uniquely determined solution $x \in G$. Indeed, for every $a, b \in G$ and x = a * b we have b * x = b * (a * b) = a and x * a = x * (b * x) = b. If x * a = y * a, then x = a * (x * a) = a * (y * a) = y. Thus (G, *, 0) is a quasigroup. Hence (16) can be written in the form (x * y) * (z * y) = x * z. Therefore (y*x)*x = (y*x)*(0*x) = y*0 = y*(x*x) for all $x, y \in G$, which proves that (G, *, 0) is a right alternative weak BCC-algebra. By Proposition 2 it is a Boolean group.

In the case of (19) the proof is analogous.

Theorem 3. A para-associative weak BCC-algebra is a Boolean group.

Proof. We shall consider six cases of the para-associativity.

 1^0 The case of the (1,2,3)-associativity is described by Proposition 1.

 2^0 Since every (1,3,2)-associative groupoid is also right alternative, then this case follows from our Proposition 2.

 3^{0} Every (2,1,3)-associative groupoid is left alternative. Thus such weak BCC-algebra is a Boolean group by Proposition 3.

 4^{0} Since the (2,3,1)-associativity implies x=0*x and x*(y*x)=y, then this case can by reduced to Proposition 4.

50 The (3,2,1)-associativity for x=y implies 0*z=z. For y=0 it gives x*z=z*x. This together with (16) for z=0 implies (2). Hence every (3,2,1)-associative weak BCC-algebra is a BCI-algebra, and in the consequence (cf. [1]), it is a Boolean group.

60 Analogously as in the previous case, the (3,1,2)-associativity implies x * y = y * x and 0 * x = x, which together with (16) gives (2). The conclusion follows from [1].

Proposition 5. A commutatine weak BCC-algebra is a BCK-algebra.

Proof. A commutative weak BCC-algebra (G, *, 0) satisfies (14), which for x = 0 gives 0 * (0 * y) = 0. This and (16) imply (6) because

$$0*y = ((0*0)*(0*y))*(y*0) = 0.$$

Moreover, (x * y) * x = ((x * y) * (0 * y)) * (y * 0) = 0. But this and (14) give (2). Indeed, (x * (x * y)) * y = (y * (y * x)) * y = 0. Thus (G, *, 0) is a BCK-algebra.

In the theory of BCK-algebras an important role play (cf. (cf. [7]) the following two identities:

$$(20) (x*y)*y = x*y,$$

$$(21) x * (y * x) = x.$$

A BCK-algebra satisfying (20) is called *positive implicative*. A BCK-algebra satisfying (21) is called *implicative*.

In the same way as Theorem 3 in [6] one can prove

Proposition 6. A weak BCC-algebra satisfying (20) or (21) is a BCC-algebra. \Box

Note that for BCC-algebras the above two identities are not equivalent. Moreover, as show the following two examples, there are positive implicative BCC-algebras which are not BCK-algebras.

*	0	1	2	3	*	0	1	2	3
0	0	0	0	0	0	0	0	0	0
1	1	0	0	1				1	
2	2	2	0	1	2	2	2	0	0
3	3	3	3	0				1	

Axioms (3), (4), (6) and (17) are obvious. Since $\{0,1,2\}$ are BCK-algebras, we must verify (16) only in the case when at least one of elements x, y, z is equal to 3. But it is a routine calculation. These algebras are not BCK-algebras because in the first we have $(2*(2*3))*3 \neq 0$. In the second $(3*(3*2))*2 \neq 0$. It is not difficult to see that these BCC-algebras are positive implicative and $x*(y*x) \neq x$ for some $x \neq y$.

References

[1] I.M.Dudek: On para-associative BCI-algebras, Prace Naukowe WSP w Częstochowie, ser. Matematyka 1 (1987), 21 – 24.

- [2] W.A.Dudek: On some BCI-algebras with the condition (S), Math. Japonica 31 (1986), 25 29.
- [3] W.A.Dudek: On group-like BCI-algebras, Demonstratio Math. 21 (1988), 369 376.
- [4] W.A.Dudek: Remarks on the axioms system for BCI-algebras, Prace Naukowe WSP w Częstochowie, ser. Matematyka, this volume.
- [5] W.A.Dudek: On the axioms system for BCI-algebras, Matematiczni Studij (Lvov) 3 (1994), 5 9.
- [6] Q.P.Hu, K.Iséki: On BCI-algebras satisfying (x*y)*z = x*(y*z), Math. Seminar Notes Kobe Univ. 8 (1980), 553 555.
- [7] K.Iséki: On BCI-algebras, Math. Seminar Notes Kobe Univ. 8 (1980), 123 130.
- [8] K.Iséki, S.Tanaka: An introduction to the theory of BCK-algebras, Math. Japonica 23 (1978), 1 26.
- [9] M.Pałasiński: Some remarks on BCK-algebras, Math. Seminar Notes Kobe Univ. 8 (1980), 137 144.
- [10] T.TRACZYK: On the variety of bounded commutative BCK-algebras, Math. Japonica 24 (1979), 283 292.

Remarks on BCI-algebras

Izabela M. Dudek, Wiesław A. Dudek

Abstract

We prove that every left or right alternative BCI-algebra is a Boolean group, but a left or right alternative Lukasiewicz algebra has only one element. Also every para-associative weak BCC-algebra is a Boolean group.

Uwagi o BCI-algebrach

Izabela M. Dudek, Wiesław A. Dudek

Streszczenie

Dowodzimy, że każda lewostronnie lub prawostronnie alternatywna BCI-algebra jest grupą Boole'a, ale lewostronnie lub prawostronnie alternatywna algebra Lukasiewicza ma tylko jeden element. Także każda parałączna słaba BCC-algebra jest grupą Boole'a.

efinition is two (5) or (50) for a continued by a continued of the continu

 $f(x_1, \dots, x_k, x_{k+1}, \dots, x_{k+2}, \dots, x_{k+1})) = f(x_1, \dots, x_k, \dots, x_{k+1})$ An equivolent form of the received definition of the first state of the first state

whenever $x_{k+1} = x_{k+2} = \dots = x_{k+n} = x$ (x) is the empty symbol for a cold of $x_k = x_k = x_k$ and for $x > x_k$ also x_k is the empty symbol). It is an also x_k is the empty symbol).

AMS Subject Classification (1991)c. 20N lb.

[Key words and physical negroup percontable negroup, feomorphism...]