Remarks on set-theoretic relations connected with BCH-algebras

Wiesław A. Dudek and Ronald Rousseau

Introduction. A general algebra (G, *, 0) of type (2, 0) is called a BCH-algebra (cf. [1], [4]) if for all $x, y, z \in G$

- (1) x * x = 0,
- $(2) \quad (x*y)*z = (x*z)*y,$
- (3) x * y = y * x = 0 implies x = y.

Such an algebra is called a BCK-algebra if it satisfies the following axioms:

- $(4) (x*y)*(x*z) \le z*y,$
- $(5) \quad x*0=x \ ,$
- (6) $x \leq y$ and $y \leq x$ imply x = y,
 - $(7) \quad 0 \leq x \; ,$

where $x \leq y$ is defined by x * y = 0. The relation \leq on G is a partial order with 0 as the smallest element.

It is easily seen that every BCK-algebra is a BCH-algebra. An example that the converse does not hold will be given in the next section. For more information on BCH- and BCK-algebras we refer to [1], [4] and [5].

If (G, \leq) is a partially ordered set with a smallest element 0, then G can be made into a BCK-algebra by

$$x * y = \begin{cases} 0 & if \ x \leq y, \\ x & otherwise. \end{cases}$$

This is called the trivial structure on (G, \leq) . We remark that the partial order on G considered as a BCK-algebra coincides with the original partial order.

1. Generalities on BCH-algebras

In this section we prove elementary properties of BCH-algebras.

Lemma 1. If (G, *, 0) is a BCH-algebra, then x * 0 = 0 implies x = 0.

Proof. Since
$$0 * x = (x * 0) * x = (x * x) * 0 = 0 * 0 = 0$$
 and $x * 0 = 0$, then (3) yields $x = 0$.

Lemma 2. If (G, *, 0) is a BCH-algebra, then x * 0 = x for every $x \in G$.

Proof. First we remark that (x*0)*x = (x*x)*0 = 0*0 = 0. Now we further have:

$$(x*0)*(x*0) = 0 by (1)$$

$$\Rightarrow ((x*0)*(x*0))*0 = 0 by (1)$$

$$\Rightarrow ((x*(x*0))*0)*0 = 0 by (2)$$

$$\Rightarrow (x*(x*0))*0 = 0 by Lemma 1$$

$$\Rightarrow x*(x*0) = 0 by Lemma 1.$$

As
$$(x*0)*x = x*(x*0) = 0$$
, then (3) yields $x*0 = x$.

Definition. A BCH_0 -algebra is a BCH-algebra (G, *, 0) which, for every $x \in G$ satisfies the relation 0 * x = 0. Remark that this is actually (7) so that every BCK-algebra a BCH₀-algebra.

Example 1. If (G, +, 0) is a commutative group, then (G, *, 0), where x * y = x - y, is a BCH-algebra. Unless $G = \{0\}$ this BCH-algebra is not a BCH₀-algebra.

Example 2. Consider the following 4-element structure given by

Table 1

It is easily seen that this table defines a BCH₀-algebra which is not a BCK-algebra. Indeed: $((a*c)*(a*b))*(b*c) = a \neq 0$.

On every BCH-algebra (G, *, 0) one can define a natural relation \leq by $x \leq y$ if x * y = 0. This relation is reflexive and anti-symmetric but not transitive in general: in Table 1 we have $a \leq b$ and $b \leq c$ but $not (a \leq c)$. If $x \leq 0$, then x = 0 and if (G, *, 0) is a BCH₀-algebra we have that for every $x \in G : 0 \leq x$.

In a similar way as in the BCK-algebra case we can define on every set G equipped with a distinguished point 0 and a reflexive and antisymmetric relation ρ , a BCH-structure putting

$$x * y = \begin{cases} 0 & if xRy, \\ x & otherwise. \end{cases}$$

This is called the trivial structure on (G, ρ) . This construction always yields a BCH₀-structure.

2. The main results

Proposition. If a BCH₀-algebra (G, *, 0) has a trivial structure obtained from a relation ρ and \leq is the natural relation on this BCH₀-algebra, then $\rho = \leq$ only if $0\rho y$ for every $y \in G$.

Proof. If $x \leq y$ then x * y = 0. This implies $x \rho y$, or x = 0. If the relation $0 \rho y$ is satisfied, then $x \leq y$ always implies $x \rho y$, i.e. $\leq \subset \rho$. On the other hand, if $x \rho y$ then by the definition x * y = 0, which gives $x \leq y$. Thus, $\rho \subset \leq$ and in the consequence $\rho = \leq$.

Example 3. We will give an example where $\rho \neq \leq$. Let $G = \{0, a\}$ and let the reflexive and anti-symmetric relation ρ by given by $0\rho 0$, $a\rho a$, $not(0\rho a)$ and $not(a\rho 0)$. Then (G, *, 0) is a BCH₀algebra given by Table 2:

Table 2

The natural order of (G, *, 0) satisfies $0 \le a$. Thus $\rho \ne \le$.

We suppose now that G is a set and ρ is a binary relation on G. We suppose moreover that there exists a distinguished point $0 \in G$ satisfying the following *minimum condition*:

Remark 1. If ρ is a binary relation defined on G and $0 \in G$ satisfies the above minimum condition, then we obviously have:

- (a) $0\rho 0$ (local reflexivity)
 - (b) $\forall y, z \in G : 0\rho y \text{ and } y\rho z \implies 0\rho z \text{ (local transitivity)}.$

Theorem 1. If (G, *, 0), where * is defined by the relation ρ , is a BCH_0 -algebra, then ρ is a reflexive and anti-symmetric relation which coincides with the natural relation on the BCH_0 -algebra (G, *, 0).

Proof. If ρ is reflexive and anti-symmetric, then the last assertion follows from Proposition. Suppose now that ρ is not reflexive, then there exists $x \in G$ such that $not(x\rho x)$. So x*x=x. However, if (G,*,0) is a BCH₀-algebra, then x*x=0, which is in contradiction with local reflexivity.

If ρ is not anti-symmetric, then there exist $x, y \in G$, $x \neq y$ such that $x \rho y$ and $y \rho x$. Then x * y = 0 and y * x = 0, which implies that x = y (by (3)). This again is a contradiction.

Theorem 2. If (G, *, 0) is a BCK-algebra defined by ρ , then ρ is a partial order on G which coincides with the partial order on the BCK-algebra (G, *, 0).

Proof. If ρ is not a partial order, then either ρ is not reflexive or ρ is not anti-symmetric or ρ is not transitive. The cases when ρ is not reflexive or ρ is not anti-symmetric lead to contradictions as shown in Theorem 1. If now ρ is not transitive, then there exist $x, y, z \in G$ such that $x \rho y$ and $y \rho z$ but $not(x \rho z)$. Then we have

or
$$x*y=0\;,\quad y*z=0\;,\quad x*z=x$$

$$x\leq y\;,\qquad y\leq z\;,\qquad x*z=x\;.$$

Transitivity of \leq yields x*z=0, which is in contradiction with the requirement of local transitivity. This proves the theorem.

Remark 2. As demonstrated by the proof, local reflexivity and local transitivity suffice to obtain that ρ is a partial order. However, as shown in Example 3, this does not suffice to conclude that ρ is the partial order obtained by looking at (G, *, 0) as a BCK-algebra.

For further information concerning the relations between set-theoretic relations and structures similar to the ones studied here we refer to [2].

ADDED IN PROOF. (June 1997) This paper were written many years ago. Hence some results can be generalized in the way presented in the other our paper [3].

References

- [1] M.W.Bunder: Simpler axioms for BCK-algebras and the connection between the axioms and the combinators \mathcal{B} , \mathcal{C} and \mathcal{K} , Math. Japonica 26 (1981), 415 418.
- [2] W.A.Dudek: On BCC-algebras, Logique et Analyse, 129-130 (1990), 103 111.
- [3] W.A.Dudek, R.Rousseau: Set-theoretic relations and BCH-algebras with trivial structure, Zbornik Radova Prirod.-Mat. Fak. Univ. u Novom Sadu 25.1 (1991), 75 82.
- [4] Q.Hu, X.Li: On proper BCH-algebras, Math. Japonica **30** (1985), 659 661.
- [5] K.ISÉKI, S.TANAKA: An introduction to the theory of BCK-algebras, Math. Japonica 23 (1978), 1 26.

Remarks on set-theoretic relations connected with BCH-algebras

Wiesław A.Dudek and Ronald Rousseau

Abstract

We characterize those set-theoretic relations which trivially yield the structure of BCH- or BCK-algebra.

Uwagi o teorio-mnogościowych relacjach związanych z BCH-algebrami

Wiesław A.Dudek i Ronald Rousseau

Streszczenie

Charakteryzujemy te teorio-mnogościowe relacje które w prosty sposób wyznaczają strukturę BCH-algebry lub BCK-algebry.

[5] K. ISRKI. S. TARARAS Absolute introduction in the theology of HCROSES.