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Remarks on set-theoretic relations connected with
BCH-algebras

Wiestaw A. Dudek and Ronald Rousseau

Introduction. A general algebra (G, *,0) of type (2,0) is called a
BCH-algebra (cf. [1], [4]) if for all z,y,z2€ G

(1) z+x2=10,

(2) (zxy)rz=(zx2)*y,
(3) zxy=yxxz=0 implies x=1y.

Such an algebra is called a BCK-algebra if it satisfies the following axioms:

(4) (zxy)x(zx2)<zxy,

i I
(6) 2<y and y<z imply x=1y,
(7) 0Lz,

where z < y is defined by z xy = 0. The relation < on G is a partial
order with 0 as the smallest element. '
It is easily seen that every BCK-algebra is a BCH-algebra. An example
that the converse does not hold will be given in the next section. For more
information on BCH- and BCK-algebras we refer to [1], [4] and [5].
If (G,<) is a partially ordered set with a smallest elerment 0, then G
can be made into a BCK-algebra by

_J 0 ifzsy,
x*y—-{ & otherwise .

This is called the trivial structure on (G,<). We remark that the
partial order on G considered as a BCK-algebra coincides with the original
partial order. '
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1. Generalities on BCH-algebras

In this section we prove elementary properties of BCH-algebras.
Lemma 1. If (G, *,0) is a BCH-algebra, then = +0 = 0 implies = = 0.

Proof. Since 0%z = (z*0)*xz = (2*2)*0=0%0=0 and zx0 = 0, then
(3) yields = = 0. ]

Lemma 2. If (G, *,0) is a BCH-algebra, then z+0 = z for every z € G.

Proof. First we remark that (z*0)*z = (z*2)*0=0%0= 0. Now we
further have:

(z*0)x(z%0)=0 by (1)
= ((zx0)*(z%0))x0=0 by (1)
= ((z*(z%0))*x0)x0=0 by (2)
= (z*(z%0))*x0=0 by Lemma 1
= zx*(zx0)=0 by Lemma 1.
As (z*0)*xx =2+ (2 *0) =0, then (3) yields z*0 = 2. |

Definition. A BCH,-algebra is a BCH-algebra (G, *,0) which, for every
r € G satisfies the relation 0z = 0. Remark that this is actually (7) so
that every BCK-algebrais a BCHp-algebra.

Example 1. If (G, +,0) is a commutative group, then (G, *,0) , where
rxy=21a—y, is a BCH-algebra. Unless G = {0} this BCH-algebra is not
a BCHp-algebra.

Example 2. Consider the following 4-element structure given by

x| 0 a b ¢
0({0 0 0 O
gla¢ U @
blb b 0 0
&l &b .l
Table 1

It is easily seen that this table defines a BCHg-algebra which is not a BCK-
algebra. Indeed: ((axc)*(axb))*(b*xc)=a #0.
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On every BCH-algebra (G, *,0) one can define a natural relation <
by z < y if 2+y = 0. This relation is reflexive and anti-symmetric but not
transitive in general: in Table 1 we have a < b and b < ¢ but not(a < c).
If 2 <0,then z =0 and if (G, *,0) is a BCHg-algebra we have that for
every t€G : 0L 2.

In a similar way as in the BCK-algebra case we can define on every
set G equipped with a distinguished point 0 and a reflexive and anti-
symmetric relation p, a BCH-structure putting

m*yz{ 0 if zRy,

r otherwise .

This is called the trivial structure on (G, p). This construction always yields
a BCHg-structure.

2. The main results

Proposition. If @ BCHy-algebra (G, *,0) has a trivial structure obtained
from a relation p and < is the natural relation on this BCHo-algebra,
then p = < only if Opy for every y € G.

Proof. If z <y then z*y = 0. This implies zpy, or z = 0. If the relation
0py is satisfied, then z < y always implies zpy, i.e. < C p. On the other
hand, if zpy then by the definition z * y = 0, which gives 2 < y. Thus,
p C < and in the consequence p = <. a

Example 3. We will give an example where p #<. Let G = {0,a}
and let the reflexive and anti-symmetric relation p by given by 0p0, apa,
not (0pa) and not (ap0). Then (G, *,0) is a BCHpalgebra given by Table
i

*x |0 a

010 0

ala 0
Table 2

The natural order of (G, *,0) satisfies 0 < a. Thus p #<.

We suppose now that G is a set and p is a binary relation on G. We
suppose moreover that there exists a distinguished point 0 € G satisfying
the following minimum condition:

Vz € G:0pz .
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Remark 1. If p is a binary relation defined on G' and 0 € G satisfies the
above minimum condition, then we obviously have:

(a) 0p0 (local reflexivity)
(b) Vy,z€ G:0py and ypz = O0pz (local transitivity).

Theorem 1. If (G, *,0) , where * is defined by the relation p, is a
BCHy-algebra, then p is a reflezive and anti-symmetric relation which co-
incides with the natural relation on the BCHp-algebra (G, *,0) .

Proof. If p is reflexive and anti-symmetric, then the last assertion follows
from Proposition. Suppose now that p is not reflexive, then there exists
x € G such that not (zpz). So z+2 = 2. However, if (G, *,0) is a BCHp-
algebra, then ,z x ¢ = 0, which is in contradiction with local reflexivity.

If p is not anti-symmetric, then there exist z,y € G, ¢ # y such that
zpy and ypz. Then z*y =0 and y x 2 = 0, which implies that z = y
(by (3)). This again is a contradiction. m}

Theorem 2. If (G, x,0) is a BCK-algebra defined by p, then p is a par-
tial order on G which coincides with the partial order on the BCK-algebra
(G, *,0) .

Proof. If p is not a partial order, then either p is not reflexive or p is not
anti-symmetric or p is not transitive. The cases when p is not reflexive
or p is not anti-symmetric lead to contradictions as shown in Theorem 1.
If now p is not transitive, then there exist z,y,z € G such that zpy and
ypz but not(zpz). Then we have

zey=0, yxz2=0, =zxz=¢
or
msg? ygza Txz=12 .

Transitivity of < yields z * z = 0, which is in contradiction with the
requirement of local transitivity. This proves the theorem. O

Remark 2. As demonstrated by the proof, local reflexivity and local tran-
sitivity suffice to obtain that p is a partial order. However, as shovn in
Example 3, this does not suffice to conclude that p is the partial order
obtained by looking at (G, *,0) as a BCK-algebra.
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For further information concerning the relations between set-theoretic
relations and structures similar to the ones studied here we refer to [2].

ADDED IN PROOF. (June 1997) This paper were written many years ago.
Hence some results can be generalized in the way presented in the other
our paper [3].
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Abstract

We characterize those set-theoretic relations which trivially yield the
structure of BCH- or BCK-algebra.
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Streszczenie

Charakteryzujemy te teorio-mnogosciowe relacje ktore w prosty sposéb
wyznaczaja struktur¢ BCH-algebry lub BCK-algebry.



