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On some generalization of BCC-algebras

Janusz Thomys

Introduction. K.Iséki posed an interesting problem wheter the class
of BCK-algebras, which are a generalization on the one hand the notion of
“the algebra of sets with the set subtraction as the only one fundamental
non-nullary operation and on the other hand the notion of the implicational
logic, is a variety. In connection with this problem Y.Komori introduced
in [8] the notion of BCC-algebras and proved (using some Gentzen-type
system LC) that the class of all BCC-algebras is not a variety. BCC-
algebras are considered in many papers (cf. for example [1], [3] and [5]).
Some generalizations of BCC-algebras are described in [1] and [4]. All these
algebras are motivated by implicational logics and by propositional calculi.
In many cases one can give a special translation procedure which translates
obtained results into terms and well formed formulas of the corresponding
logic.

Nevertheless the study of algebras motivated by known logics is inter-
esting and very useful for corresponding logics, also in the case when the
correct translation procedure not exists.

In this note by a weak BCC-algebra we mean a non-empty set G with
a binary operation denoted by * and with a constant 0 if the following
conditions are satisfied:

(1)  (y*x2)*x((zxy)*(z+2))=0,
(2) gx@ =0,

(3) Ori= 24

(4) zxy=y+xc=0 implies z=1y.

Remark that if we exchange (1) for (z *y)* ((y* 2) *(z * 2)) = 0, we
obtain the axioms system for BCI-algebras (but in the dual form).
If a weak BCC-algebra satisfes the identity
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(5) z40 =0,

then it is called a BCC-algebra.

W.A.Dudek suggests in [4] the definition of weak BCC-algebras and
BCC-algebras which is dual to the above. In his concept every BCK-
algebra is a BCC-algebra; every BCl-algebra is a weak BCC-algebra but
not conversely. He gives examples of weak BCC-algebras which are not
BClI-algebras. But in [6] he consider BCC-algebras which coincide with our

definition i.e. with the original definition given by Komori in [8].
A weak BCC-algebra is called medial if the condition

(6) (z*xy)*(zxu)=(z*x2)*(y*u)

holds for all z,y,z,u € G. Medial BCI-algebras are described in [2], [3],
- [5] and [7].

Note that a medial BCC-algebra has only one element. Indeed, by (2),
(3), (5) and (6), we have

t=0x(0*xz)=(zxz)*x(0xz)=(z*0)*x(z*xz)=(z%0)x0=0

for all z € G.

Now, we give an independent axioms system for medial weak BCC-
algebras.

Proposition 1.1. The class of all medial weak BCC-algebras forms a va-
riety. An equational base of this variety is given by the independent azioms

system: (2), (3), (6).

Proof. Every medial weak BCC-algebra satisfies (2), (3) and (6). Con-
versely, if an algebra (G ,*,0) of type (2,0) satisfies these conditions,
then

(yr2)*x((z*xy)x(z*x2))=(y*2)*((zx2)*(y*2)) =
(y*2)x(0x(y*2))=(yx2)*(y*z)=0,
which gives (1).
To prove (4), assume that  *y = y*xz = 0. Then
T=0x(0*xz)=(y*2)*x(0x2)=(y*0)*x(zxz) =
(y*0)x0=(y*0)x(yxy) = (y*y)*(0xy) =0x(0xy) =y.

Hence z = y. Therefore (G ,*,0) is a medial weak BCC-algebra.
Now, we consider algebras given by Table 1, 2 and 3.
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The algebra defined by Table 1 satisfies (3) and (6), but e *a = a.
Therefore (2) is independent. If the algebra is given by Table 2, then (2)
and (6) hold, but 0 a # a. Hence (3) is independent. It is easily verify

that the algebra defined by Table 3 is a BCC-algebra, but it is not medial,
which proves that (6) is independent. Therefore the proof of Proposition
1.1 is complete. )

From the above proposition we obtain:

Corollary 1.2. In any medial weak BCC-algebra the following identities
hold:

(7) cx(yxz)=yx(z*2),
(8) zxy=(y*z)*0,

(9) (yx0)x0=y,

(10) (z*xy)*xy==x.

Proof. By (3) and (6) we have
zx(yrz)=(0*z)*(y*z)=(0xy)x(z%2) = yx(z*2).
Hence (7) is satisfied. By (2), (3) and (6) we get
sry=0x(z*xy)=(y*ry)*(zxy)=(y*2)*(y*y) = (y*2)*0,

which proves (8).
Putting 2 = 0 in (8), we obtain (9). From (9) follows

(zxy)ry=(z+y)*x(0xy) = (e+0)*(yxy) = (% 0)x0 =1z,
which gives (10). a
As an immediate consequence of (8), we obtain:

Corollary 1.3. Let G be a medial weak BCC-algebra. If A is a subalgebra
of G, then xxy € A if and only if y*z € A. ]
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Now, we give two simple examples of medial weak BCC-algebras.

Examples
1. Every Boolean group is a medial weak BCC-algebra.
2. The algebra defined by next Table is a medial weak BCC-algebra.
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1. Direct products and quotient algebras

A non-empty subset A of a BCC-algebra G is called an ideal,if (1) 0 € A
and (2) z,y*xz € A imply y € A.

Lemma 2.1. Fvery subalgebra of a medial weak BCC-algebra is an ideal.

Proof. Let A be a subalgebra of G. If z € A and y*xz € A, then zxy € A
(Corollary 1.3) and y = ((y*z)*z) € A by (10). Hence A is an ideal. O

If A and B are subalgebras of a weak BCC-algebra G, then G is called
the direct product of A and B if G = A+ B and ANB={0}.

Proposition 2.2. Let A and B be subalgebras of a medial weak BCC-
algebra G. Then G is a direct product of A and B if and only if each
element € G can by uniquely expressed in the form z = a * b, where
a € A and b € B.

Proof. If GG is the direct product of A and B, then G = A x B. Therefore
for any € G there exists a € A and b € B such that z = a xb.
If z=a%xb=cxd for some a,c € A and b,d € B, then

(axc)*(bxd)=(a*xb)x(cxd)=zxz=0€ ANBCA.

Since A is a subalgebra and an ideal, then a xc,c*a,bxd,d*xb € A.
In the same manner, we prove that these elements belong to B. Hence
axc,cxa,bxd,dxb€ ANB = {0}. Therefore axc =c*xa =0 and
b*d=dx*b=0, which gives a = ¢ and b = d. Hence this representation
is uniquely determined by =z.

On the other hand, if each 2 € G has a unique representation in the
form 2 = a*b, where a € A and b€ B, then G = A« B.



J. Thomys 93

To prove ANB = {0}, observe that if z € ANB, then (zx0)*0==z
(by (9)) and 0%z = z. The uniqueness of this representation implies z = 0.
Hence ANB ={0}. O

Proposition 2.3. Let G be a medial waek BCC-algebra. The relation ~
is a congruence on G if and only if there ezists a subalgebra A of G such
that ¢ ~ y <= zxy € A. '

Proof. Let A be a subalgebra of G and let ~ be the relation defined on G
as follows: z ~ y <= z+y € A. Then ~ is a congruence on GG. Indeed,
since 0 € A, then z ~ z. Hence this relation is reflexive. By Corollary 1.3
it is also symmetric. We prove the transitivity. If z ~ y and y ~ z, then
T*y,y*2z € A Since A is a subalgebra, then by (7) and (10) we have
zxz=z*x((z+y)*xy)=(2*y)*x(zxy) € A. Hence z ~ z, which proves
the transitivity. The substitution property follows from (6).

Conversely, let ~ be a congruenceon G andlet A={2€G:0~z}.
Of course 0 € A. If z,y € A, then 0 ~ a and 0 ~ y, which implies
0~ zxy. Hence z xy € A, which shows that A is a subalgebra of G.

Now, we prove that x ~ y <= z+xy € A. If x ~ y, then 0 = z*xz ~ z*y
because ~ is reflexive and transitive. Therefore 0 ~ z x y, i.e. = xy € A.
On the other hand, if 2z xy € A, then 0 ~ z * y. Since y * y, then
0*y ~ (z*y)+*y, which implies y ~ z. This completes the proof. O

From the above result follows that G' may be decomposed by this equiv-
alence relation into disjoint classes. The class containing & will be denoted
by Ay. Let 2+ A = {z*a:a € A} be the left coset of A in G and let
Axz ={a*z:a € A} be the right coset.

Proposition 2.4. If the congruence ~ is defined by a subalgebra A, then

(%) A, =Ag=A forall a€ A,

(%) Ay =Axz,

(i11) Asz =(z+0)s A,

(iv) (A*xz)x0=z% A,

(v) Axz=Axy ifandonlyif zxyec A,
(vi) txA=Ax*(z*0),

(vi7) zx A=A, for y=z%0.

Proof. (i) Since ~ is an equivalence relation, then A; = A, or A;NA, = 0.
If a € A, then 0 ~ a. Thus a € A, N Ag and A, = Ag. The equation
Ap = A follows from the proof of Proposition 2.3.
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(i3) If y € Az, then y ~ z and in the consequence y*z € A. Hence
y*x = a for some a € A. This implies y = (y*xz)*xz =a*z € Ax2.
Thus A, C Axz.

Conversely, if y € A*z, then y = a * 2 for some a € A. Therefore

(z*y)*(ax0)=(z*a)*(y*x0)=y*((z*a)*0)=yx*(axz)=0.

Since @ *0 € A and A is an ideal (Lemma 2.1), then z *y € A, which
completes the proof of this part.

(¢ti) If y € A+, then y = a*xz for some a € A. Thus, by (8) and
(6), we obtain

y=a*xz=(r*a)x0=(z*xa)*x(0%x0)=(z+0)*(ax0)€(z+x0)* A,

which proves A xz C (z * 0) * A.
If y€ (z+0)x*A,then y = (zx0)*a for some a € A. Thus, by (3),
(6) and (7), we have

(z*xy)*ra=(z+xy)*(0xa)=(z*0)x(y*a)=y*((z*+0)xa)=0¢€ A.

Since A is an ideal, then zxy € A,i.e. 2 ~ y. Therefore (z%0)*A C A*z,
which proves (it).

(iv) we obtain as a simple consequence of (8).

(v) follows from (i%).

(vi) is a consequence of (9).

(vit) follows from (7z) and (vi). ]

In the sequel the set G/ ~ of all equivalence classes z * A will be
denoted by G/A. Putting

(zxA)x(yxA)=(z*y)x A,

we define the operation * in G/A. Since this formula is independent of
the choise of z and y, then this operation is well-defined. It is not difficult
to see that (G/A,* A) is a weak BCC-algebra.

Corollary 2.5. If (G ,*,0) is a medial weak BCC-algebra such that G /A
has only two elements, then zx A= Axz for all z € G. O

Now, we prove the classical result due to Lagrange.

Proposition 2.6. If (G ,*,0) is a finite medial weak BCC-algebra, then
Card(G) = Card(A)-Card(G/A) for every subalgebra A.
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Proof. Let f: A — Axz be defined as f(a) = a*xz. If f(a) = f(b), then

axz = bx*xz. Hence

3 O=(axz)*(bxz)=bx((axz)*xz)=bx*a
0=(bxz)*(axz)=ax*((b*xz)*xz)=axb,

which implies (by (4)) a = b. Therefore f is one-to-one. Thus Card(A) =
Card (A *z).

Suppose now that an algebra G has n elements and a subalgebra A of
G has k elements. We can decompose G into a union of a finite number
of disjoint left cosets:

G=(z1xA)U (2% A)U ... U(zp, x A).

Since each of the p cosets in the above decomposition has k elements, the
set G has pk elements. Hence n = pk. O

2. Homomorphisms

Direct computations show that if f : G; — (G35 is a homomorphism of
medial weak BCC-algebras G; and G2, then ker f = {2z € Gy : f(z) =0}
is a subalgebra of Gj. A homomorphism f is one-to-one iff ker f = {0}.
If A is a subalgebra of G, then the mapping h : Gy — G1/A defined by
h(z) = z * A is a homomorphism of G; onto quotient weak BCC-algebra,
G1/A and the kernel of h is A.

Lemma 3.1. Let G; and G be two medial weak BCC-algebras and let f
be a homomorphism from Gy onto Go. If A is a subalgebra of Gy such
that ker f C A, then A = f~1(f(A)).

Proof. Let z € f~'(f(A)). Then f(z) € f(A). Hence f(z) = f(a)
for some a € A, which implies f(z *a) = f(z)* f(a) = 0. Therefore
z+a € ker f C A. Since a subalgebra A is an ideal, then z € A. Thus
f7Y(f(A)) C A. But the reverse inclusion always holds and so the desidered
equality follows. a

Proposition 3.2. If Gi and Gy are medial algebras and if f is a homo-
morphism from G onto G, then there ezists a one-to-one correspondence
between the subalgebras A of Gy such that ker f C A and the set of all
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subalgebras B of G;. In this case B = f(A) for all subalgebras B of G5.

Proof. Starting with an arbitrary subalgebra B of G;, we must produce
some subalgebra A of G; such that ker f C A and f(A) = B. The set
f~Y(B) is a subalgebra of G; and ker f = f~1(0) C f~!(B). Since f is
an onto maping, then f(f~!(B)) = B. Hence f~}(B) = A.

To finish of the proof, we argue that the correspondence in the question
is one-to-one. Suppose then that A; and A, are subalgebras of G, such

that ker f C A1, ker f C Ay and f(A;) = f(Az). Using Lemma 3.1, we
get Ay = f71(f(A1)) = 7Y f(Az)) = Ay, as desired. a

Proposition 3.3. Let G, Gy, G, be medial weak BCC-algebras and let
fi and f; be homomorphisms from G onto Gy and Gy, respectively. If
ker fi C ker f, then there exists a unique epimorphism f : Gy — Gy
such that f, = fo fi. Moreover, f is an isomorphism, if ker f; = ker fs.

Proof. For any element fi(z) € G we define f : Gy — G putting

f(A(2) = fa(z). I fi(z) = fi(y), then 0 = fi(y) * fi(z) = fi(y * z).
Hence y *z € ker fi C ker fy. Thus

fa(z) = 0% fo(2) = fa(y x 2) » fa(2) = fal(y x @) x 2) = fuly).

Therefore f is a well-defined mapping. Direct computations show that f
is an epimorphism and f; = fo f;.

It remains to establish the uniqueness of f. Suppose that f, = gof; for
some other function ¢ : G; — G3. Then f(fi(z)) = fa(z) = (g0 fi)(z) =
g(fi(z)) for all fi(z) € Gy,and so f =g.

If ker fi = ker f,, then f is an isomorphism. Indeed, if f(fi(z)) =
f(f1(y)), then fo(z) = fa(y) and 0 = fo(2) * f2(y) = fo(z * y). Hence
z+y € ker fo = ker f;. But ker f; is asubalgebra, then z*y, yxz € ker fi.

Moreover, 0 = fi(z xy) = fi(z) * fi(y) and 0= fi(y*2z) = fi(y) * fi(z),
which implies fi(z) = fi(y). Thus f is a one-to-one mapping. a
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On some generalization of BCC-algebras
Janusz Thomys
Abstract

In this note we describe the class of weak BCC-algebras and prove
that they form a variety. The BCC-algebras were introduced by Komori
in connection with the Iséki’s problem concerned with the class of BCK-
algebras. We describe the class of all medial weak BCC-algebras and give a
some characterization of direct products of these algebras and its quotient
algebras.

O pewnym uogélnieniu BCC-algebr
Janusz Thomys
Streszczenie

W tej pracy opisujemy klase stabych BCC-algebr i dowodzimy, ze jest
ona rozmaitoscia. BCC-algebry zostaly wprowadzone przez Komoriego
w zwiazku z pewnym problemem Isékiego dotyczacym klasy BCK-algebr.
Opisujemy klase wszystkich medialnych stabych BCC-algebr i charakteryzu-
jemy produkty proste tych algebr oraz ich algebry ilorazowe.



