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Abstract. Essentials of the Riemann-Liouville fractional calculus are recalled. Non-
local generalizations of the Fourier law of the classical theory of heat conduction
relating the heat flux vector to the temperature gradient and of the Fick law of the
classical theory of diffusion relating the matter flux vector to the concentration gra-
dient, lead to nonclassical theories. The time-nonlocal dependence between the flux
vectors and corresponding gradients with “long-tale” power kernel can be interpreted
in terms of fractional integrals and derivatives and yields the time-fractional diffusion

equation.
1. Essentials of the Riemann-Liouville fractional calculus

In this section we recall the main ideas of fractional calculus (see [1, 2|, among
others). It is common knowledge that integrating by parts n — 1 times the
calculation of the n-fold primitive of a function f(¢) can be reduced to the
calculation of a single integral of the convolution type

PHO = oty [ 6= e )

(n—1
where n is a positive integer.

The Riemann—Liouville fractional integral is introduced as a natural gene-
ralization of the convolution type form (1):

o F(t) = ﬁ/o t -7 f(r)dr, a0, 2)

where I'(«v) is the gamma function.



98 Jurij Povstenko

The Riemann-Liouville derivative of the fractional order « is defined as

left-inverse to I

D f(t) = D" f(t) (3)
and for its Laplace transform rule requires the knowledge of the initial values of
the fractional integral I"~“f(¢) and its derivatives of the order
k=1,2,....,n—1.

An alternative definition of the fractional derivative was proposed by
Caputo [3]:

Def(t) =1""D" f(t). (4)
For its Laplace transform rule the Caputo fractional derivative requires the
knowledge of the initial values of the function f(t) and its integer derivatives
of order k=1,2,...,n—1.

The Caputo fractional derivative is a regularization in the time origin for
the Riemann Liouville fractional derivative by incorporating the relevant ini-
tial conditions. The major utility of Caputo fractional derivative is caused
by the treatment of differential equations of fractional order for physical
applications, where the initial conditions are usually expressed in terms of
a given function and its derivatives of integer (not fractional) order, even if
the govering equation is of fractional order [4].

2. Nonlocal generalizations of the Fick and Fourier laws

The classical theory of diffusion is based on the Fick law
J=—kgradec (5)

relating the matter flux vector J to the concentration gradient, where  is the
diffusion conductivity. In combination with the balance equation for mass the
Fick law leads to the classical diffusion equation
oc
— =alAc, 6
ot (6)
where «a is the diffusivity coefficient.
The classical theory of heat conduction is based on the Fourier law

q=—kgradT (7)

relating the heat flux vector q to the temperature gradient, where k is the
thermal conductivity of a solid. In combination with the law of conservation
of energy, this equation leads to the parabolic heat conduction equation

oT

a = CLTA T, (8)
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where a, is the thermal diffusivity coefficient, t is time, A is the Laplace
operator.

During the past three decades, nonclassical theories, in which the Fourier
law and the Fick law as well as the heat conduction equation and the diffusion
equation were replaced by more general equations, have been proposed. Some
of these theories were formulated in terms of the theory of heat conduction,
other in terms of the diffusion theory.

In time-nonlocal theories the Fourier law is generalized to integral depen-
dence between the heat flux vector and the temperature gradient

t
q(t) = —k:/o K(t—7)grad T(r)dr 9)

or in terms of diffusion
t
I(t) = —r / K(t — 7) grad c(r) dr. (10)
0

The time-nonlocal dependence between the flux vectors and correspond-
ing gradients with “long-tale” power kernel can be interpreted in terms of
fractional integrals and derivatives and yields the time-fractional diffusion (or
heat conduction) equation

0%c

a?:aAc, 0<a<2 (11)

This equation is usually referred to “anomalous diffusion”. Other terms used

in this context are: “anomalous transport”, “fractional diffusion”, “paradoxal

diffusion”, “strange kinetics”.

Various types of anomalous transport can be distinguished. The limit-
ing case a = 0 corresponding to the Helmholtz equation is associated with
localized diffusion. The slow diffusion regime is characterized by the value
0 < a < 1. The power-law tails make it possible to have very long waiting
times, and particles move slower than in the ordinary diffusion which corre-
sponds to @ = 1. In the fast diffusion regime (1 < a < 2) it is possible to have
very long jumps, and particles move faster than in the ordinary diffusion. The
limiting case o = 2 corresponding to the wave equation is known as ballistic
diffusion.

Equation (11) is a mathematical model of important physical phenomena
ranging from amorphous, colloid, glassy and porous materials through frac-
tals, percolation clusters, random and disordered media to comb structures,
dielectrics and semiconductors, polymers and biological systems.
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3. Theory of diffusive stresses based on anomalous diffusion
equation

A quasi-static uncoupled theory of diffusive (or thermal) stresses based on
Eq. (11) was proposed by the author [5-7]. A quasi-static uncoupled theory
of diffusive stress is governed by the equilibrium equation in terms of displace-
ments

pAu+ (A + p)grad divu = 5. K. grad c, (12)

the stress-strain-concentration relation
o =2ue+ (Mre— G.K.c)l, (13)

and the time-fractional diffusion equation

AN 0<a<? 14

a? =a ¢+ Q7 S 4 ( )
where u is the displacement vector, o the stress tensor, e the linear strain
tensor, ¢ the concentration, () the mass source, a the diffusivity coefficient, A
and p are Lamé constants, K. = A + 2u/3, (. is the diffusion coefficient of

volumetric expansion, I denotes the unit tensor.
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