Prace Naukowe Wyiszej Szkoly Pedagogicznej w Czgstochowie
Matematyka II, Czestochowa 1996

On a three-valued internal logic of programs

Andrzej Zbrzezny

Introduction. The only logical connectives occuring in program-
ming languages are and, or and not. They belong to the so-called internal
logic. This logic is 3-valued because during the execution of a program
some variables can be undefined, and therefore some boolean expressions
can be undefined, too. Thus our logical values are true, false and undefined.
Moreover, our interpretation of logical connectives is due to a certain im-
plementation principle, namely the one which consists in parallel evaluation
of components of boolean expresions. (off1]).

In this paper we consider the propositional fragment of the internal
logic of programs.

1. Syntax and semantics of the internal logic of programs.

We denote by N the set of all positive integers.

Let At={p; : i € N} be the denumerable set of propositional
variables. We write p, q and r instead of p;, p, and ps respectively. As
metavariables for elements of At we use letters a and b. (Always when we
say that some letters are metavariables for elements of a given set we mean
that these variables vary through this set and that we allow their indexed or
primed variants of these letters just as well as variables over the some set.
However, no letter is used as a variable for a given set unless specifically
indicated in this way. Only a and b (and @4, by, a2, b2 ... , A’,b’,a, b, ...,
etc.) range over At and not, e.g., ¢, d or x (compare with a notion of the
syntactic variable in [3]).

Definition 1.1.

The set S of propositional formulae of internal logic is the smallest set
for which three following conditions hold:

(a) AtC S

(b)if A€ S then (~A)€ S

106 On a three-valued internal logic of programs

(c)if A, B€ Sthen (AAB)€ Sand (AVB)€ S
End 1.1

We usually do not write the most outside paranthesis. As metavariables
for elements of S we use letters A, B, C and D. Symbols A, V and ~
correspond to boolean operators of programming languages: and, or and
not respectively.

The ordered 4-tuple § =< §, A, V, ~> is said to be the propositional
language of internal logic of programs. As the interpretation of S we take
a logical matrix defined as follows:

_% =< M31 M;a fla f2a f3 > where

M3={0,1,2} , M = {2}
f1 - M3XM3~—>M3and

(Vo € My)(Vy € Ms)[fi(,y)=min(x,y)],
f2:M3XM3—>M3a.Ild

(Vz € M3)(Vy € M3)[fa(z,y)=max(x,y)],
fa: M3 — M3 and

(Vz € M3)[f3(z)=2-x].

Intuitivitely, 0 stands for false, 1 for undefined, 2 for true. The general
definition of logical matrix and also many other definitions used in this
paper are to be found in [2].

Let M be an arbitrary logical matrix, Functions from At into M are
called valuations. Every valuations can be extended to the unique homo-
morphism h¢: § — M.

In case of M3 homomorphism is given by the following equations:

(Va)[he(a) = e(a)]

(VA)(YB)[h(A A B) = min (h*(4), h*(B)))
(VA)(YB)[h(A V B) = max (h*(A), h*(B))]
(VA)RE(~ A) = 2= he(A)].

For arbitrary matrix M one can define the content of M as the set:
E(M)= {A € S :(Ve)h¢(A) € Mt}.

If A€ E(M) then we say that A is true in the matrix M or that A is
a tautology of the matrix M.

Unfortunately, E(M3) is the empty set. How can we improve this
situation? Well, we could add to our language new connectives, e.g. —
which might be interpreted as a function f4 such that:

A. Zbrzezny 107

(Vz € M3)(Vy € M3)[fa(z,y) = min(2,2 - x + y)]

In this case the set of all tautologies wouldn’t be empty. But let’s
consider such formulae A and B and a valuation e for which h¢(A) =
h¢(B) = 1 and observe that f;(1,10)=2. This would mean that the logical
value of the boolean expression A — B is true while both A and B are
undefined. This isn’t satisfactory from the programming point of view. On
the other hand we can add to our language one-argument connective D
which might be interpreted as a function fs defined as follows:

fs(0) = f5(2) = 2,
fs(1)=1.

Also in this case the set of all tautologies wouldn’t be empty. Intu-
itively, we can read D, as "p is defined”. However, f;5 is not implementable
in any computer! so this isn’t satisfactory, too.

This is why we will not deal with the internal logic. Our purpose is to
give a synthetic characterization of all pairs of equivalent formulae of the
internal logic. First, we define the relation # on S as follows:

A#B iff (Ve)[h¢(A) < he(B)).

This relations is a quasi-order on S, and the relation = =~ is an equiv-
alence relation such that for every A and B < A,B > #n# 1 iff A and
B are logically equivalent. (A and B are logically equivalent iff (Ve)[h¢(A)
= h®(B)].) Next, we use the symbol I as a synthetic counterpart of the
relation # and we define the set Form of all ordered pairs of propositional
formulae as the smallest set for which the following condition holds:

if A€ S and B€ S then AF B € Form.

As a metavariable for elements of Form we use a letter F. A formula
Al B is said to be valid iff < A, B >€ #.

2. Proof system.

A proof system is an ordered 3-tuple < Form, Az, R > such that Form is
the set of all formulae of given language, Ax is a recursive set of formulae
called axioms (i.e. Ax is a subset of Form and there is an algorithm (e.g.
Turing machine) that takes an arbitrary formula as input and determines

108 On a three-valued internal logic of programs

whether or not it is an axiom), and R is the finite set of relations called rules
of inference. Each rule of inference is a relation with domain Fin(Form)
and codomain Form and it is of the form:

F11F27 ...,Fn
F

which indicates that from the formulas given above the line we can
infer the one given below the line. Fi, Fy,..., F,, are said to be the premises
and F is said to be the conclusion of the rule. (For a given set X we denote
the set of all finite subset of X by Fin(X).) A formula F is said to be
provable in such a system (in other words F is a theorem of such a system)
if there exists a finite sequence of formulae such that F is the last formula
in the sequence and each formula in the sequence is either an axiom or it
is derived from previous formulae in the sequence by one of the rules of
inference. Such a sequence of formulae is called a proof of F.

In case of our logic let Form be the set defined in the previous section.
We must define sets Ax and R.

The only elements of Ax are:

(ax1) pFk~~p

(ax2) ~~phkop

(ax3) pAghkDp

(ax4) pkgqVp

(ax5) (pV@ATE(pAT)V(gAT)
(ax6) ~(pVgF~pA~g
(ax7) ~pA~gk~(pVy)
(ax8) pA~plLqVv~g

The only elements of R are:

(r1)
P

F(a/A)

(r2)
F,AFB,BF A

F(A//B)
(r3)

A+ B

AFBVC

A. Zbrzezny 109

(r4)
A+ C,BFC

AVBEC

In (r1) F(a/A) results from F by simultaneous replacing all occurrences
of ain F by A. In (r2) F(A//B) results from F by simultaneous replacing
some (may be all) occurrences of A in F by B.

We denote our proof system by G3, and all provable formulae by T3.
We list below some theorems of G3 and derived rules of inference needed
in the next section. Each derived rule of inference has an effective proof
in the sense that we can effectively show how to replace any derived rule
of inference whenever it is used in a proof by an appropriate sequence of
formulae using only the ”primitive” rules of inference. Moreover, in any
proof of the given theorem of G3 (just as in any proof of the given theorem
of an arbitrary proof system) one can use theorems proved before because
in such not quite formal proof one can replace all already proved theorems
by their proofs, and obtain the formal proof of the given theorem.

(thl)
pkp
proof:
(1) ph~~p (ax1)
(2) ~evp b p (ax2)
(3) pkp from (1), (2), (2) by (r2)
(th2)
pEpPVy
proof:
(1) pkp (th1)
(2) pFpVg from (1) by (r3)
(th3)
pVaqkqVp
proof:
(1) pFqVvp (ax4)
(2) pFpVag (th2)
(3) qkqVp from (2) by (r1)

(4) pVgltgqVp from (1), (3) by (r4)

110 On a three-valued internal logic of programs
(r5)
AFB,B\+C
AFC
proof:
(1) AFB given
(2) B+ C given
(3) CFC from (th1) by (rl)
() " BVEC FC from (2), (3) by (r4)
(5) CFBVC from (ax4) by (r3)
(6) AFBvVC from (1) by (r3)
(7) AFRC from (6), (4), (5) by (r2)
(r6)
AF B
BFA
proof:
(1) AFB ‘given
(2) BFAVBEB from (ax4) by (rl)
(3) BFB from (th1) by (rl)
(4) AVBFB from (1), (3) by (r4)
(3) ~(AVB)F~(AVB) from (thl) by (rl)
(6) ~BF~(AVB) from (5), (2), (4) by (r2)
(7) ~(AVB)F~AA~B from (ax6) by (r1)
(8) ~BF~AA~B from (6), (7) by (r5)
(9) ~AA~BF~A from (ax3) by (r1)
(10) ~BF~A from (8), (9) by (r5)
(th4) ~(PAgQFE~pV g
(th5) ~pV~ gk~ (pAg)
(th6) PAGF qAp
(th7) pAghq
(th8) (pAT)V(gAT)F(pV AT
(th9) (pvr)A(gVvr)k(pAg)Vr
(th10) (pAg)VrE(pVr)A(gVr)
(r7)

AFC
AANBFC

A. Zbrzezny 111

(r8)
A B, Ak C
AFBAC
(th11) pkEpAgq
(th12) pVpkp
(th13) pV(gvr)F(pVvgVr
(th14) (pVg)VrEpVv(gVvr)
(th15) (PA(gAT))F(PAG AT
(th16) (pA@QATEDPA(gAT)

Ideas of proofs of theorems (th4), ..., (th10), rules (r7), (r8), and the-
orems (thll), ..., (th16) one can find in [4].

3. Soundness and completeneas of G3.

In this section we show that the set of all theorem of G5 is equal to the set
of all valid formulae of Form. This result divides into two parts: soundness
theorem and completeness theorem. The method of proving the latter was
inspired by idea given in [4].

Theorem 3.1. (soundness).

For every formula F Form the following holds: if FF € T3 then F is
valid.

Proof.

We must show that each formally provable F is valid. Let Fy, ..., F,
be a formal proof for F. We prove that, for each i=1, ..., n, F; is valid (thus
F is valid). The proof proceeds by showing that F; is valid and, for each
1 <i<n,if F, ..., F;_y are valid then F; is valid.

(i) i=1. Clearly, F; has to be an axiom and, therefore, we must show
that each axiom is valid. But this is straightforward, and we omit the proof.

(i) Assuming F, ..., F;_; are valid, we show that F; is valid. Either F;
is an axiom, in which case its validity follows as in part (i), or there exists
Fjy 5 ooy Fj,.y 1 < gk < i for k=1, 2, ..., n; such that

Fjyy.or F,
F;

112 On a three-valued internal logic of programs

is an inference rule. By the induction hypothesis, F},, ..., F},, are valid.
But it is easy to show that validity of its conclusion. So F; is valid.

End 3.1.
In order to prove completeness of G3 we must recall some notions.
Definition 3.2.

AL {A€S:(Fa)A=~a]}; ECL AtUTL

Elements of the set EC are said to be elementary components. As
metavariables for elements of EC we use letters s and t.

End 3.2.

In the above definition we have used symbol ” =". It denotes syntacti-
cal identity of syntactic constructions. Two constructions are syntacticaly
identical whenever they consist of the same sequence of symbols. For ex-
ample, pAg=pAg,aVb=aVb,but pAg=gApand aVb =~ a. Observe
that @ = b may or may not be satisfied, depending on whether a and b are
not themselves (sequences of symbols, but are variables ranging over a set
of symbols).

Definition 3.3.

Al, an-:l
AN ANA 2 ALA A, if n=2
(A1 A ANAp1) A Ay, ifn>2

An expresion A; A ... A A, is said to be a generalized conjunction. If
Aq,...,A, are elementary components then we say that A; A ... A A, is
an elementary conjunction.

, | Av ifn=1
Ay Vi VA= A1 V Ay, sf =2
(Al V...VAn_l)VAn, ifn>2

An expresion A; V ...V A, is said to be a generalized disjunction. If
Ai,...,A, are elementary components then we say that A; V...V 4, is an
elementary disjunction.

End 3.3.

A. Zbrzezny 113

Definition 3.4.

A propositional formula A is said to be in a conjunctive normal form
(symbolically A € CNF) if there exist elementary disjunctions Aj,..., A,
such that A = A; A ... A A,.

End 3.4.

If X is an arbitrary set of propositional formulae (X C 5) then by
At(X) we denote the set of all propositional variables occurring in formulae
from X. We write At(A) instead of At({A}).

Theorem 3.5.

For every propositional formula A there exists a propositional formula
A’ such that A’ € CNF, At(A’)=At(A), AF- A’ €T3 and A'+ A€ Ts.

End 3.5.
Theorem 3.6.

For every propositional formula A there exists a propositional formula
A’ such that A’ € DNF, At(A),A+ A’ € T3, and A'+ A € Ts.

End 3.6.

Both metatheorem 3.5. and metatheorem 3.6. can be proved by in-
duction on the structure of a given formula (of[2]) and they are theorems
of the metatheory of our proof system G3 because all theorems needed to
construct a proper normal form are theorems of G3.

Definition 3.7.

A propositional formula A is said to be satisfiable iff there exists
e: At — M3 such that h¢(A) = 2.

A propositional formula A is said to be refutable iff there exist
e: At — M3 such that h¢(A) = 0.

End 3.7.
Lemma 3.8.

(a) Let A be an elementary conjunction, A = s1A ... Asy,. Then A is
satisfible iff

114 On a three-valued internal logic of programs

(Va)[31 < j < m)(sj =a) = (V1 <k < n)(sk =~ a)].

(b) Let B be an elementary disjunction, B = #;V ... Vi,. Then B is
refutable iff

(VB)[31 < j < n)(t; = b) = (V1 < k < n)(t =~ b)].

End 3.8.

Proof of the above lemma is obvious and therefore we omit it. In the
next three theorems the following condition:

(3m)(3A,)...(34,)(3n)(3B,)...(3B,)[A € DNF and B€ CNF
and A=A,V..VA,, and B=B; A...\ B, and
(V1 <4 <m)(V1 £ j <n)(A; and B; have a common component or
(A; is not satisfiable and Bj; is not refutable))] is denoted by V(A,B).

Theorem 3.9.

For every two propositional formulae A and B such that A € DNF
And B € CNF: if A B holds then V(A,B) holds.

Proof.

Let us fix A and B such that A € DNF, A = A,V ..V Ay,
BeCNF,B=B;A..\B, and

(1) AEB
From (1) we obtain by the definition of the relation |=
(2) (Ve)[h*(A) < h*(B)]
Now, from (2) we have by the definition of the homomorphism h

(3) (Ve)[maz{h®(A;),...,h¢(An)} < min{h®(By),...,h*(By)}]

But by the definitions of maximum and minimum

(4) (V1 < i < m)(Ve)[h®(A;) < maz{h®(A;),...,h%(An)}]

A. Zbrzezny 115

and

(5) (V1<) < m)(Ve)min{ht(By), ... h*(Bn)} < he(B;)]
hold. So (3), (4), and (5) imply

(6) (Y1<i<m)(¥L<j < n)(Ve)lhe(Ai) < he(B)].

Now let’s suppose that V(A, B) does not hold. Thus there exist i
and j,1 <i<m,1<j<n,such that

(7) A; and B; haven’t a common elementary component and
(A; is satisfiable or B; is refutable). We must consider two cases:

7.1 A; and B; haven’t a common elementary component
J y P
and A; is satisfiable and

(7.2) A; and B; haven’t a common elementary component
and B; is refutable.

From (7.1) we obtain

(7.1.1) A; and B; haven’t a common elementary component
and there exist we such that h¢(A;)=2.
Now let’s consider a valuation e; defined as follows:

$(al e(a) iff either a or ~ a is an elementary component of A;
=11 otherwise

From this definition and from (7.1.1) we obtain
(7.1.3) h*1(A;) = h*(A;) = 2.and h**(B;) = 1.

But (7.1.2) and (6) are contradictory.
Analogously, from (7.2) we obtain

(7.2.1) A, and Bj; haven’t a common elementary component and
there exist we such that h°(B;) = 0 and now let’s a consider a valuation e,
defined as follows:

eqlal e(a) iff either a or ~ a is an elementary component of B;
NERToR) otherwise

From this definition and from (7.2.1) we obtain

116 On a three-valued internal logic of programs

(7.2.2) he(B;) = h*(B;) = 0 and he2(A;) = 1.

But (7.2.2) and (6) are contradictory.
Finally, in both cases (7.1) and (7.2) we obtained a contradiction.
Thus V(A,B) holds.

End 3.9.
Lemma 3.10.

For every A,B,Cy,...,Cp, Dy,...D,, € S the following condition hold:
(a) if A B€Ts;, then ANCiA...ANCrF BeT;
(b) IfAFBeTs;,then AFBvDyV..VD, €Ts.

End 3.10.

Lemma 3.10 can be proved by induction on n. The proof is straight-
forward and therefore we omit it.

Lemma 3.11.

Let C be an elementary conjunction, C = 8; A .. A 8,,, and D be an
elementary disjunction, D =¢; V...V t,. Then the following holds:

(a) If C is not satisfiable, then there exist a € At such that a and
~ a are elementary components of C and C F aA ~ a € T;.

(b) If D is not refutable, then there exist b € At such that b and ~ b
are elementary components of D and bV ~ b F D € T;.

End 3.11.

The idea of the proof of the above lemma is quite similar to the idea
applied in part (i) of the proof of the next theorem. Thus we omit this
proof.

Theorem 3.12.

For every two propositional formulae A and B: if V (A,B) holds, then
AF B e Ts.

Proof.

If V (A,B) holds, then A € DNF, A= A, V..V A,, Be CNF,
B =B, A...NB,, and

A. Zbrzezny 117

(*) A; =8, LA Asimiidor 15 b iym
and
{] Bi=tjy V.. Vijus,forj=1,..,n

Now let’s fix i and j. We must consider two cases:
(i) A; and B; have a common elementary component i.e. there exist k]
such
that 1 <k < m;, 1 <1< nj, and s;x = ¢;;. From this and from (th

1) by
(r1l) we obtain
(1) sik F
Also from (ax3) by (r1) we have
(2) (8i1 Ao ASik—1) A Sik b Sik
and from (2) by the definition of generalized conjunction we have
(3) By I ose N B g Bk
Now applaying lemma 3.10 to (3) we obtain
(4) Bid N ase ABi kN > Ao ASimi b ik
and applying (*) to (4) we obtain
(5) Ak sik.

On the other hand, from (ax4) by (r1) and the definition of generalized
disjunction we have

(6) tia bt V..Vt
and applying lemma 3.10 to (6) we obtain

(7) By Fijs Voo Vit VEnga Voo ¥ T
Now applying (**) to (7) we obtain

(8) t;a F B;.

118 On a three-valued internal logic of programs

Finally, (1), (5) and (8) imply
(9) A;+F B;
by (r5).

(ii) A; is not satisfiable and Bj; is not refutable. By lemma 3.11 there exist
a and b such that

(1) A;FaN~a
and
(2) bv ~ b Bj.

But from (ax8) we obtain by (rl)
(3) al ~ al bV ~ b,

Finally, (1), (2) and (3) imply
(4) A; + B;

by (r5).

In the both of cases we obtained that A; F B; € T3. (in all this proof
we wrote C' - D instead of C + D € Tj3 for the simplicity of the notation).
Since i and j were arbitrary we have

(1) (V1<i<m)(V1<j<n)A;F+ BeTs).

Writing (1) explicitly we obtain

A1+ By €T3 and

A1+ B, €T3 and
(2) :

AnF By €T5 and

An F B, € T and

From (2) we obtain

A. Zbrzezny 119

AitFBiyA...ANB, €T3 and

(3) :
AnFBiA...ANB, € Tj

by (r8) and from (3) we obtain
(4) AiV.VA,FBiA..ANB, €T3

by (r4). Finally, A+ B € T3.
End 3.12
Theorem 3.13 (completeness theorem).

For every propositional formulae A and B: if A = B holds, then
A+ BeTs.

Proof.

Suppose that
(1) AEB

holds. By theorems 3.5 and 3.6 there exist A’ € DNF and B’ € CNF
such that

(2) A'F A€ T;s,

(3) AF A € T;,

(4) B+WF B’ € T3,
and

(5) B'\ BeTs,

Now (2) and (4) imply
(6) AEA
and
(7) BE B

by the theorem 3.1. Since |= is a transitive relation then we obtain
from (1), (6), and (7) that

120 On a three-valued internal logic of programs

(8) A'E B.
But A€ DNF and B € CNF, so (8) implies

(9) V (A’B’)
by theorem 3.9.

Now from (9) we obtain
(10) A'+-B €Ts

by theorem 3.12. Finally, (3), (5), and (10) imply
(11) AFBeTs

by (r5).

End 3.13.

References

[1] A.BLIKLE: Notes on the mathematical semantics of programing lan-
guages, ICS PAS Reports, 445(1981), Warszaw.

[2] A.W.POGORZELSKI: Klasyczny rachunek zadari, PWN, Warszawa,
1975.

[3] J.SHOENFIELD: Mathematical logic, Addison-Wesley, Toronto, 1967
(Russian translation).

[4] E.A.SIDORENKO: Logiceskoie sledovanie i uslovanie vyskazyvania, Iz-
datelstvo Nauka, Moskva, 1983 (in Russian).

On a three-valued internal logic of programs
Andrzej Zbrzezny
Streszczenie

Celem pracy jest przedstawienie pewnej aksjomatyzacji zdaniowego
fragmentu tréjwartosciowej wewnetrznej logiki programéw. Wykazujemy,

ze wprowadzony system formalny jest niesprzeczny i pehy.
On a three-valued internal logic of programs
Abstract

The purpose of the work is a certain axiomatization of the propositional
fragment of the three-valued internal logic of programs. We prove that the
introduced formal system is sound and complete.

