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Abstract

An interfacial region and a three-phase line region are considered as two-
dimensional and one-dimensional continua. Equations of the linear mo-
mentum balance and moment-of-momentum balance generalize the Laplace
equation for surfaces and the Young equation for lines. Balance equations
for surface dislocations and disclinations are also considered. The motor
analysis is used for a description of continua with couple stresses.

1. Introduction

The classical equations of the theory of capillarity the Laplace equa-
tion and the Young equation represent balances of forces for a two-
dimensional surface separating two bulk phases and for one-dimensional
line separating three bulk and three surface phases. In addition, great
attention is paid to systems in which moment effects play an impor-
tant role. The first type of such systems are microemulsions [1 4.
Presence of surfactants and cosurfactants results in very low (nearly
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vanishing) surface tension [1,4,6]. In this case bending effects are of
particular significance. On the other hand, bending properties are due
to nonsymmetrical structure of surfactants adsorbed at an oil-water
interface and an imbalance between hydrophile-water and lipophile-oil
interaction [2,4,5].

The second type of such systems are lipid bilayer mambranes in
which the hydrophilic polar heads are pointing toward the aqueous
medium and the hydrophobic ends of the hydrocarbon chains are
pointing toward the interior of the film [7,8]. The structure asym-
metry of lipid bilayer due to different lipid compositions of the two
constituent monolayers, the structure asymmetry of lipid monolayer
itself, and the influence of different environments on two sides of the
bilayer lead to considerable moment effects which demand to take cou-
ples into account.

In this paper the interfacial region and the three-phase line re-
gion are considered as two-dimensional and one-dimensional Cosserat
continua with kinematics described by two independent vectors: a dis-
placement vector u and a rotation vector w. A couple-stress tensor
o appears in such media parallel with a stess tensor o. Linear mo-
mentum and momemt-of-momemtum balance equations generalize the
Laplace equation for surfaces and the Young equation for lines.

Experimental studies show that plastic deformation of surface lay-
ers of material begins earlier than that of the bulk [9,10]. Many
authors observed drastic changes of dislocation density near the in-
terface layer [9,10]. The dislocation velocity in surface layers exceeds
that in the bulk [10 12]. Moreover, the grain boundaries and sur-
face layers of material have their own defect structure which differs
from that in a bulk [9,10,13]. Discontinuities of dislocations and sur-
face dislocations were used by Bullough and Bilby [14] in a treatment
of the theory of the crystallography of martensitic transformations.
Using dislocation notions Marcinkowski [15] discussed grain bound-
aries, Knowles [16] studied interface boundaries, Volkov et al. [17,18]
developed the theory of internal surfaces as autonomous elements of
defect structure in crystals, Braynin et al. |19] studied difference dis-
locations in interfaces. Harris |20] considered discrete surface disloca-
tions and disclinations and referred to liquid crystals and biological ob-
jects as possible fields of application of these ideas. Dislocation dipoles
in a two-dimensional medium were used [21] to describe radiation-
stimulated grain-boundary creeping. We also note the study of the
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process of emergence of dislocations onto the crystal surface taking
into account the capillary effects [22,23].

Small thickness of the grain boundaries or surface layers allows us
to model them by interfaces having their own physical and mechanical
characteristics and to use the methods of continuum mechanics for
description of such two-dimensional media.

The basic equations for surface dislocations and disclinations were
obtained in [24,25], but in kinematic relations playing the role of ba-
lance equations for surface densities of defects the interaction of two-
dimensional interface with three-dimensional phases in contact was not
consitered. In this paper such an interaction is taken into account.

2. General balance equations for
an interface between two phases

Consider a material volume
V=Wulhuy (1)

containing two three-dimensional phases V| and V5 and two-dimensional
interface ¥. The volume V has a boundary A; U Ay U L, where the
line L separates the boundary surfaces A; and A,.

Any extensive quantity W characterizing the volume V' can be
written as the sum

\If:///lelwldm///Vzpmdw//zpzwzdz, )

where p; and py, are mass densities, 11 and vy are densities of U per
unit mass in V; and Vs; py is the surface mass density, 5, is the density
of W per unit surface mass.

The time change of the extensive quantity (2) is defined by the
productions A, Ay, Ay, and the fluxes Jq, Jo, Jx:

dv
— :/// plAldV—i—/// pQAZdV‘I_//pZAZdE_
dt 1% Vo >
—// nlJldA—// HQJQdA—/NJEdL
Ay Ao L

(3)
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Here t represents time, n; and n, are the outer unit normals to the
boundaries A; and As; N is the outer unit normal to L lying in a
tangent plane to X.

Taking into account Eq. (2) and balance equations for the volumes
V1 and V3, differentiating the surface integral with respect to time ¢,
using the surface divergence theorem to reduce the line integral around
L to the surface integral over X and utilizing the two-dimensional
balance equation of the surface mass density we arrive at the general
two-dimensional balance equation |25,26]

d
pZ%ZPEAZ_VZ'JE+H1'J1+H2'J2+

+p1(h1 = Us) (Vi = V) -ny + pa(he —hs) (Vo — vs) -ny (4)

corresponding to propagating interface and describing phase transition
and wave propagation.
In Eq. (4) the surface gradient operator is used:

0

N
-2 oue’

VZ a = 1)27 (5>

with u® being surface curvilinear coordinates, a® being vectors of the
local basis on the surface (basis vectors in the local tangential plane).

3. General balance equations for a contact
line between three phases

Consider a material volume
V=VuUuVaUVaUXioUXi3UXe3 UL (6)

with a boundary A; U A; U A3 containing three two-dimensional inter-
faces Y12, 213 and Yoz with boundaries Lo, L1z and Loz separating sur-
faces A;, Ay and As. This volume also contains the three phase contact
line L.

Any extensive quantity W characterizing the considered material



Two-dimensional and one-dimensional balance equations 83

volume can be written as the sum

W :///lel@z)ldwr///V2p2¢2dv+///vsp3¢3dv+
+//212 p12¥12 d2+//213 P13Y13 d2+//223 p2sthasdE+  (7)

+/PL¢L dL.
L

The time change of the extensive quantity (7) is defined by the
products Ay, Ay, Az in three volume phases, the products Aqg, Ajs,
Ass in three surface phases, the product Ay in one line phase and the
fluxes Jq, Jo, J3, J19, J13, Jo3, J1 in volume, surface and line phases,
correspondingly:

dw
dt 1% Vo Vs
+// p12A12 dE + // p13Q13dY + // P23 093 X+
Si2 Y13 Yo3

T / ooy AL (8)
L
—// l'llJldA—// l’nggdA—// Il3J3dA—
A1 Ao As
- N12'J12dL_ N13'J13dL_ N23'J23dL_
Ly2 L3 Los
_(AJL)i_7

where Ni9, N3 and Na3 are the unit normals to the lines Lo, L13
and Lsg of separation of bounding surfaces A;, A; and As lying in the
corresponding tangential planes, A is the unit tangential vector to the
curve L. The indices “~” and “+” denote the values of quantities at
the initial and ending points of the line L (at its intersections with a
boundary surface A = A12 U A13 U A23 U L12 U L13 U L23).
Accounting for (7) and (8) and the balance equations for the vol-
umes Vi, V5, V3 and interfaces Y15, Y13, 23, differentiating the line
integral with respect to time ¢, using the Leibniz-Newton formula and



84 J. Povstenko

the one-dimensional equation for the line mass density we obtain the
general one-dimensional balance equation [27-29]

d
PL% =prAL — V- Jr+Nig-Ji2 +Nyg - Ji3 + Nog - Jog+

+p12(12 — ¥r) (viz — vi) - Nio + p13(¥13 — ¥r) (vis — vi) - Nis+

+p23(ha3 — L) (Vas — vi) - Nag. 9)
The line gradient operator V is introduced by the formula
0
V== 10

where s denotes the length of a curve. The unit tangential vector A
as well as the principal normal 7 and binormal v form the Frenet
trihedron.

4. The generalized Laplace and
Young equations

Identifying the quantity ¢ with the displacement velocity vector v,
the production A with the body force vector f and the flux J with the
stress tensor o (with the opposite sign) we obtain

dVE

PZH =pofy + Vs -0y —n; -0, +ny- 09+
+p1(vi = vg) (Vi — vg) -ng + pa(ve — V) (Vo — V) -1 (11)
and
dVL
PLTt =puf + V-0 —Nig-012 —Nyg- 013 — Nog - 093+

+p12(viz — vi) (viz = v) - Nio + p13(viz — vi) (vis — v ) - Nyg+

+pa3(Vag — v) (Vas — vi) - Nog. (12)

Identifying the quantity ¢ with the rotation velocity vector w
multiplied by the factor o not depending on time and connected with
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the moment of inertia, the flux J with the couple-stress tensor p (with
the opposite sign) and assuming

AE = pPxIny, — (O'Ei(a)*, (13)

AL = prmy, — (O'LX)\ & )\)*, (14)

where my; is the surface couple vector, my, is the line couple vector, ®
is the tensor product, X is the cross product, a is the first fundamental
form of a surface, a dot denotes the scalar product, an asterisk marks
the transpose of a tensor, we get

dWZ

QZPET = psmy, + Vz Uy — (0’2%&)* —

—Ny -y — Ny - py + pr(@wy — asws) (Vi — V) - ng+
+po(aavy — axwy) (Vo — vy) - Ny (15)

and
dWL

dt

*

aLpL =prmp + V- p — (O'LT)\@))\)

—Nig - pryo — Nz - pry3 — Nog - pro3+
+p12(a1oWis — apwy) (vig — vi) - Npo+
+p13(a3wis — apwr) (vis — v) - Nis+

+pa3(QagWag — apwr) (Vag — vi) - Nos. (16)

We use the following order of operations in the brackets in (13)
and (14):
(i) vector multiplication of the neighbouring basis vectors of the
multipliers;
(ii) permutation of the second and the third basis vectors in their
product:
(iii) scalar (or vector) multiplication of the first and the second
basis vectors.
It should be noted that the surface stress and couple stress tensors
have the following structure in the local basis a,, n:

os =oc"%a, ® ag +o0""a, ®n,



86 J. Povstenko

py = p*’a, ® ag + p*"a, @ n, (17)

while the line stress and couple stress tensors are represented in the
Frenet trihedron basis as:

0L =0"ARAN+0"ART+0VAR v,

= AN+ AR T+ MA@ . (18)

The obtained equations generalize the classical Laplace and Young
equations of the theory of capillarity taking into account the moment
effects (see [27,29 31]).

Indeed, neglecting couples and assuming

pr=0, (vi—vyg) n =0, (va—vy) - n=0, oyx=oxay,

where oy, is the surface tension, ay, is the first fundamental form of a
surface, we obtain from (11):

VEO'E—|—2HO'21’11:1’11'0'1—|—1’12'0'2. (19)

Here H is the mean curvature of an interface.
Finally, if oy, =const, then we arrive at the classical Laplace equa-
tion
2Hos, = py — py, (20)

where p; and p, are the hydrostatic pressures in contacting bulk phases.
Equation (19) is a basis of theoretical investigation of various
physical phenomena caused by heterogeneous surface tension includ-
ing wetting of heterogeneous surfaces and interaction of surface-active
melts with metals [32-37|. Extensive literature testifies to the influ-
ence of heterogeneous surface tension on various physical, mechanical
and chemical processes in solids. Elwing et al. |38] developed a method
to create a surface tension gradient along silicon or glass plates, hy-
drophobic at one end and hydrophilic at the other, with a gradient of
wettability inbetween. In [39-41| glass beads were prepared exhibiting
hydrophilic properties on one hemisphere and hydrophobic properties
on the other. Raphaél [42,43| analyzed the forces which acted on the
“Janus Bead” placed at the water-oil interface and discussed the be-
havior of a liquid strip, straddling between two different surfaces.
Cassie’s study [44] has left the way open for further discussion
of the wettability of heterogeneous surfaces. Such surfaces have been
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the object of the attention of a large number of both theoretical and
experimental research workers [45-51]. Stress fields due to the surface
tension gradient and their influence on wettability have been taken
into account in [35,36].

When surface-active melt (indium, lead, tin, gallium and so on)
interacts with metal (iron, iron-silicon alloy), a zone with a high dis-
location density arises in the surface layer of the metal. For a long
time it was considered [52,53| that the surface-active melt substance
diffused into metal and caused the concentration stress forming a dislo-
cation structure. However, it was shown in [54,55] that the interaction
between melt and metal consists of two parts. At the later stages of
this process the diffusion of melt actually occurs and the concentration
stress arises, but the dislocation structure at the front of the spreading
melt is determined by the early stages of interaction and the obtained
results cannot be explained by the diffusion mechanism. The corre-
lation between difference in surface tension of not-wetted and wetted
parts of a metal and difference in dislocation density obtained in |56],
and the observation of the fusible metal drop spreading over the iron
foil in the column of an electron microscope [57] have shown that nu-
cleation of dislocations had occurred under the wetting circumference.
On these grounds one can conclude that the formation of dislocations
is connected with a decrease of surface tension at the wetting perime-
ter [34,36,37|. The results obtained in these papers can be involved
in the mechanism of refractory attack by different molten glasses [58]
and the explanation of experiments on cracking of leached two-phase
sodium borosilicate glass carried out in [59].

When
(V12 - VL) Ny =0, (V13 - VL) N3 =0, (V23 - VL) *Nag =0,

012 = 01212, 013 = 013413, 023 = 023A23,
Mo =0, py3=0, py3 =0,
pr =0, oL =0LAQ A,
we have

0
Nig012 + Ny3013 + Nagoas — %A — kot =0, (21)

where k is the first curvature of the contact line.
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In the case of axial symmetry we get |60]

093080 = 015 — 019 — U—RL Cos , (22)
where R is a radius of the base of a drop, ¢ is the angle of inclination
of the surface Y¥o3 at a contact line (the angle between the vectors p
and Nypp), 6 is the contact angle (the angle betweem the vectors Niq
and —Ngg.)

If ¢ =0, then we arrive at the equation
0'230081920'13—0'12—0—L (23)
R
obtained in |61,62].
For a plane interface and o, = 0 the classical Young equation [63]
for the contact angle 6 follows from (23):

O'QgCOSQZOjg—O'lQ. (24)

Neglecting o7, in (21) we obtain the so-called Davidov-Neumann
triangle equation [64,65]

Ni2012 + Ny3013 + Nagoas = 0. (25)

A large number of investigations have been devoted to the exper-
imental study and theoretical description of the processes of wetting
and spreading. Due to tensor nature of surface stresses o5 and o3 the
shape of lying or spreading drop can deviate from the axial symmetry
which was observed in many experiments. One of the first experimen-
tal papers in which such a deviation from axial symmetry was noted
was |66]. The amalgams formed during spreading of a mercury drop
over cadmium or zinc have elliptic shape. The deformation of tin or
lead also leads to anisotropy in the spread of mercury over their sur-
faces. Amalgams of elliptic shape form when a drop of mercury is
placed on a rolled tin foil [67,68] and the ratio of the axes depends on
the degree of rolling. The eccentricity is 1.11-1.14, and the major axis
of the ellipse is in the direction of the roll. The authors of the works
mentioned assumed that spreading of an amalgam over the surface of a
metal has the diffusion nature. Later the terms “spreading”, “propaga-
tion”, “diffusion” |69 and “spreading diffusion” |70| were used. However
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it was proved that the process under study is actually spreading [71-
73]. A similar effect was detected for uniaxially deformed polymers
[74,75]. When wetting the polymer by various liquids (tricresylphos-
phate, bromium naphthalene, ethylene glycol, formamide, glycerine) a
drop of the liquid has a planar elliptic shape with the longer axis ori-
ented in the direction of the deformation. The effect was subsequently
studied in [76 78|.

The anisotropy of wetting may lead to shapes other than a pla-
nar elliptic shape for the drop [79,80]. A direct connection has been
established between the deviation of the surface of a semiconductor
from a certain crystallographic plane and the shape of the figures of
a metal spreading over the surface, making it possible to determine
the crystallographic orientation of plates of a semiconductor from the
spreading figures. An anisotropy of the surface being wetted can be
created artificially by introducing various inhomogeneities. For ex-
ample, in wetting with tin a surface consisting of ordered portions of
pyroceramic of square shape on a molybdenum base the perimeter of
wetting has the shape of an octahedron with rounded corners [81,82].

Using the generalized Young equation, which takes account of the
tensor character of the surface tension, one can explain the anisotropy
of wetting in a natural manner.

5. Continuum theory of surface
dislocations and disclinations

In a three-dimensional Cosserat continuum, i.e. in a continuum which
motion is described not only by the displacement vector u but also
the independent rotation vector w, the dislocation density tensor «
and the disclination density tensor 8 are defined as a departure of the
plastic strain tensor 4* and the plastic bend-twist tensor k? from the
compatibility conditions |83]

0 = -V xKP,
(26)
a =-V x~F— (n”ig)*,

where g is the metric tensor. The order of operations in the brackets
in (26) is the same as described above, with the scalar multiplication
substituted by the vector multiplication.
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The dislocation flux tensor J and the disclination flux tensor I are
introduced as [84]

p
I = ddit - Vw?,
(27)
J :%—va—(wpxg)*
dt
Here du? dw?
p_ 40 p_ 49
% T W T (28)
It follows from (26) (28) that
do
— =-V xI,
dt
. (29)
«a x
— =— J—-(IKg) .
g~V xI-(Le)

The surface dislocation density tensor ax and the surface discli-
nation density tensor Oy are defined as incompatibility of the plastic
strain tensor %, and the plastic bend-twist tensor k%, of the Cosserat
surface [24]

92 :_VZ Xlig—i—ez'b'lﬁg,
(30)
asy = -V x4k +eg-b-~% — (mgia)*,
where a and b are the first and second fundamental forms of a surface,
€y is the two-dimensional alternating tensor.

The surface dislocation flux Jy; and the surface disclination flux
Iy, have the following form

p
dky,

IE = dt — ngg, (31)
dv? .
Iy = dif —Vevh — (Wh x a)". (32)

The balance equations for densities of surface defects read

46
d—f:—Vgng—i—EZ-b-Ig, (33)
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dag

d :_VZ XJZ+€Z'b'JZ—(I§;§a)*. (34)

It should be noted that the surface tensors have the following
structure:

I = ’Vaﬂaa & ag + ,yomaa X n, Ry = 'Liaﬁaa & ag + K’anaa ® n,

as =a"”n®ag+a™n@n, Oy =0"n®az+0"n®n, (35)

JZ:JO‘ﬁaaQ@ag—l—Jo‘"aa@n, Izzlaﬂaa®a5+fa"aa®n.

6. Motor calculus

In three-dimensional case the motor calculus was developed by
Mises [85], the differential operators for motors we introduced in [86
89|. The motor analysis for surfaces and lines was developed by the
author [90].

We use the following invariant notations for the surface gradient,

divergence, and curl of surface motor Vs and motor-tensor =
Wz RE
fields:
Vs) _ (VsVy
VZ (WE) N <V2W2 — (Vg X a)*) ’ (36)
Qz) Vs Qs
V. - = 1, 37
E (Rz Vs Ry - <Q2%a> (37)
Qz) Vs x Qg
Vs X = . 38
E (RE Vs x Ry + (ina) (38)

Successive application of the surface gradient operator gives

Vs x {vz (v‘%ﬂ —é€5-b-Vy (V\(fx) : (39)
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Ve Vo ()] = vss e v (F)]-

—2Hn - |:V2 X (?é)] : (40)

The motor analogue of the surface Gauss-Ostrogradsky formula
Qz) / (Qz)
Vs - d¥X= | N- dL—
/ /z - (RE L Ry
Qz)
— 2Hn - dx. 41
[z (& 2

We use the following invariant notations for the line gradient, di-

. Vi QL
vergence, and curl of line motor (WL) and motor-tensor (RL)
fields:

Vi) _ (VsVg
Vi (WL> = (VEWL (Vi xA® A)*) ! (42)
Q; V5.-QL
vV, - — * 43
g (RL ViR (QA®A) ) (43)

Q. [(VixQ .
Vi x (RL) - (VL xRy — <QL§>\®)\> ) ‘ (44)

Successive application of the line gradient operator gives

VvV, X [VL(‘XTLLﬂ:kV@)\-VL(‘XfLL), (45)

v.. {vL . (g)} — g {vL . (g)} S s)

The one-dimensional analogue of the Gauss-Ostrogradsky formula
reads

e @)= )] Lo () o

We recall that the vectors A, 7 and v form the Frenet trihedron.
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Using the motor calculus the generalized Laplace and Young equa-
tions (11), (15) and (12), (16) can be written as

d Vy . fg Oy,

pzdt (@EW2> e (mg) "V (.Uz
(o] (o)

' (“1> ’ (“2>

Vi —V
+( ! > >P1(V1 —Vg)-n1+

1W1 — Wy

Vo —V
+( 2 > )pz(V2—V2)'n2

W9 — OOWyx

(48)

d vy, - fL gy,
PLY (OéLWL)_ PL <mL) +V, (“L
o2 013 023
—N.H - — Ni» - — Nos - +
2 (Nu) o (Nl?,) » <U23>

Vi — V[,
+ vig — v) - Nio+
<Oé12W12 - aWL) Pra(Viz 2 2

Vi3 — V[,
+ vis — v) - Niz+
<C¥13W13 — O{WL> p13( 13 L> 13

Vo3 — V
+ ( > r ) p23(Vaz — vi) - Nos.

Qi23Wo3 — AW,
(49)
The basic equations for the two-dimensional Cosserat surface in
motor recording have the following form:

05\ ng ""%
<a2) TV (7%) fesb (7’% ’ (50)
IZ d K/g Wg
= - 1
(Jz) dt (v’é Valvg ) (51
d (6g) I, Iy,
dt(az) ——VZX (JE>+€Z'b' (JZ> (52)
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To take into account the interaction of bulk and surface phases in
Eq. (52) one can introduce the following items into this equation

but due to the structure of surface defects densities and surface defects
fluxes (35) we arrive at the conclusion that

n; - (i) +ny- (;22) = 0. (53)

Due to the structure of line strain tensor and bend-twist tensor
dislocations and disclinations cannot, exist in one-dimensional medium,
but at the junction line of three surface phases the following condition

I I I
N (32) # N (30 ) v () 0 0

is fulfilled.
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