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APPLICATION OF MODULAR COMPUTING TECHNIQUE

FOR HIGH SPEED IMPLEMENTATION OF CYCLIC

CONVOLUTION

MIKHAIL SELYANINOV

Abstract

This article is a continuation of research on the modular computing structures defined
on the set of polynomials over finite rings of integers. Advantages of minimal redundant
polynomial-scalar modular number system are demonstrated on the example of com-
puting cyclic convolution of discrete signals. Methods of execution of ring arithmetical
operations as well as coding and decoding operations are considered.

1. Introduction

At the present time, quality of the execution of information processing
procedures in particular data domain is largely determined by the selected
mathematical model of the organization of information processing and the
information technology implemented on this basis. During the last years
specialists in the field of the analysis and processing of digital information
have an increased interest in parallel forms of information transform on the
basis of modular computing structures (MCS) [1–3].
Usage of arithmetic of modular number systems (MNS) is especially ef-

fective, first of all, in such areas as digital signal processing (DSP), synthesis
of fast algorithms for discrete orthogonal conversions, cryptography, error-
correcting codes, etc. Possessing a maximum level of internal parallelism,
the MCS represent a unique means of decomposition of computing pro-
cesses into independent from each other elementary sub-processes defined
on mathematical models with elements of small digit capacity.
The main advantages of the MCS are the high efficiency, which is achieved

through parallelism of modular arithmetic (MA) algorithms and their pipe-
lining using tabular method of calculation, the possibility of mathematical
calculations with high accuracy, effectiveness of control of failure situations
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by means of correcting modular codes. Due to regularity and uniformity
the MCS give maximum effect with the use of special VLSI.

2. Formulation of the problem

The most optimal range of applications of the MCS constitutes DSP
systems, which have higher requirements for such features as performance,
computational accuracy and fault tolerance. The spectrum of the modern
applications of the MCS includes numerous high-speed implementations of
the laborious computing procedures belonging to algorithmic kernels of DSP
systems for one or another purpose.
In theory and applications of DSP the discrete linear system with con-

stant parameters, whose mechanism of action is based on the calculation
of discrete convolution, are of fundamental importance. Calculation of the
convolution of two periodic sequences is a widely used task of DSP. For
example, digital filtering is based on calculating a convolution of the input
signal and the impulse response of the filter. Also, in a number of cryptogra-
phy tasks there appears a necessity of multiplication of two numbers whose
magnitudes exceed limits in which the hardware representation of operations
on the basis of existing computing techniques is possible. In particular, the
Schönhage-Strassen method [4] reduces multiplication of large integers to
evaluation of convolution of the sequences associated with arrays of digits
of their representation in a positional number system.
It should be noted that the calculation of convolution by the “direct”

method requires the excessive computational cost. Existing techniques
based on the discrete Fourier transform (DFT) allow us to reduce com-
putational complexity for certain values of the length of the convolution
due to the existence of fast algorithms for computing the DFT. The tra-
ditional calculation of the convolution by means of DFT for large lengths
of convoluted sequences may lead to computational errors, sometimes sig-
nificant. This is due to the fact that the values of basis functions of the
DFT are irrational numbers and the calculations can be presented only with
limited accuracy, in connection with finite digit length of a computer.
In recent years, experts in the field of DSP exhibit heightened interest

in polynomial MA. It is caused by increment in this area of the methods
which are based on polynomial transformations and, as a consequence, by
sharp increase of an amount of operations over polynomials in synthesized
computing procedures.
Application of polynomial MA allows us to carry out calculations of the

large convolutions by replacing them by a sequence of short convolutions
on the basis of special methods of multiplication of polynomials. This also
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allows us to implement a parallelization of computations at a level of micro-
operations. If two initial sequences of discrete samples are represented in
the polynomial form, then the cyclic convolution procedure can be reduced
to the multiplication of polynomials.
The advantages and application features for the implementation of MNS

procedures of such a class defined on the set of polynomials are demon-
strated below by the example of computation of cyclic convolution of se-
quences a0, a1, . . . , an−1 and b0, b1, . . . , bn−1, where the elements of the out-
put sequence are defined by the equation:

cν =
n−1
∑

u=0

a|ν−u|nbu (ν = 0, 1, . . . , n− 1) (1)

3. Polynomial modular number systems

There are many scientific and applied researches demanding of processing
the information presented in the form of polynomials. Operations over
polynomials are very important in modern computer algebra, DSP, coding
theory, cryptography, etc. At the same time, modular technology of parallel
computing structures defined on polynomial ranges is of great interest.
Let us consider the set Zm[x] of all polynomials of finite degree with

coefficients from the ring Zm = {0, 1, . . . ,m−1} of absolutely least residues
modulo m, where m is a natural number, and the real argument x. In
this case the technique of constructing a MNS [5] first of all requires the
creation of the complete set of residues (CSR) with respect to selected
pairwise relatively prime polynomial modules. The following theorem is
true.

Theorem 1. In the set Zm[x] for any polynomial f(x) and arbitrary poly-

nomial modules p(x) with the degree deg p(x) ≥ 1 there are unique elements

q(x) and r(x) such that

f(x) = q(x) p(x) + r(x) (deg r(x) < deg p(x)). (2)

Let p(x) be any element of s-th degree from Zm[x]. Then, according to
Theorem 1, the set of all residual r(x) of division of f(x) by p(x) (see (2)),
where f(x) represents every element from the set Zm[x], coincides with the
set

Z
s
m[x] =







A(x) =
s−1
∑

j=0

ajx
j | (a0, a1, . . . , as−1) ∈ (Zm × . . .× Zm)







,

(3)
where m and s are the fixed positive integers; m ≥ 2. The cardinality of
the set (3) is equal to N = |Zs

m[x]| = ms. Thus, the set Zs
m[x] is a CSR
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modulo p(x). For the CSR of this type a special notation 〈·〉p(x) is used,

while the residue r(x) modulo p(x) over the polynomial f(x) is designated
as 〈f(x)〉p(x).

In the general case, the polynomial modular number system (PMNS)
with pairwise relatively prime polynomial modules p1(x), p2(x), . . . , pn(x)
is induced by the isomorphic mapping

φ : 〈·〉P (x) → 〈·〉p1(x) × 〈·〉p2(x) × . . .× 〈·〉pn(x),

where P (x) =
n
∏

l=1

pl(x). The isomorphism φ associates each polynomial

A(x) ∈ P (x) with the polynomial modular code (MC)

(a1(x); a2(x); . . . ; an(x)),

whose components are the residues al(x) = 〈A(x)〉pl(x) (l = 1, 2, . . . , n) [6].

The set 〈·〉P (x) is called the range of the PMNS.

The ring operations on polynomial modules p1(x), p2(x), . . . , pn(x) over
any two polynomials A(x) = (a1(x); a2(x); . . .; an(x)) and B(x) = (b1(x);
b2(x); . . .; bn(x)) (al(x) = 〈A(x)〉pl(x), bl(x) = 〈B(x)〉pl(x), l = 1, 2, . . . , n)

are executed independently for each module, i.e. according to the rule

〈A(x) ◦B(x)〉 =

(

〈a1(x) ◦ b1(x)〉p1(x) ; 〈a2(x) ◦ b2(x)〉p2(x) ; . . . ; 〈an(x) ◦ bn(x)〉pn(x)

)

, (4)

where ◦ ∈ {+, −, ×}
Thus, both addition and multiplication of any two polynomials modulo

P (x) for their realizations require, respectively, n real additions and mul-
tiplications which can be executed in parallel in one modular clock tick.
In the PMNS, all the operations (both modular (4) and non-modular) are
performed in the ring Zm. This ring is called the scalar range or the nu-
meric range of the PMNS. Decoding mapping assigning a polynomial A(x)
from the range 〈·〉P (x) to a polynomial MC (a1(x), a2(x), . . ., an(x)) is im-

plemented by means of the Chinese reminder theorem [1, 7] which for the
PMNS with modules pl(x) (l = 1, 2, . . . , n) gives

A(x) =

〈

n
∑

l=1

Pl(x)〈Pl(x)
−1A(x)〉pl(x)

〉

P (x)

=

=

n
∑

l=1

Pl(x)
〈

Pl(x)
−1Al

〉

pl(x)
, (5)
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where Pl(x) = P (x)/pl(x),
〈

Pl(x)
−1

〉

pl(x)
is the residue which satisfies the

equality
〈

Pl(x)
〈

Pl(x)
−1

〉

pl(x)

〉

pl(x)
= 1.

The PMNS being the most appropriate for practical applications in the
field of DSP have the polynomial modules p1(x), p2(x), . . . , pn(x) which are
the normalized polynomials of the first degree and the polynomial

P (x) = xn − 1

has a factorization of the form

P (x) =

n
∏

l=1

(x− rl) (rl ∈ Zm; l = 1, 2, . . . , n).

4. Implementation of discrete cyclic convolution in the

PMNS

Let us consider the calculation of cyclic convolution of the sequences
a0, a1, . . ., an−1 and b0, b1, . . ., bn−1 according to formula (1). All the
elements ai and bi (i = 0, 1, . . . , n− 1) of the input sequences without loss
of generality can be treated as integer variables taking values from the Zm.
If the considered initial discrete sequences are presented in the polynomial
form:

A(x) = aν−1x
ν−1 + aν−2x

ν−2 + . . .+ a2x
2 + a1x

1 + a0

and
B(x) = bν−1x

ν−1 + bν−2x
ν−2 + . . .+ b2x

2 + b1x
1 + b0,

then cyclic convolution operation can be reduced to the procedure of poly-
nomials multiplication [8]. Thus, the realization of (1) is equivalent to the
computation of the coefficients of the polynomial

C(x) =
n−1
∑

ν=0

cνx
ν =

〈

n−1
∑

ν=0

aνx
ν

n−1
∑

ν=0

bνx
ν

〉

xn−1

= 〈A(x)B(x)〉xn−1 .

The polynomials A(x) and B(x) are uniquely encoded in the PMNS,
respectively, by sets of residues

A(x) = (a1(x); a2(x); . . . ; an(x)) (6)

and
B(x) = (b1(x); b2(x); . . . ; bn(x)) (7)

corresponding to the selected polynomial modules p1(x), p2(x), . . ., pn(x)
(pl(x) = x− rl is the normalized polynomial of the first degree,

al(x) = 〈A(x)〉pl(x) ;

bl(x) = 〈B(x)〉pl(x) ; (l = 1, 2, . . . , n).
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The resultant polynomial

C(x) = (c1(x); c2(x); . . . ; cn(x)) (8)

is obtained by multiplying of polynomials (6) and (7) in the PMNS

C(x) = 〈A(x)B(x)〉P (x)

where P (x) =
n
∏

l=1

pl(x) = xn − 1.

In this case, the components of the set of residues (c1(x), c2(x), . . . , cn(x))
are the least residues of the division of products al(x) bl(x) by the corre-
sponding polynomial modules

cl(x) = 〈al(x) bl(x)〉pl(x) (l = 1, 2, . . . , n)

Reconstruction of the positional code of the polynomial C(x) by its poly-
nomial MC (8) is carried out in accordance with formula (5).

5. Processing of polynomial residues in minimal redundant MC

It follows from formula (4) that the efficiency level of PMNS arithmetic
depends not only on analytical form of the modules pl(x) (l = 1, 2, . . . , n)
but also on the number system used for implementation of the computation
over polynomial residues in the ring Zm. Since these calculations have a
modular structure, then for encoding and processing of elements from the
scalar range Zm it is quite natural to use the real MNS with the modules

m1,m2,. . .,mk and the range Mk =
k
∏

i=1
mi for number representation [1, 7].

In this approach, the parameter m is equal to Mk, i.e. the ring ZMk
=

{0, 1, . . . ,Mk−1} is used as a numerical range of the PMNS. Such a PMNS
with modular coding of elements of scalar range is called the polynomial-
scalar MNS (PSMNS) [6].
Efficiency of computer arithmetic of PSMSS increases significantly when

the minimal redundant modular coding of scalar elements is used. Minimal
redundant encoding at the lower level allows us to optimize the execution
of non-modular procedures [1, 7]. Such a PSMNS is called minimal redun-
dant PSMNS. It is known that the principle of minimal redundant modular
coding assumes that the set Z

−
2M = {−M,−M + 1, . . . ,M − 1} (where

M =
k−1
∏

i=0
mi, mk ≥ m0 + k − 2,m0 ≥ k − 2, m0 is additional natural mod-

ule) is used as a scalar range of the PSMNS instead of the range ZMk
[1],

[6] and [7].
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Thus, in this case the minimal redundant PSMNS is defined by the set
of pairwise relatively prime normalized polynomials of the first degree

pl(x) = x− rl, (rl ∈ Z
−
2M , l = 1, 2, . . . , n)

and the set of pairwise relatively prime natural modules m1, m2, . . . , mk.
In accordance with the above, an arbitrary polynomial A(x) ∈ 〈·〉P (x) in

minimal redundant PSMNS is encoded by a set of residues

(α1,1, α1,2, . . . , α1,k; α2,1, α2,2, . . . , α2,k; . . . ; αn,1, αn,2, . . . , αn,k), (9)

where αl,i = |Al|mi
; Al = 〈A(x)〉pl(x) = |A(rl)|Mk

; the value |X|m denotes

the least non-negative residue of dividing X by natural modulo m,

l = 1, 2, . . . , n; i = 1, 2, . . . , k.

Minimal redundant PSMNS are characterized by parallel structure both
on the lower and upper levels of modular operations. In accordance with
(4), the operations over any two polynomials A(x) and B(x) from the range
〈·〉P (x) are executed by the rule

(α1,1, α1,2, . . . , α1,k; α2,1, α2,2, . . . , α2,k; . . . ; αn,1, αn,2, . . . , αn,k)◦

◦(β1,1, β1,2, . . . , β1,k; β2,1, β2,2, . . . , β2,k; . . . ; βn,1, βn,2, . . . , βn,k) =

= ( |α1,1 ◦ β1,1|m1
, |α1,2 ◦ β1,2|m2

, . . . , |α1,k ◦ β1,k|mk
;

|α2,1 ◦ β2,1|m1
, |α2,2 ◦ β2,2|m2

, . . . , |α2,k ◦ β2,k|mk
; . . .

|αn,1 ◦ βn,1|m1
, |αn,2 ◦ βn,2|m2

, . . . , |αn,k ◦ βn,k|mk
), (10)

where Al,i = |A(rl)|mi
and Bl,i = |B(rl)|mi

are the digits of polynomial-
scalar modular codes of the operands A(x) and B(x), respectively (see (9)),
◦ ∈ {+, −, ×}.
One of the main advantages of the PSMNS is the unique possibility to

calculate the sum, difference and especially the product of two polynomials
in accordance with (10) in one modular clock tick. Thus, in this system
the multiplication of any two polynomials modulo P (x) = xn − 1 for its
implementation requires only n multiplications executed in parallel. In
contrast, in the case of traditional arithmetic in positional number system
the polynomials multiplication in the ring 〈·〉P (x) requires the executions of

n(n− 1) real additions and n2 real multiplications.
It is quite clear that the efficiency of applied methods for conversion

of polynomials from positional number system to PSMNS and vice versa,
as well as execution of other non-modular operations, can have significant
influence on real effect of introducing the polynomial MA in practice. This
problem is successfully solved using a minimal redundant modular coding
of scalars from the range Z−2M [1, 7].
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At first, let us consider forming of digits of polynomial-scalar MC. In
particular, for calculating the digits αl,i (see (9)) of arbitrary polynomial

A(x) =
n−1
∑

ν=0
aνx

ν from the range 〈·〉P (x) (aν ∈ Z
−
2M ) the following formula

is used

αl,i =

∣

∣

∣

∣

∣

n−1
∑

ν=0

Rν, l, i

µ−1
∑

s=0

∣

∣

∣
Fs(aν

(s))
∣

∣

∣

mi

∣

∣

∣

∣

∣

mi

,

where Rν, l, i = |r
ν
l |mi

; Fs(aν
(s)) are the additive components of λ-bit posi-

tional forms of coefficients aν :

aν =
λ−1
∑

t=0

aν,t2
t − aν, λ−12

λ =
λ−2
∑

t=0

aν,t2
t − aν, λ−12

λ−1 =

µ−1
∑

s=0

Fs(a
(s)
ν )

defined according to formulas

a(s)ν =

λs−1
∑

t=0

aν, qs+t 2
t (s = 0, 1, · · · , µ− 1)

Fs(a
(s)
ν ) =

{

aν,s 2
qs if s = 0, 1, · · · , µ− 2,

aν, µ−1 2
qµ−1 − ⌊aν, µ−1 / 2

qµ−1−1⌋ 2λ if s = µ− 1;

q0 = 0, q1, · · · , qµ−1 is the increasing sequence of integer values that specifies
the partition of the binary additional code (aν, λ−1, aν, λ−2, · · · , aν,0)2 on
µ ≥ 1 groups, sth of which contains λs = qs+1 − qs bits, qµ−1 ≤ λ − 1,
qµ = λ [1, 9]. Here ⌊y⌋ denotes the integer part of a real number y.
In order to restore the positional representation of the polynomial A(x)

by its minimal redundant polynomial-scalar MC (9) at first it is necessary to

compute the minimal redundant MC (α
(ν)
1 , α

(ν)
2 , · · · α

(ν)
k ) of the coefficient

aν for every ν = 0, 1, · · · , n− 1:

α
(ν)
i = |aν |mi

=

∣

∣

∣

∣

∣

n
∑

l=1

R
(ν)
l, i αl,i

∣

∣

∣

∣

∣

mi

(i = 1, 2, · · · , k),

where R
(ν)
l, i =

∣

∣n−1 r−νl

∣

∣

mi
[6]. After that, the positional code of the coeffi-

cient aν can be formed by its MC in accordance with the formula

aν =

k−1
∑

i=1

Mi,k−1

∣

∣

∣
M−1

i,k−1α
(ν)
i

∣

∣

∣

mi

+ I(aν)Mk−1,
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where Mi, k−1 = Mk−1/mi, Mk−1 =
k−1
∏

j=1
mj , I(aν) is the interval index of

integer aν defined by the following calculating expressions [1, 7]

I(aν) =

{

Îk(aν) if Îk(aν) < m0,

Îk(aν)−mk if Îk(aν) > mk −m0 − k + 2;

Îk(aν) =

∣

∣

∣

∣

∣

k
∑

i=1

Ri,k(α
(ν)
i )

∣

∣

∣

∣

∣

mk

Ri,k(α
(ν)
i ) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣
M−1

i,k−1 α
(ν)
i

∣

∣

∣

mi

Mk−1

∣

∣

∣

∣

∣

∣

∣

mk

(i 6= k); Rk,k(α
(ν)
k ) =

∣

∣

∣

∣

∣

α
(ν)
k

Mk−1

∣

∣

∣

∣

∣

mk

.

Thus, the efficiency of the PSMNS computer arithmetic is significantly
increased due to the optimization of the non-modular procedures when using
the minimal redundant coding at the lower level [1, 7]. Therefore, the
minimal redundant PSMNS potentially takes the priority position in the
field of computer applications.
The proposed developments allow us to create effective DSP systems

using the minimally redundant PSMNS with sufficiently simple implemen-
tation. In these systems at the upper level the normalized polynomials of
the first degree is used as a bases, whereas at the lower level the elements
of scalar range is represented in minimal redundant MC.
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