K-CONTINUITY PROBLEM OF K-SUPERQUADRATIC SET-VALUED FUNCTIONS

KATARZYNA TROCZKA-PAWELEC

Abstract

In this paper we study K-superquadratic set-valued functions. We will present here some connections between K-boundedness of K-superquadratic set-valued functions and K-semicontinuity of multifunctions of this kind.

1. Introduction

Let $X=(X,+)$ be an arbitrary topological group. A real-valued function F is called superquadratic, if it fulfils inequality

$$
\begin{equation*}
2 F(x)+2 F(y) \leq F(x+y)+F(x-y), \quad x, y \in X \tag{1}
\end{equation*}
$$

If the sign " \leq " in (1) is replaced by " \geq ", then F is called subquadratic. The continuity problem of functions of this kind was considered in [2]. This problem was also considered in the class of set-valued functions. In this case F is called subquadratic set-valued function, if it satisfies inclusion

$$
\begin{equation*}
F(x+y)+F(x-y) \subset 2 F(x)+2 F(y), \quad x, y \in X \tag{2}
\end{equation*}
$$

and superquadratic set-valued function, if it satisfies inclusion defined in such a form:

$$
\begin{equation*}
2 F(x)+2 F(y) \subset F(x+y)+F(x-y), \quad x, y \in X . \tag{3}
\end{equation*}
$$

For usual (i.e. single-valued) functions the properties of subquadratic and superquadratic functions are quite analogous and, in view of the fact that if a function F is subquadratic, then the function $-F$ is superquadratic and conversely, it is not necessary to investigate functions of these two kinds individually.
In the case of set-valued functions the situation is different. Even if properties of subquadratic and superquadratic set-valued functions are similar, we have to prove them separately.

[^0]If the sign " \subset " in the inclusions above is replaced by " $=$ ", then F is called quadratic set-valued function. The class of quadratic set-valued functions is an important subclass of the class of subquadratic and superquadratic set-valued functions. Quadratic set-valued functions have already extensive bibliography (see D. Henney [1], K. Nikodem [4] and W. Smajdor [5]). The continuity problem of subquadratic and superquadratic set-valued functions was considered in [6] and [7].

If we enlarge the space of values of a set-valued function F by a cone K we can consider K-superquadratic set-valued functions, that is solutions of the inclusion

$$
\begin{equation*}
F(x+y)+F(x-y) \subset 2 F(x)+2 F(y)+K, \quad x, y \in X \tag{4}
\end{equation*}
$$

The concept of K-superquadraticity is related to real-valued superquadratic functions. Note, in the case when F is a single-valued real function and $K=[0, \infty)$, we obtain the standard definition of superquadratic functions (1).

Similarly, if a set-valued function F satisfies the following inclusion

$$
\begin{equation*}
2 F(x)+2 F(y) \subset F(x+y)+F(x-y)+K, \quad x, y \in X \tag{5}
\end{equation*}
$$

then it is called K-subquadratic. The K-continuity problem of multifunction of this kind was considered in [8]. It has been proved there that a K-subquadratic set-valued function F defined on 2-divisible topological group X with non-empty, compact and convex values in a locally convex topological vector space Y, which is K-continuous at zero and locally K bounded in X, is K-continuous everywhere in X.

In this paper we shall consider similar problem for K-superquadratic set-valued functions. Likewise as in functional analysis we can look for connections between K-boundedness and K-semi-continuity of set-valued functions of this kind.

Assuming $K=\{0\}$ in (4) and (5), we obtain the inclusions (2) and (3).
Let us start with the notations used in this paper. Let Y be a topological vector space. Let $n(Y)$ denotes the family of all non-empty subsets of Y and $c c(Y)$-the family of all compact and convex members of $n(Y)$. The term set-valued function will be abbreviated to the form s.v.f.

Recall that a set $K \subset Y$ is called a cone iff $K+K \subset K$ and $s K \subset K$ for all $s \in(0, \infty)$.

Definition 1. (cf. [3]) A cone K in a topological vector space Y is said to be a normal cone iff there exists a base \mathfrak{W} of zero in Y such that

$$
W=(W+K) \cap(W-K)
$$

for all $W \in \mathfrak{W}$.

Definition 2. (cf. [3]) An s.v.f. $F: X \rightarrow n(Y)$ is said to be K-upper semicontinuous (abbreviated K-u.s.c.) at $x_{0} \in X$ iff for every neighbourhood V of zero in Y there exists a neighbourhood U of zero in X such that

$$
F(x) \subset F\left(x_{0}\right)+V+K
$$

for every $x \in x_{0}+U$.
Definition 3. (cf. [3]) An s.v.f. $F: X \rightarrow n(Y)$ is said to be K-lower semicontinuous (abbreviated K-l.s.c.) at $x_{0} \in X$ iff for every neighbourhood V of zero in Y there exists a neighbourhood U of zero in X such that

$$
F\left(x_{0}\right) \subset F(x)+V+K
$$

for every $x \in x_{0}+U$.
Definition 4. (cf. [3]) An s.v.f. $F: X \rightarrow n(Y)$ is said to be K-continuous at $x_{0} \in X$ iff it is both K-u.s.c. and K-l.s.c. at x_{0}. It is said to be K-continuous iff it is K-continuous at each point of X.

Note that in the case where $K=\{0\}$ the K-continuity of F means its continuity with respect to the Hausdorff topology on $n(Y)$.

In this paper we will use the following lemma.
Lemma 1. (cf. [8]) Let Y be a topological vector space and K be a cone in Y. Let A, B, C be non-empty subsets of Y such that $A+C \subset B+C+K$. If B is convex and C is bounded, then $A \subset \overline{B+K}$.

2. The main result

In the proof of the main theorem we will often use four known lemmas (see Lemma 1.1, Lemma 1.3, Lemma 1.6 and Lemma 1.9 in [9]). The first lemma says that for a convex subset A of an arbitrary real vector space Y the equality $(s+t) A=s A+t A$ holds for every $s, t \geq 0$ or $(\mathrm{s}, \mathrm{t}<0)$. The second lemma says that in a real vector space Y for two convex subsets A, B the set $A+B$ is also convex. The next lemma says that if $A \subset Y$ is a closed set and $B \subset Y$ is a compact set, where Y denotes a real topological vector space, then the set $A+B$ is closed. For any sets $A, B \subset Y$, where Y denotes the same space as above, the inclusion $\bar{A}+\bar{B} \subset \overline{A+B}$ holds and the equality holds if and only if the set $\bar{A}+\bar{B}$ is closed.

Notice that for the cone K the following remark holds.
Remark 1. Let Y be a real topological vector space. If K is a closed cone, then it is a cone with zero.

Let us adopt the following three definitions which are natural extension of the concept of the boundedness for real-valued functions.

Definition 5. An s.v.f. $F: X \rightarrow n(Y)$ is said to be K-lower bounded on a set $A \subset X$ iff there exists a bounded set $B \subset Y$ such that $F(x) \subset B+K$ for all $x \in A$. An s.v.f. $F: X \rightarrow n(Y)$ is said to be K-lower bounded at a point $x \in X$ iff there exists a neighbourhood U_{x} of zero in X such that F is K-lower bounded on a set $x+U_{x}$

Definition 6. An s.v.f. $F: X \rightarrow n(Y)$ is said to be K-upper bounded on a set $A \subset X$ iff there exists a bounded set $B \subset Y$ such that $F(x) \subset B-K$ for all $x \in A$. An s.v.f. $F: X \rightarrow n(Y)$ is said to be K-upper bounded at a point $x \in X$ iff there exists a neighbourhood U_{x} of zero in X such that F is K-upper bounded on a set $x+U_{x}$

Definition 7. An s.v.f. $F: X \rightarrow n(Y)$ is said to be locally K-bounded in X iff it is both K-upper and K-lower bounded at every point $x \in X$.

Definition 8. We say that 2-divisible topological group X has the property $\left(\frac{1}{2}\right)$ iff for every neighbourhood V of zero there exists a neighbourhood W of zero such that $\frac{1}{2} W \subset W \subset V$.

For the K-superquadratic set-valued functions the following theorem holds.

Theorem 1. Let X be a 2-divisible topological group with property ($\frac{1}{2}$), Y locally convex topological real vector space and $K \subset Y$ a closed normal cone. If a K-superquadratic s.v.f. $F: X \rightarrow c c(Y)$ is K-u.s.c. at zero, $F(0)=\{0\}$ and locally K-bounded in X, then it is K-u.s.c. in X.

Proof. Suppose that F is not K-u.s.c. at a point $z \in X$, i.e. there exists a neighbourhood V of zero in Y such that for every neighbourhood U of zero in X we can find $x_{u} \in U$ for which

$$
F\left(z+x_{u}\right) \nsubseteq F(z)+V+K
$$

Take a balanced convex neighbourhood W of zero in Y such that

$$
W \subset V
$$

and

$$
\overline{F(z)+W+K} \subset F(z)+V+K
$$

Then also

$$
\begin{equation*}
F\left(z+x_{u}\right) \nsubseteq \overline{F(z)+W+K} \tag{6}
\end{equation*}
$$

Let a neighbourhood U of zero in X be arbitrarily fixed. Suppose that

$$
\begin{equation*}
F\left(z+x_{u}\right)+2^{k}\left(2^{k}-1\right) F\left(x_{u}\right) \nsubseteq \overline{F\left(z+\left(1-2^{k}\right) x_{u}\right)+2^{k} W+K} \tag{7}
\end{equation*}
$$

for some $k \in \mathbb{N} \cup\{0\}$. The proof of (7) runs by induction. For $k=0$ condition (7) holds with respect to (6). Putting $y=x$ in (4) and using condition $F(0)=\{0\}$, we have

$$
F(2 x) \subset 4 F(x)+K
$$

An easy induction shows

$$
\begin{equation*}
F\left(2^{n} x\right) \subset 4^{n} F(x)+K \tag{8}
\end{equation*}
$$

for $x \in X$ and for all positive integers $n \in \mathbb{N}$. By K-superquadraticity of F and (8), we have

$$
\begin{gather*}
F\left(z+\left(1-2^{k+1}\right) x_{u}\right)+F\left(z+x_{u}\right)= \\
=F\left(z+x_{u}-2^{k} x_{u}-2^{k} x_{u}\right)+F\left(z+x_{u}-2^{k} x_{u}+2^{k} x_{u}\right) \subset \\
\subset 2 F\left(z+x_{u}-2^{k} x_{u}\right)+2 F\left(2^{k} x_{u}\right)+K \subset \\
\subset 2 F\left(z+\left(1-2^{k}\right) x_{u}\right)+2^{2 k+1} F\left(x_{u}\right)+K \tag{9}
\end{gather*}
$$

In view of the fact that for any sets $A, B \subset Y, \bar{A}+\bar{B} \subset \overline{A+B}$ we get

$$
\begin{aligned}
& \bar{F}\left(z+\left(1-2^{k}\right) x_{u}\right)+2^{k} W+K \\
& \quad \subset \overline{F\left(z+\left(1-2^{k}\right) x_{u}\right)+2^{k} W+K}
\end{aligned}
$$

and, consequently,

$$
\begin{align*}
& \overline{\overline{F(}\left(z+\left(1-2^{k}\right) x_{u}\right)+2^{k} W+K}+K \\
& \subset \overline{F\left(z+\left(1-2^{k}\right) x_{u}\right)+2^{k} W+K} . \tag{10}
\end{align*}
$$

By (7) and (10), we obtain

$$
F\left(z+x_{u}\right)+2^{k}\left(2^{k}-1\right) F\left(x_{u}\right) \nsubseteq \overline{\overline{F\left(z+\left(1-2^{k}\right) x_{u}\right)+2^{k} W+K}+K}
$$

Notice that for a cone K the equality $a K=K$ holds for every $a \in(0, \infty)$. Hence,

$$
\begin{align*}
& 2 F\left(z+x_{u}\right)+2^{k+1}\left(2^{k}-1\right) F\left(x_{u}\right) \nsubseteq \tag{11}\\
\nsubseteq & \overline{\overline{2 F\left(z+\left(1-2^{k}\right) x_{u}\right)+2^{k+1} W+K}+K}
\end{align*}
$$

By (11) and Lemma 1,

$$
\begin{aligned}
& 2 F\left(z+x_{u}\right)+2^{k+1}\left(2^{k}-1\right) F\left(x_{u}\right)+2^{2 k+1} F\left(x_{u}\right) \nsubseteq \\
\nsubseteq & \overline{2 F\left(z+\left(1-2^{k}\right) x_{u}\right)+2^{k+1} W+K}+2^{2 k+1} F\left(x_{u}\right)+K
\end{aligned}
$$

In view of Remark $1, K$ is a cone with zero. Therefore by above,

$$
\begin{align*}
& 2 F\left(z+x_{u}\right)+2^{k+1}\left(2^{k}-1\right) F\left(x_{u}\right)+2^{2 k+1} F\left(x_{u}\right)+K \nsubseteq \tag{12}\\
& \nsubseteq \overline{2 F\left(z+\left(1-2^{k}\right) x_{u}\right)+2^{k+1} W+K}+2^{2 k+1} F\left(x_{u}\right)+K
\end{align*}
$$

In view of the fact that the sum of closed and compact sets is closed and for any sets $A, B \subset Y, \bar{A}+\bar{B}=\overline{A+B}$, in the case where $\bar{A}+\bar{B}$ is a closed set, we get

$$
\begin{align*}
& \overline{2 F\left(z+\left(1-2^{k}\right) x_{u}\right)+2^{k+1} W+K}+2^{2 k+1} F\left(x_{u}\right)= \tag{13}\\
& =\overline{2 F\left(z+\left(1-2^{k}\right) x_{u}\right)+2^{k+1} W+K+2^{2 k+1} F\left(x_{u}\right)}
\end{align*}
$$

Since K is a cone, by (9), we obtain

$$
\begin{align*}
& \overline{F\left(z+\left(1-2^{k+1}\right) x_{u}\right)+F\left(z+x_{u}\right)+2^{k+1} W+K} \subset \tag{14}\\
& \subset \overline{2 F\left(z+\left(1-2^{k}\right) x_{u}\right)+2^{k+1} W+K+2^{2 k+1} F\left(x_{u}\right)}
\end{align*}
$$

Since F has closed values, we get

$$
\begin{align*}
& F\left(z+x_{u}\right)+\overline{F\left(z+\left(1-2^{k+1}\right) x_{u}\right)+2^{k+1} W+K}+K \subset \tag{15}\\
& \subset \overline{F\left(z+\left(1-2^{k+1}\right) x_{u}\right)+F\left(z+x_{u}\right)+2^{k+1} W+K}+K
\end{align*}
$$

Consequently, by (12-15) we conclude

$$
\begin{aligned}
& 2 F\left(z+x_{u}\right)+2^{k+1}\left(2^{k}-1\right) F\left(x_{u}\right)+2^{2 k+1} F\left(x_{u}\right)+K \nsubseteq \\
& \nsubseteq F\left(z+x_{u}\right)+\overline{F\left(z+\left(1-2^{k+1}\right) x_{u}\right)+2^{k+1} W+K}+K
\end{aligned}
$$

By convexity of the sets $F\left(x_{u}\right)$ i $F\left(z+x_{u}\right)$, we obtain

$$
\begin{aligned}
& F\left(z+x_{u}\right)+F\left(z+x_{u}\right)+2^{k+1}\left(2^{k+1}-1\right) F\left(x_{u}\right)+K \nsubseteq \\
& \nsubseteq F\left(z+x_{u}\right)+\overline{F\left(z+\left(1-2^{k+1}\right) x_{u}\right)+2^{k+1} W+K}+K
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
& F\left(z+x_{u}\right)+2^{k+1}\left(2^{k+1}-1\right) F\left(x_{u}\right) \nsubseteq \\
& \nsubseteq \overline{F\left(z+\left(1-2^{k+1}\right) x_{u}\right)+2^{k+1} W+K}
\end{aligned}
$$

We have proved that (7) holds for every neighbourhood U of zero in X and $k=0,1,2 \ldots$

Since K is a normal cone, there exists a base \mathfrak{W} of neighbourhoods of zero in Y such that $M=(M+K) \cap(M-K)$ for all $M \in \mathfrak{W}$. We can choose $W_{1} \in \mathfrak{W}$ and balanced neighbourhood W_{2} of zero in Y such that

$$
W_{2} \subset W_{1} \subset W
$$

Because F is K-lower bounded on a neighbourhood of z, there exists a neighbourhood U_{0} of zero in X and a bounded set $B_{1} \subset Y$ such that

$$
F(z+t) \subset B_{1}+K, \quad t \in U_{0}
$$

Since the set B_{1} is bounded, there exists $\lambda_{1}>0$ such that

$$
B_{1} \subset \frac{1}{\lambda_{1}} W_{2}
$$

Therefore, by above,

$$
F(z+t) \subset \frac{1}{\lambda_{1}} W_{2}+K, \quad t \in U_{0}
$$

Similarly, since F is K-upper bounded on a neighbourhood of z, there exists a neighbourhood U_{1} of zero in X and a bounded set $B_{2} \subset Y$ such that

$$
F(z+t) \subset B_{2}-K, \quad t \in U_{1}
$$

Since the set B_{2} is bounded, there exists $\lambda_{2}>0$ such that

$$
B_{2} \subset \frac{1}{\lambda_{2}} W_{2}
$$

Therefore, by above,

$$
F(z+t) \subset \frac{1}{\lambda_{2}} W_{2}-K, \quad t \in U_{1}
$$

Let $\lambda:=\min \left\{\lambda_{1}, \lambda_{2}\right\}$. Since W_{2} is a balanced set, we get

$$
\begin{equation*}
F(z+t) \subset \frac{1}{\lambda} W_{2}+K \subset \frac{1}{\lambda} W_{1}+K, \quad t \in U_{0} \tag{16}
\end{equation*}
$$

and

$$
\begin{equation*}
F(z+t) \subset \frac{1}{\lambda} W_{2}-K \subset \frac{1}{\lambda} W_{1}-K, \quad t \in U_{1} . \tag{17}
\end{equation*}
$$

By (16) and (17), we obtain

$$
\begin{equation*}
F(z+t) \subset\left(\frac{1}{\lambda} W_{1}+K\right) \cap\left(\frac{1}{\lambda} W_{1}-K\right), \quad t \in U_{0} \cap U_{1} \tag{18}
\end{equation*}
$$

Because of $W_{1} \in \mathfrak{W}$, we have

$$
\left(\frac{1}{\lambda} W_{1}+K\right) \cap\left(\frac{1}{\lambda} W_{1}-K\right)=\frac{1}{\lambda} W_{1}
$$

and, consequently, the following inclusion holds

$$
\begin{equation*}
F(z+t) \subset \frac{1}{\lambda} W \tag{19}
\end{equation*}
$$

for every $t \in U_{0} \cap U_{1}$.

Let $k \in \mathbb{N}$ be so large that

$$
\begin{equation*}
2^{k}>\frac{3}{\lambda} \tag{20}
\end{equation*}
$$

Let U be a symmetric neighbourhood of zero in X such that $U+U \subset U_{0} \cap U_{1}$ and $\frac{1}{2} U \subset U$. Consider two sets $\frac{1}{2^{k}} U$ i $\frac{1}{\lambda 2^{k}\left(2^{k}-1\right)} W$. Since F is K-u.s.c. at zero and $F(0)=\{0\}$, there exists a symmetric neighbourhood U_{2} of zero in X such that

$$
\begin{equation*}
U_{2} \subset \frac{1}{2^{k}} U \subset U \tag{21}
\end{equation*}
$$

and

$$
\begin{equation*}
F(t) \subset \frac{1}{\lambda 2^{k}\left(2^{k}-1\right)} W+K, \quad t \in U_{2} \tag{22}
\end{equation*}
$$

There exists $x_{u} \in U_{2}$ such that (7) holds. By (21),

$$
\begin{equation*}
\left(1-2^{k}\right) x_{u}=x_{u}-2^{k} x_{u} \in U_{2}-U \subset U+U \subset U_{0} \cap U_{1} \tag{23}
\end{equation*}
$$

and by (22),

$$
\begin{equation*}
F\left(x_{u}\right) \subset \frac{1}{\lambda 2^{k}\left(2^{k}-1\right)} W+K \tag{24}
\end{equation*}
$$

Let $a \in F\left(z+\left(1-2^{k}\right) x_{u}\right), b \in F\left(z+x_{u}\right)$ i $c \in F\left(x_{u}\right)$. By (19), (20), (23) and (24), we obtain

$$
b+2^{k}\left(2^{k}-1\right) c-a \in \frac{1}{\lambda} W+\frac{1}{\lambda} W+K+\frac{1}{\lambda} W \subset 2^{k} W+K
$$

Therefore,

$$
b+2^{k}\left(2^{k}-1\right) c \in F\left(z+\left(1-2^{k}\right) x_{u}\right)+2^{k} W+K
$$

We have proved that

$$
F\left(z+x_{u}\right)+2^{k}\left(2^{k}-1\right) F\left(x_{u}\right) \subset F\left(z+\left(1-2^{k}\right) x_{u}\right)+2^{k} W+K
$$

which contradicts (7).
This article is an introduction to the discussion on the K-continuity problem for K-superquadratic set-valued functions. In the theory of K subquadratic and K-superquadratic set-valued functions an important role is played by theorems giving possibly weak conditions under which such multi-functions are K-continuous.

References

[1] Henney D., Quadratic set-valued functions, Ark. Mat. 4, (1962).
[2] Kominek Z., Troczka-Pawelec K., Continuity of real valued subquadratic functions, Commentationes Mathematicae, Vol. 51, No. 1 (2011), 71-75.
[3] Nikodem K., K-convex and K-concave set-valued functions, Publ. Math. Debrecen 30, (1983).
[4] Nikodem K., On quadratic set-valued functions, Zeszyty Naukowe Politechniki Łódzkiej, nr 559, Łódź (1989).
[5] Smajdor W., Subadditive and subquadratic set-valued functions, Prace Naukowe Uniwersytetu Sląskiego w Katowicach, nr 889, Katowice (1987).
[6] Troczka-Pawelec K., Continuity of superquadratic set-valued functions, Scientific Issues Jan Długosz University in Częstochowa, Mathematics XVII, (2012).
[7] Troczka-Pawelec K., Continuity of subquadratic set-valued functions, Demonstratio Mathematica, vol. XLV, no 4, (2012), 939-946.
[8] Troczka-Pawelec K., K-subquadratic set-valued functions, in print.

Received: October 2014
K. Troczka-Pawelec

Jan Deugosz University in Częstochowa,
Institute of Mathematics and Computer Science, al. Armil Krajowej $13 / 15,42-200$ Częstochowa, Poland
E-mail address: k.troczka@ajd.czest.pl

[^0]: - Katarzyna Troczka-Pawelec - e-mail: k.troczka@ajd.czest.pl Jan Długosz University in Częstochowa.

