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ABOUT DIFFERENTIABILITY AND V BG∗ CLASS

MAŁGORZATA TUROWSKA

Abstract

Let X be a finite dimensional real Banach space. We show that if the contingent of

the curve Γ: (a, b) → X fulfils some conditions then each parametrization of that curve

is V BG∗. Stanisław Saks proved that each V BG∗ function is differentiable at a set of

full Lebesgue measure. The result of this paper is a partial converse of that theorem.

1. Introduction

We will present a generalization of the concepts of functions of bounded
variation in the restricted sense (V B∗) and of generalized bounded variation
in the restricted sense (V BG∗) in the case of functions of a real variable
that takes values in a real normed space. Let us recall first these definitions
in the case of real-valued functions.

Definition 1. [2], [5] If F : [a, b]→ R and [α, β] ⊂ [a, b], then the value

sup
{

|F (x)− F (y)| : x ∈ [α, β], y ∈ [α, β]
}

is called an oscillation of the mapping F on the interval [α, β] and is denoted
by ω

(

F, [α, β]
)

.

Definition 2. [2], [5] If F : [a, b] → R and E ⊂ [a, b] then a mapping F is
called of bounded variation in the restricted sense on the set E, or simply,
is of V B∗ on E, if

sup
∑

k

ω
(

F, [ak, bk]
)

<∞,

where ([ak, bk])k∈N is any sequence of non-overlapping intervals such that

ak ∈ E, bk ∈ E. The number sup
∑

k ω
(

F, [ak, bk]
)

is denoted by VEF .

Definition 2 can be generalized on the case of the mapping F with value
in a real normed space X.
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Definition 3. Let X be a real normed space and ‖ · ‖ be the norm in X.
By the oscillation of a mapping F : [a, b] → X on [α, β] ⊂ [a, b] we call the
value

sup
{

‖F (x)− F (y)‖ : x ∈ [α, β], y ∈ [α, β]
}

.

This oscillation will be denoted by the symbol ω
(

F, [α, β]
)

.

Definition 4. Let X be a real normed space and E ⊂ [a, b]. We say that
a mapping F : [a, b]→ X is V B∗ on the set E, and denote F ∈ V B∗(E), if

sup
∑

k

ω
(

F, [ak, bk]
)

<∞,

where ([ak, bk])k∈N is any sequence of non-overlapping intervals such that

ak ∈ E, bk ∈ E. The value sup
∑

k ω
(

F, [ak, bk]
)

is denoted by VEF .

Now we assume that dimension of X is finite. Observe that the fact that
F is V B∗ on some set is independent of the choice of a norm in X. Let
F : [a, b]→ X and e = (e1, . . . , en) be a base of the space X. Then

F =
n

∑

i=1

Fiei.

Mappings Fi are called coordinates of the mapping F with respect to the
base e. We also shall use denotation F = (F1, . . . , Fn). Straightforward
calculations prove the next lemma.

Lemma 1. If X is a finite dimensional real normed space, F : [a, b] → X

and E ⊂ [a, b], then:

(1) If F is V B∗ on E then for each base e = (e1, . . . , en) of the space
X mappings Fi are V B∗ on E for each i ∈ {1, . . . , n}.

(2) If there exists a base e = (e1, . . . , en) of the space X for which map-
pings Fi, i ∈ {1, . . . , n}, are V B∗ on the set E then F ∈ V B∗(E).

Definition 5. [2], [5] Let E ⊂ [a, b]. We say that a mapping F : [a, b]→ R

is of generalized bounded variation in the restricted sense on E, or simply,
is V BG∗ on the set E, and denote F ∈ V BG∗(E), if E is a countable union
of sets on each of which the mapping F is V B∗.

We can generalize this definition in the following way:

Definition 6. Let X be a real normed space, E ⊂ [a, b]. We will say that
a mapping F : [a, b] → X is V BG∗ on E, and denote F ∈ V BG∗(E), if E
is a countable union of sets such that for each of them F is V B∗.

The proof of the next lemma is technical, we shall omit it.

Lemma 2. Let X be a real normed space, dimX = n, F : [a, b] → X and
E ⊂ [a, b]. Then
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(1) If F is V BG∗ on E then for each base e = (e1, . . . , en) of the space
X mappings Fi are V BG∗ on the set E for each i ∈ {1, . . . , n}.

(2) If there exists a base e = (e1, . . . , en) of the space X for which each
mapping Fi, i ∈ {1, . . . , n}, is V BG∗ on E then F is V BG∗ on E.

Theorem 1. [5] Let E ⊂ [a, b]. If a function F : [a, b] → R is V BG∗ on
the set E, then F is differentiable at a set of full Lebesgue measure.

The obvious corollary of this theorem for a mappings which take values
in a real normed space is as follows:

Corollary 1. Let X be a real normed space, dimX < ∞ and E ⊂ [a, b].
If a mapping F : [a, b]→ X is V BG∗ on the set E, then F is differentiable
(in the Fréchet sense) at almost all points of this set.

Definition 7. [6] Let ∅ 6= M ⊂ Z, where Z is a real normed space. Let
z belong to the closure of the set M . The set
{

v∈Z : ∃(zn)n∈N, zn∈M, lim
n→∞

zn=z, ∃(λn)n∈N, λn > 0: lim
n→∞

λn(zn−z)=v
}

is called the tangent cone to M at z and is denoted by Tan(M, z). The ele-
ments of Tan(M, z) are called vectors tangent to M at z. The set Tan(M, z)
is also called the contingent of M at z (see [1], [5]).

The basic properties of the contingent and the connections between differ-
entiability of a mapping f : X → Y at a point, where X, Y are real normed
spaces and the contingent of its graph one can find in [3], [4], [6], [7].

Definition 8. If X is a real normed space, then a mapping f is called
an embedding if it is a homeomorphism of the interval (a, b) into X, where
f
(

(a, b)
)

is equipped with the subspace topology. A subset Γ of the space X is

called a curve if there is an embedding f : (a, b)→ X such that f
(

(a, b)
)

= Γ.
This embedding is called a parametrization of the curve Γ.

The following theorem gives a connection between the contingent of
a curve and the existence of a differentiable parametrization of this curve.

Theorem 2. [8] Let X be a real normed space for which 1 < dimX <∞.
Assume that for a curve Γ ⊂ X the following conditions are fulfilled:

(i) for each p ∈ Γ the contingent Tan(Γ, p) is one-dimensional linear
subspace of X,

(ii) there exists a subspace Y of X such that codimY = 1 and

Tan(Γ, p) 6⊂ Y

for each p ∈ Γ.
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Then there exist an open interval (c, d) and a differentiable parametriza-
tion g : (c, d)→ Γ of the curve Γ such that

inf
t∈(c,d)

∥

∥g′(t)
∥

∥ > 0.

Corollary 2. [8] Let f : (a, b) → Γ be a parametrization of the curve Γ.
Then under assumptions of theorem 2, for every open interval (c, d) there
exists a mapping g : (c, d)→ Γ such that the mapping g−1◦f : (a, b)→ (c, d)
is an increasing homeomorphism.

Corollary 3. [8] Under assumptions of theorem 2, each parametrization of
the curve Γ is almost everywhere differentiable.

Theorem 3. [2] A mapping F : [0, 1]→ R is continuous and V BG∗ on the
interval [0, 1] if and only if there exists a homeomorphism h : [0, 1] → [0, 1]
such that F ◦ h is differentiable.

We will use the following easy generalization of theorem 3.

Theorem 4. Let F : [0, 1]→ R. The mapping F is continuous and V BG∗
on [0, 1] if and only if there exists a homeomorphism h : [c, d] → [0, 1] such
that F ◦ h is differentiable.

2. Main results

Applying theorem 2., lemma 2. and theorem 4. we will prove that each
parametrization of a curve Γ satisfying assumptions of theorem 2 is V BG∗.
The following theorem is a partial converse of the corollary 1.

Theorem 5. Let X be a real normed space such that 1 < dimX < ∞.
Assume that for a curve Γ ⊂ X the following conditions are fulfilled:

(i) for each p ∈ Γ the contingent Tan(Γ, p) is one-dimensional linear
subspace of X,

(ii) there exists a subspace Y of X such that codimY = 1 and

Tan(Γ, p) 6⊂ Y

for each p ∈ Γ.

Then each parametrization f : (a, b) → Γ of the curve Γ is V BG∗ in
(a, b).

Proof. Let f : (a, b)→ Γ be a parametrization of the curve Γ. By theorem 2,
there exists a differentiable parametrization g : (c, d) → Γ of that curve.
Obviously f−1 ◦ g is a homeomorphism of (c, d) onto (a, b).
Fix an interval [c1, d1] contained in (c, d). Then there exists an interval

[a1, b1] in the set (a, b) such that the mapping
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(

f−1 ◦ g
)

|[c1,d1] : [c1, d1]→ [a1, b1]

is a homeomorphism of [c1, d1] onto [a1, b1].
Denote h∗ =

(

f−1 ◦ g
)

|[c1,d1], f
∗ = f |[a1,b1] and g∗ = g|[c1,d1]. Obviously,

f∗ is continuous and g∗ is differentiable.
Fix a base e = (e1, . . . , en) of the space X. Then

f∗(t) =

n
∑

i=1

f∗i (t)ei and g∗(τ) =

n
∑

i=1

g∗i (τ)ei,

where f∗i : [a1, b1] → R, g∗i : [c1, d1] → R, i ∈ {1, . . . , n} and t ∈ [a1, b1],
τ ∈ [c1, d1]. Since g∗ = f∗ ◦ h∗, then g∗i = f∗i ◦ h

∗ for each i ∈ {1, . . . , n}.
The mapping g∗ is differentiable, so g∗i is differentiable if i ∈ {1, . . . , n}.
Moreover, h∗ is a homeomorphism and f∗i is continuous if i ∈ {1, . . . , n}

and by theorem 4 we have f∗i ∈ V BG∗
(

[a1, b1]
)

for each i ∈ {1, . . . , n}.
By lemma 2(2) we conclude that the mapping

f∗ : [a1, b1]→ X

is V BG∗ in [a1, b1]. Therefore the mapping f is V BG∗ on each closed subin-
terval of (a, b). The interval (a, b) is a countable union of closed subintervals,
so the mapping f is V BG∗ on (a, b). �
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