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AN ESTIMATION METHOD OF TRAFFIC SAFETY

LEVEL OF VEHICLES ON A LEVEL CROSSING

ANDRZEJ YATSKO

Abstract

Let us consider a level crossing as a technical object with a certain level of safety. In
the paper we propose a new method based on the theory of geometric programming. It
allows to solve the problem of minimizing common risk of the object safety violation in
a simple analytic form due to the choice of object protection parameter set. There is
given a numerical example illustrating the calculated scheme of the method.

1. Introduction

It is known that a large proportion of traffic incidents is committed on
level crossing. Thus a task of ensuring safety on level crossing is relevant.
Here we consider a simplified formulation and solution of the task, since the
total volume of its solution is a problem and it is beyond the scope of this
study.

2. Main results

In this paper the traffic on the level crossing is considered as a complex
object with a certain level of safety. Consider the following safety threats:
U1 – drive over level crossing at red traffic light by drivers of a group I;
U2 – drive over level crossing at red traffic light by drivers of a group II;
U3 – a vehicles collision on the level crossing that does not stop on the
tracks;
U3 – collision with a train and other traffic incidents, which lead to a stop
of transport on the tracks.
The group II consists of a car thieves, a drunk drivers, pursued criminals

and other persons whose contact with the police is tantamount to arrest
them. The group I consists of violators which do not belong to the group
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II. Common threat U of object safety consists of at least one of the threat
U1, U2, U3, U4: U =

⋃

Ui.
In fact, the number of threats is much more than n = 4. But to keep

things simple we’ll assume n = 4.This is sufficient to illustrate the proposed
method of estimating and minimizing the common risk of the object safety
violation.
Suppose that the events Ui are independent, i = 1, 2, 3, 4, and the prob-

ability y = P (U) (common risk of the object safety violation) is expressed
as a sum of particular risks ui :

(1) y = u1 + u2 + u3 + u4,

where u1 = P (U1), u2 = P (U2)(1 − u1), u3 = P (U3)(1 − u1)(1 − u2), u4 =
P (U4)(1− u1)(1− u2)(1− u3).
In addition,

u1 = P (U1) ≈
M1

N1

.

The fraction M1

N1
is an estimate of the particular risk u1, where N1 is total

number of vehicles which passed through the crossing for time T (let us
say T = 1 day) and M1 is number of drivers of the group I which passed
through the crossing for time T at red traffic lights.
Similarly, we estimate other particular risks, for example,

u2 = P (U2)(1− u1) ≈
M2

N2

.

The fraction M2

N2
is an estimate of the particular risk u2, where N2 is

total number of vehicles which passed through the level crossing for time
T without violators of the group I. Number M2 is number of drivers of the
group II which passed through the level crossing for time T at red traffic
lights.
The object in question has safety protection system. This system includes

signal operator, road inspectors, technical means of preventing violations
such as barriers, remote control system barriers etc.
Protection system gives the following parameters:

x1 – time of duty by road inspectors;
x2 — time between duty;
x3 – average time between the opening and closing of the barriers.
In fact, the number of parameters xi is much more than m = 3. But this

is enough to illustrate the estimation method of minimizing the common
risk of the object safety violation.
A Table below is a fragment of empirical data for 10 observations, which

we used for the calculations. Each row in the Table corresponds to time
T=1 day for situation on the level crossing.
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Probability of threats Ui Protection parameters
(multiplied by 103) (in hours)

u1 u2 u3 u4 x1 x2 x3
2.1 0.20 5.8 0.51 2 4 0.25
0.42 0.53 1.09 0.20 2.5 3 0.20
0.75 0.29 3.00 0.63 3 5 0.25
2.0 0.52 0.17 0.20 1.5 2 0.10
5.9 0.16 3.80 0.43 1.3 3 0.20
1.8 0.35 1.12 0.12 1.3 2 0.20
0.30 0.53 3.08 0.52 4 5 0.25
2.8 0.23 1.28 0.40 1.7 3 0.15
4.9 0.13 7.50 1.22 2 5 0.20
3.3 0.20 1.44 2.8 3 6 0.10

These data are mainly expert evaluation of road inspectors, ambulance
workers and staff which services the technical means of preventing viola-
tions. Following our paper [1], we assume that the vector x = (x1, x2, x3)
of protection parameters is positive.
Let ui = ui(x) be a polynomial

(2) ui = ui(x) = Ci ·

3
∏

j=1

x
aij
j , Ci > 0, i = 1, 2, 3.

A matrix A = (aij) is called an exponent matrix.
Taking the logarithm of both side of (2), we obtain

(3)
lnui(x) = ai0 + ai1 lnx1 + ai2 lnx2 + ai3 lnx3, i = 1, 2, 3, 4, Ci = eai0

Thus, we can get coefficients aij by methods of linear regression analysis
[2]. Writing the equation (3) for the first row of the Table, we obtain for
the risk u1:

(4) ln 2, 1 = a10 + a11 ln 2 + a12 ln 4 + a13 ln 0, 25,

or

a10 + 0, 693a11 + 1, 386a12 − 1, 386a13 = 0, 742

Similarly, writing the equation (3) for next tows of the Table we obtain
an algebraic system

(5) Fa1 = w1,
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where a1 = (a10 a11 a12 a13)
T is a column of vector of required co-

efficients in the polynomial u1(x) = C1 ·
∏

3

j=1
x
a1j
j , C1 = ea10 and the

matrix F is expressed as F = (1, lnx1, lnx2, lnx3).
Moreover, 1 is a column of ones; lnxj j=1,2,3, is a column for values

lnxjs of the lnxj for the parameter xj and 10 observations s = 1, 2, . . . , 10;
w1 is a column for values lnuis(x) of the lnui(x);

w1 = (ln 2.1 ln 0.42 . . . ln 3.3)T .

According to the method of least squares (MLS) the solution ai = ȧi of
the equation (5) is given in the form [2]:

(6) ȧ1 = F+w1

Here F+ is so called pseudo-inverse matrix of the matrix F . Calculation
method for the matrix F+ is given in the paper [4]. Recall that the pseudo-
inverse is defined and unique for all matrices whose entries are real or com-

plex numbers. Vector ȧi is a solution of equation (5) under the condition

that the equation is compatibility. In the converse case, ȧi is the best ap-
proximation solution (according to the MLS).
Thus,

ȧ1 = F+w1 =









a10
a11
a12
a13









=









−2.08
−4
3
−1









, C1 = e−2.08 = 0, 125

and the polynomial u1 is expressed as

u1 = u1(x) = 0, 125x−4
1

x32x
−1
3

Using the given calculate scheme for the risks u2, u3, u4, we obtain

u2 = u2(x) = 0, 8x21x
−2
2

,

u3 = u3(x) = 6x−2
1

x32x
2
3, u4 = u4(x) = 0, 004x−1

1
x32x

−1
3

.

Thus, the common risk y at the interval [0,T] of time (T equals 1 day) is
expressed as

y = f(x) = 0, 125x−4
1

x32x
−1
3

+ 0, 8x21x
−2
2

+ 6x−2
1

x32x
2
3 + 0, 004x−1

1
x32x

−1
3

Coefficient of variation V̇ is used for precision and sufficiency to empirical
data:

V̇ =
σ̇

ẏ
100%

Here
ẏ = u̇1 + u̇2 + u̇3 + u̇4
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Moreover u̇i, i=1,2,3,4, is a sample mean of observations uis, s=1,2,...10;
σ̇2 is the sum of the sample variance σ̇i

2:

σ̇i
2 =‖ F ȧi − wi ‖2 /(N −m− 1),

where N is the total number of observations, but m is the number of pro-
tection parameters (m=3); ‖ · ‖ means an euclidean norm of vector; σ̇i

2 is
the sample variance according to the MLS-solutions

ȧi = F+wi

for the algebraic system

Fai = wi, i = 1, 2, 3, 4.

In our case,

σ̇ =
√

σ̇1
2 + σ̇2

2 + σ̇3
2 + σ̇4

2,

We obtained V̇ = 9% as a result of data processing for N=100. This result
gives acceptable discrepancy between the experimental and calculated data
[5].
It should be found the vector x = x∗ > 0, with components xj∗ such

that value y∗ = f(x∗) is minimal. Using exponents aij , we can write the
exponent matrix A as

A = (aij) =

(

B
H

)

=









−4 3 −1
2 −2 0
−2 3 2
−1 3 −1









,

where sub-matrices

B =





−4 3 −1
2 −2 0
−2 3 2



 , H = (−1 3 − 1).

Note that detB 6= 0. It follows that exist an inverse matrix B−1 :

B−1 =





k11 k12 k13
k21 k22 k23
k31 k32 k33



 =





−2 −9

2
−1

−2 −5 −1
1 3 1



 .

In our case sub-matrix H = (−1 3 − 1) contains one row of matrix A,
which do not belong to the sub-matrix B. Hence the example has the first
difficulty level (see [1]).
Using the formulas from [1], we get subsidiary variables δi. These ones

are called dual variables and are found by the formula

δT = (δ1 δ2 δ3 δ4) =
1

µ

(

−H ·B−1, 1
)

=
1

µ

(

5
27

2
3 1

)

,
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where the number

µ = 5 +
27

2
+ 3 + 1 =

45

2

Therefore

δT = (δ1 δ2 δ3 δ4) =
1

45
(10 27 6 2).

Thus,

δ1 =
10

45
, δ2 =

27

45
, δ3 =

6

45
, δ4 =

2

45
.

Using the formulas of the paper [3], we can write the minimal value y∗
multiplied by 103 of the common risk y due to

C1 = 0.125, C2 = 0.8, C3 = 6.0, C4 = 0.004.

In our case

(7) y∗ =

4
∏

i=1

(

Ci

δi

)δi

=

(

0.125

10

) 10

45

(

0.8

27

) 27

45

(

6

6

) 6

45

(

0.004

2

) 2

45

= 1.55,

i.e. minimal value of the common risk is 0,155%.
Then the protection parameters xj∗ , j=1,2,3, can be found from the

relationships

x1∗ =
3
∏

i=1

(

δi · y∗
Ci

)k1i

=

(

10 · 1.55

45 · 0.125

)

−2 (27 · 1.55

45 · 0.8

)

−
9

2

(

6 · 1.55

45 · 6

)

−1

,

x2∗ =
3
∏

i=1

(

δi · y∗
Ci

)k2i

=

(

10 · 1.55

45 · 0.125

)

−2 (27 · 1.55

45 · 0.8

)

−5 (6 · 1.55

45 · 6

)

−1

,

x3∗ =

3
∏

i=1

(

δi · y∗
Ci

)k3i

=

(

10 · 1.55

45 · 0.125

)(

27 · 1.55

45 · 0.8

)3 (6 · 1.55

45 · 6

)

,

Thus, we get optimal protection parameters (in hours)

x1∗ = 1.98, x2∗ = 1.84, x3∗ = 0.15

3. Final remarks

Thus, if the proposed model is acceptable with respect to the coefficient
of variation, it allows to solve the problem of minimizing common risk of
the object safety violation in a simple analytic form due to the choice of
object protection parameter set.
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