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Abstract In the present paper we investigate a single-server BM/G/1 /00
queueing system with non-homogeneous calls of two following types: 1)
external calls served by the system under consideration, 2) internal calls
arrive only when an external call is served and interrupts the service process.
The external calls appear according to a stationary Poisson process with
bulk arrivals. Calls of each from above-mentioned types are characterized
by some random volume. Service time of the call arbitrarily depends on
its volume. Two schemes of calls service organization are analyzed. The
non-stationary and stationary total calls volume distribution is determined
in terms of Laplace and Laplace-Stieltjes transforms. The stationary first
moment of total calls volume distribution is calculated for each scheme.

1. Introduction

We consider BM /G /1/00 queueing system with calls of two following
types: 1) external calls, 2) internal calls.

Extended version of a talk presented at the X Conference “Applications of
Algebra in Logic and Computer Science”, Zakopane, March 6 12, 2006.
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External calls appear according to a stationary Poisson process
with bulk arrivals. It means that epochs of calls arriving make up a
stationary Poisson process with rate a, and a group consisting of k, k =
1,2,..., calls arrives at such epoch with probability gy,
[e.9]

> gr = 1, independently of the arriving time moment and character-
k=1

o0
istics of another groups. So the generation function G(z) = > gp2*
k=1

of the number of calls in the group is known. An external call is
characterized by some random volume (, its service time & can be de-
pendent on the volume. Let F(z,t) = P{( < z,£ < t} be the joint
distribution function of random variables ( and &, L(z) = F(x,00)
and B(t) = F(co,t) be the distribution functions of random variables
¢ and &, respectively.

Internal calls arrive only during external calls service. If T is an
epoch of external call service beginning and the service process is not
completed in the interval [T;T + ¢), an internal call appears in this
time interval with probability E(t) = 1 — e “ ¢ > 0. Denote as
~v and 6 the internal call volume and service time, respectively. Let
O(z,t) = P{y < z,0 < t} be the joint distribution function of random
variables v and 6. An internal call appearance interrupts external call
service. After internal call arriving its service begins immediately.
Let R(x) = ®(x,00) and H(t) = ®(o0, ) be the distribution functions
ofrandom variables v and 6, respectively. After completing the internal
call service (at epoch T'), the interrupted service of the external call
will be continued. If this service is not completed during time ¢, an
internal demand appears in the interval [T;T + t) with probability
E(t) and so on.

Denote as o(t) the total volume of calls present in the system at
time moment ¢. Suppose that values of o(t) process is not limited for
all £ > 0. If T is an epoch of external or internal call appearance,
then o(T) = o(T~) + x, where z is the volume of the arriving call.
Denote as 7(t) the number of external calls present in the system at
time moment ¢t. At the epoch t of external call appearance we have
n(t) = n(t~)+1. If external call service completes at the epoch ¢, then
n(t) =n(t") — 1.

We shall analyze two following schemes of system behavior at the
epoch T of service termination.
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Scheme 1. If T is the epoch of external call service termination,
then o(T) = = o(T~) — x, where x is the external call volume. If T is
the epoch of internal call service termination, then o(T) = o(T7) —y,
where y is the internal call volume.

Scheme 2. If T is the epoch of internal call service termination,
then o(T) = = o(T7). If T is the epoch of external call service
termination, then o(T) = o(T~) — y, where y is the total volume of
the external call and all internal calls arriving during its service.

We shall use the following notations.

Let o e
a(s,q) = / / e AR (2, t)
o Jo

W5, q) = /0 h /0 " st (s 1)

be the Laplace-Stieltjes transforms (LST) of F(z,t) and ®(z,t) dis-

tribution functions respectively. Denote as

0" a(s, q)
0s'0q?

and

it+j O"™(s, q)
0st0q’

ai; = (=1)""

, Yij = (—1)

s=0,q=0

s=0,q=0

the mixed (i + j)th moments of distribution functions F(z,t) and
O (x,t), respectively, 1,7 = 1,2,... . Let o(s) = a(s,0), B(q) =
a(0,q), r(s) = ¥(s,0), h(g) = ¥(0,q) be LST of random variables
¢, & v and 6, respectively. Denote as ¢;, 3;, r;, h; the ith moments
of these random variables. Let D(z,t) = P{o(t) < x} be the dis-
tribution function of the total volume of external and internal calls
present in the system at time moment ¢. It is known [1] that the
stability condition for the system under consideration has the form
p = af1G'(1)(1 + chy) < 1. If this condition takes place, then the
limit D(z) = tliglo D(x,t) = P{o < x} exists, where o is the station-

ary total calls volume.
(0.0]

Let §(s,t) = / e *d,F(x,t) be the LST of distribution func-

0
tion D(x,t) with respect to z. The Laplace transform of this function
oo
with respect to ¢ is denoted as d(s,q) = / e %5 (s,t)dt. Our main
0
purpose is to determine the function (s, q), from which all character-

istics of the process o(t) can be determined. For example, stationary
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characteristics can be obtained from the function

t—o00

i(s) = / e **dD(z) = lim §(s,t) = liH(l) qo(s,q).
0 =

2. Random process and characteristics

First we introduce the following notation. TLet v(t) be the function
taking two values: v(t) = 0, if the service of an external call takes
place at the moment ¢, and v(t) = 1, if the service of an internal call
takes place at the moment ¢ (this function is undefined at the moment
t, if there are no calls in the system at this moment). Suppose that
external or internal call service takes place at the moment ¢. Let £ (¢)
be the total time of external demand service from the beginning to the
moment ¢, if v(¢) = 0 or v(¢) = 1 at this moment, and &,(¢) be the
time from the beginning og internal call service to the moment ¢, if
v(t) =1 (it is clear that the function &f(¢) is undefined, if v(t) = 0).
Then the Markov process

(n(t), v(t), o) (1), €0y (1)) (1)

describes the system behavior. We shall characterize this process by
the functions having the following probability sense:

Bo(t) = P{n(t) = 0}; (2)
Pp(0, 2, t)dx = P{n(t) = k,v(t) = 0, (t) € [z;2 + dx)},
E=1,2,...; (3)

P.(1,2,y,t)dx dy =
=P{n(t) =k,v(t) = 1,{)(t) € [z;z+dx),{)(t) € [y;y +dy)},
k=1,2,.... (4)

Let us assume for simplicity that densities b)(t) and b (t) of
random variables ¢ and 6 exist. Note that all results of the paper
can be obtained without this assumption. Suppose that Py(0) = 0

(the system is empty when ¢ = 0, this is identified as zero initial
by (t by (t
condition). Denote as o) (t) = &é()t) and pu1)(t) = 1_(1)}2275) the
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rate of an external and internal call service, respectively. If the above
stability condition takes place, the following limits exist:

po = P{n =0} = lim Fy(t); (5)

pr(0,2)dx = P{n = k,v =0,§{ € [1;2 +dr)} =
= lim Py(0,z,t)dx, k =1,2,...; (6)

t—o00

(L, y)dedy = P{n=k,v=1,§; € [v;v+dz),§)) € [y;y+dy)} =
:tlim P.(1,z,y,t)dxdy, k=1,2,..., (7)

where 7, £, £() are the stationary analogues of functions n(t), &) (1)
and &), (¢), respectively.

3. Equations for the system
characteristics and their solution

0, 77,
1, i=7.

Using the method of auxiliary variables |2|, we can write out par-
tial differential equations for the functions defined by (2) (4):

Let 0; 1 be Kronecker’s symbol: 9, ; =

OF(t)
ot

= —aPy(t) + /0 Pi(0, z,t) puoy (@) da; (8)

0Pk(0, x7t) aPk(O,x,t)
5 + pe = —(a+c+ pey(r))Pe(0,2,t)+

t
T / Pe(1, 2, y, Dy (y)dy+

0

k—1
+(1_5k,1)azpi(07x7t)gk—ia k= 1727“‘ ) (9>
=1

t
Pk((), 0+, t) = / Pk+1(07$,t)u(0)(x)dx + ango(t),
0

k=1,2,...; (10)
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apk(17m7y7t) 6Pk(1ax7y7t)

- _ P.(1 t
S (a+ ny @) Pl 2,9,6)+
k—1
+(1_6k,1)@213’i(1ax7y7t)9k7’i7 k= 1727"' ) (11>
i=1
Py(1,2,0",t) = cPy(0, 2, t). (12)
Denote as

po(q) = / e~ By(t)dt, pi(0, v, q) = / e P(0, 2, 1)dt,
0 0

pk(l,x,y,Q) = / 6iqtpk(17way7t>dt> k= 1727 ]
0

the Laplace transforms with respext to ¢ of the functions Py(t), P (0, x,t)
and Py(1,z,y,t), respectively.

Using the Laplace transform in equation (8) and taking into ac-
count the initial condition we obtain

qpo(q)—lz—apo(q)—i-/ooe_ (/Otpl(o z, 1) oy (@ )dx)d

t=0

o0 t
/ e (/ P (0, a:,t),u(o)(a:)dx> dt =
=0 0
= / (/ e_thl(O,x,t)dt) Loy (z)d.
=0 t=x

Using the notation pj(0,z,q) = / e Py (0,x,t)dt we obtain the

following equation:

where

(4+ @)polg) = / " D10, 7, gy (@)de + 1. (13)

Let us introduce the following generation functions:

Poy(z,x,t) = ZPkO$t
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Then from equations (9) we obtain the equation for the function
Poy(z,x,t):

0P (2, z,t) N 0P (2, z,t) B

—(a+c+ () Poy(z, =, 1)+

ot Oz
t 00 k—1
+/ Pay(z, 2,9, ) pa(y dy—i—aszZPZOxtgkz
0 =2 =1

For the sum in the last formula we have

0 k-1
azzk ‘onxt>gk i
k=2 =1
Z (0,2, 1)z Z “ge—i = aG(2) P (2, x, 1).
=1 k=i+1

Then we obtain the following equation:

8]3(0) (z,,1) . 0P(0) (z,,1) B
ot Ox N

—(a+c+ p)(z) —aG(2))Poy(z, x, t)+

t
+/1@@wwﬁmmww. (14)
0

Let us introduce the following Laplace transforms:

P (2,2, q) = / """ P (2, z, t)dt,
0

py(z, 7,9, 9) =/ e~ " Puy(z, 2, y,t)dt.
0
Then passing to Laplace transform in Eq. (14) we have

o) (2,7,9)

D — (e a—aG(2) + o (@)oo (7, )+

qp(O)(zv xz, q) +
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[ee] t
+/ e—qt </ P(l)(zyxvyat)u(l)(y)dy> dt)
0 0
[e%¢) t
[ ([ o vy ) de -
0 0

=/ Py (2,2, y, @) pay (y)dy,
0

i.e. we obtain the following equation:

where

O (2,7,9) _

5 —(q+c+a—aG(z) + po)(2)po) (2, 2, 9)+

+/ Py (2,2, y, @) pay (y)dy. (15)
0

Passing to generation functions in Eq. (10) we have

1 t
P(O)(Z,O,t) = ;/0 P(O)(Z A t) ( )d(L‘—

_ /0 P1(07 x, t),U(O) (l’)dl’ + CLG(Z)PO(t)a

whence we obtain, passing to Laplace transforms

1 o0
P (0,00 = - [ b (oo

_/0°°p1<oxq> o () + aG(2)polq).

But from Eq. (13) we have

/Omplm £, Q) (#)de = (g + a)polq) — 1.

Then we obtain the equation

P 0.0) =% [ b (ede +1- (g-+ o - aGlpla)
(16)
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Passing to generation functions in Eq. (11) we have

0Py (z,z,y,t) 0Py (z,x,y,t)
= +—2 = —(a=aG ()t (1) Py (=, 7.9, 1).

ot oy

In terms of Laplace transforms we obtain the following equation

0 2T, Y,
POCLD0) (gt aG(e) + o)), (1)

Passing to generation functions in Eq. (12) we have
Pay(z,2,0,t) = cPo(z,2,1),
or (in the terms of Laplace transforms)

py(z,7,0,q9) = cp) (2,7, q). (18)

The solution of Eq. (17) has the form (taking into account the
form of the function p1y(y))

p(l) (27 x,Y, Q) = []' - H(y)]e_(q+a_aG(Z))yp(l) (Z7 z, 07 Q>
or, as it follows from Eq. (18),

—(gt+a—aG(z))y

pay(z,7,y,q) = c[1 = H(y)le Po)(2,7,9). (19)

Denote as m(q) the PLS of busy period of the system under con-
sideration. It is known [2] that po(q) = (¢+a—an(q))~'. The function
7(q) will be determined later. Now we substitute relation (19) into
Eq. (15) taking into account the form of the function p(y). So, we
obtain

Oy (2,,q)
Ox
+a —aG(2) + o) (2))po) (2, 7, q)
or, if we introduce the notation x(z,q) = ¢+ c—ch(q+a— aG(z)) +
a—aG(z),

= —(g+c—ch(q+a—aG(2)+

0 Z,T,
w = —(Xx(2,9) + o) (2))p0) (2, 7, q)-

The solution of the last equation has the following form:

po(z,x,q) =[1 — B(z)]e_X(z’Q)l’po(z, 0,q). (20)
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Then from Eq. (16) we obtain

21— (q+a—aG(2))lpw(q)
z— B(x(z,q)) ’

p0(27 07 Q) -

and from relation (20) we have

2[1 = (¢ +a— aG(2))]pw)(q)
Z— ﬁ(X(zv Q))

From relation (19) we obtain

[1 — B(z)]e =97 (21)

p0(27 x, Q) =

cz[l — (g +a—aG(2))]pwo)(9)
z—B(x(2,9))

x exp[—x(2,q)z — (¢ + a — aG(2))yl. (22)

Let us determine the function 7(g). Let w(q) be the LST of the
random time 7 from the beginning to the termination of an arbitrary

call service. Then we have (as it follows from the theory of usual
M/G/1/oo queue with bulk arrivals [4])

pey(2 2, Y,9) = [1 = B(@)][1 = H(y)]x

7(g) = G(w(g+a — an(q))). (23)

Let us determine the function w(q). Let w(g|§ = u) be the condi-
tional LST of the random variable 7 under condition that the service
time of a call is equal to u. It is obvious that

—qu - (Cu)k —cu k —(g+c—ch(q))u
w(gls =u) =€) e (h(q) = e @,

k=0

whence it follows that

w@»:AmwmwzuMwa=

:/ e~ (e MDUGB () = B(q + ¢ — ch(q)),
0
i.e.

w(q+a—an(q) = B(q+a—anr(q) +c—ch(qg+a—ar(q))),
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and Eq. (23) takes the form

m(q) = G(B(q +a —an(q) + ¢ — ch(qg +a—an(q)))).

From the last relation we can determine the moments of the busy
period. For example, for the first moment we have (if p = a3;G'(1)(1+
Chl) < 1)

G'(1)Bi(1 + chi)
— / — .
™=~ (@le=0 = T3 () 5 o)

4. The non-stationary and stationary
characteristics of the total calls volume

Scheme 1. For the scheme 1 we have obviously

D(z,t) =P{o(t) < x} = Py(t)+

+k2/0 P{o(t) <z|n(t) =k,v(t) = 0,84 (t) =y} Pr(0,y,t)dy+

n / / P{o(t) < | n(t) = k. v(t) = 1, €5 (1) = 4. E0 () = u} x

~y=0u=0

X Pe(1,y,u,t)dy du. (24)

Denote as A x B(x) the Stieltjes convolution of the distribution
functions A(x) and B(z) of non-negative random variables; i.e.

AxB(z) = / A(x —u)dB(u). Denote as Al (x) the n-order Stieltjes

0
convolution of the distribution function A(z), n=0,1,..., i.e.
AV (z) =1, Al (x) :/ AP (3 —w)dA(w), n=1,2,....
0

Then we have obviously

P{o(t) < x| n(t) = k,v(t) = 0,65 (t) = y} = LED « BO(a),
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L(z) — F(z,y)
1 — B(y)

where, as it follows from [3], Eygo) (x) =

Analogously, we obtain
P{o(t) <z [n(t) =k, v(t) =1,§n(t) =y,{1)(t) = ut =

= LU & Ez(lo) * Eq(})(x),

R(z) — ®(x, u)

where EWV(z) = = Hw)
— H(u

Then we have from relation (24)

0t
k=10

s /yo / 0 LY 5 B« EW(2) P(1, y, u, t)dy du.
k=1 vYy=0Ju=

Passing to LST of the function D(x,t) with respect to z we obtain

o) =P+ [ (o510 (8) Pu(0, y, Dy +

+kz—:/@/—0 /U_O(SO(S))]“16330)(5)61(})(3)Pk(1,y,u,t)dydu, (25)
where [3]

(W)= 1= [ e [ drew),

=0 w=y
eM(s)=[1— H(u)]™" e_sm/ dd(z,w).
x=0 w=u

Passing in (25) to Laplace transform with respect to ¢t we obtain
the following relation for the function (s, q):

(s, q) :/ e 1§(s,t)dt =
0
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0 e’} t
e / e ( / (<p(s))k16?50)(3)Pk(0,y,t)dy) dt+
k=170 0

+;/0 e (/yo /uo(sD(S))'“1650)(8)651)(8)Pk(1,y,u,t)dydu) dt.

(26)

It can be easy shown that

5 = fj [ ([t e mo.m ) e -

() [t ( / " Poy(e(s). v, t>e—qtdt) dy =

= (p(s))™ / " (), 1 @)e®(s)dy.

Then, as it follows from relation (21),

o _ L= (g+a—aG(e(s)po(9)
' 2(s) — Bx(¢(s), 2))

></ </ esx/ dF(x,w)) e XDy gy

For the integral in the last relation we have

/ (/ e—sx/ dF(x,w)) e XDy gy —
0 x=0 w=y

= /Oo e 5% /OO dF (z,w) /w —x((s) ’q)ydy:
/ / (1 — e XPODv) GF (2, w) =

afs, x(¢(s),q))
x(¢(s),9) '

Taking into account that py(q) = (¢ + a — an(q))™!, we finally
obtain

5, — alG(p(s)) — m(q)]le(s) — als, x(¢(s), q))]
x(¢(s), Qg+ a — an(q)][p(s) — Bx(e(s),q))]
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In a similar way we obtain that

S Plo(t) <z |n( v(t) =1,80)(t) =y, (1) (t) = upx
;i%;é n(t (0) UEANEY
< Py(1.y. 0, )y du = aclG(p(s)) — (@)

x(¢(s), 4))lg + a = am(q)]

[o(s) = als, x(p(s), Ilr(s) = P(s, g + a = aG(p(s)))]
[o(s) = Bx(p(s), ))lla + a — aG(p(s)))] '

X

From relation (26) after some calculations we obtain

8(s,q) = lg+a—amr(q)] ' 1+

c(r(s) —v(s,q+a—aG(p Sm)] } (27)

Now let us suppose that the stability condition takes place. Then
for the function d(s) after some calculations we have

d(s) = lim ¢d(s, q) =
q—0

X
Br(e(s))) —¢(s)
where pg = 1—af,G'(1)(1+chy), k(z) = c—ch(a—aG(2))+a—aG(z).
Note that if calls appear according to the ordinary stationary Pois-
son process with the rate a (for the system M/G/1/00), we have
G(z) = z and G'(1) = 1 in relations (27), (28).

a(1 = G(p(9))) + c(r(s) — (s, a — aG(p(s)))) } (28)
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We can calculate arbitrary order stationary moments (if they exist)
of total calls volume using relation (28). For example, for the first
moment after rather complicated calculation we obtain

0 = Eo = aG' (1)[a11(1 + chy) + cfrr1]+

apy [a(G'(1))? (Ba(1 + cha)?® + cfBihy) + B1G"(1)(1 4 chy)]
2[1 — a1 G'(1)(1 + chy)] )

+

Note that G"(1) = 0 for the system M/G/1/occ.

Scheme 2. Suppose that an external call service begins at the
moment ¢t = 0. Denote as 7;(¢) the number of internal calls, which are
not served at this moment, present in the system under consideration
at the moment ¢ under condition that the external demand service is
not, completed at this moment. Then for the scheme 2 we have

D(z,t) =P{o(t) < x} = Py(t+

+Z/ ZP{U(t) <x|nt) =km(y) = Lv(t) =0,&t) = y}x
xP{m(y) = 1} P:(0,y,t)dy+

+3 [ [Pl <o n = k) = Lvn =1
Eo)(t) =y, & (t) = ulP{m(y) = BP(1,y,u,t)dydu,  (29)

(ey)'
I

Plo(t) <a|n(t) =km(y) =1v(t) =0,§u{) =y} =

= LD E?SO) + RY (z)

where obviously P{n,(y) =1} = e~ . Then we have

and
P{o(t) < o |n(t) = km(y) = L(t) = L&y (t) = 9, €6y (t) = u} =

= LD EZ(/O) « BV s RO (1),

whence formula (29) takes the form
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oo { 0o !
+3° / > LY EY « R (w)%ecyPk(O, y, ) dy+
k=170 =0 :
N A R TS S VI ) s
+Z o ZL* * B By * R (w)Te Pe(1,y,u,t)dy du.
k=1

1=0
(30)
Passing in (30) to LST with respect to « we have after calculations

3(s,t) = Py(t) +

t
/ e ey o (o(s), y, t)dy+
0

©(s)
1/ !
+ / e*(lfr(s))cyeéo)(s) (/ 6,&1)(55)])(1)(%0(8)7?%uat)du) dy.
90(3) 0 0

Passing after that to Laplace transform with respect to ¢ after some
calculation we obtain (in a similar way, as it was done for scheme 1)

6(s,q) =[qg+a— GW(Q)]_I{H‘

)lp(s) — als,c—er(s) + x(¢(s),q))]
)) = @(s)][c —er(s) + x(¢(s), q)]

X

=
=
5
=
= |e

[ elr(s) = ¥ls.a + 0 — aGle(s)))
L H

In this case we have for the function d(s):

6(s) = lim¢d(s,q) = po{l L Pls) —als,c—er(s) +6(e(s)

c—cr(s)+ rk(e(s))

X

all — G(p(8))] + c[r(s) — ¥(s,a — aG(p(s)))] |
Br(e(s))) —¢(s)
In this case we obtain for the first stationary moment of total calls
volume:
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0 = Eo = aG'(1)[a11(1 + chy) + cfrdr1]+

L ap (Lt chy) [aBa(G(1)*(1 4 cha) + BiG"(1)]
21 — aBG'(1)(1 + chy)]

a1 G'(1)hap

acG'(1)
+ = b G ()(1+ch) |

2

Bor1(1+ chy) +
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