
ZESZYTY NAUKOWE INSTYTUTU ADMINISTRACJI AJD W CZĘSTOCHOWIE
Gubernaculum et Administratio 1(11)/2015, s. 77–88

http://dx.doi.org/10.16926/gea.2015.01.06

Jindrich KALUZA

Akademia im. Jana Długosza w Częstochowie

Public Sector Information Systems Development

Methodologies in Current Progress

Summary

Strategic management and information systems are very closely interconnected today. Success

in the company information system (IS) implementation is a key factor for the whole strategic

management success. The IS development process represents still a lot of individual human effort,

although a lot of methodologies, methods, and software tools have been invented namely during

the last decade. On the other side, it is not easy to absorb and, then, select the optimal methodolo-

gy from a variety of choices existing “in the market” for the purpose of particular project. The

chapter is focused on summarisation of the current achievements and trends specification that are

emerging in this area.

Keywords: information systems, methodologies, public sector, life cycle, SOA, component-

based software, agility.

1. Systems development methodologies today

1.1. How to classify existing methodologies

Systems development methodology could be defined according to (Hoffer et

al. 2002) as a “standard process followed in an organisation to conduct all the

steps necessary to analyse, design, implement, and maintain information sys-

tems”. Due to a number of factors influencing the process, namely

— various sizes and natures of projects being developed

— various sizes and structures of project teams

— various techniques and methods offered in the market

— various organisational cultures representing the institutions for which the

systems are being developed

78 Jindrich KALUZA

— various constraints given to the project teams in advance (budgets, time,

people),

a number of methodologies currently exist; some are mutually similar, some

bring quite new procedures and methods. Methodologies are usually named

and/or represented by various abbreviations that could mislead the observer and

cause the false expectations. On the other side, some developers still utilise the

individual company’s methodologies or, even, no ones. According to the re-

search carried out by (Buchalcevova & Leitl 2006) among 21 software compa-

nies in the Czech Republic it represented 14% of respondents.

When trying to classify and characterise the existing methodologies, various

authors apply different classifications and classifying terms. The purpose of this

chapter is not to present an exhausting review of all possible structures. Howev-

er, two viewpoints are emerging here; they both offer an appropriate tool for the

stratification following the principal features that could be observed in any indi-

vidual case:

a) iterativity

b) agility.

Any practical methodology application leads time to time to some iteration

caused by changing environment, changing requirements specification, and the

initial mistakes repair. Despite that, some methodologies do not take it into ac-

count and define the pure waterfall (Hoffer et al. 2002) life cycle (see fig. 1). It

means that any next phase of the cycle is started as soon as the previous one is

completed.

Quite opposite approach is offered by the iterative life cycle called by some

authors also as the prototyping methodology – see (Stair & Reynolds 2008).

Here (see fig. 2) the developmental procedure is composed of a set of iterations

(partial waterfalls), each of them passing all phases of the waterfall. At the end

of any iteration we receive a prototype being reviewed afterwards and, then, re-

peated, improved, and refined to a new prototype etc. Finally, the resulting pro-

totype should represent the new system or, in case of so called throwaway proto-

typing – see (Hoffer et al. 2002), it could serve as a model for the ultimate de-

velopment in end-user programming environment.

The aspect of iterativity fits more appropriately to real situations during the

system development process. Practical implementations of the waterfall method-

ologies led in almost all cases to some iteration reflecting various changes and

mistakes repairs. This was rather understood as something not belonging directly

to the methodology but a product of practical implementation. The methodology

Rational Unified Process (RUP) is a good example of iterative approach in the

object-oriented environment based on UML – see (RUP 2009).

 Public Sector Information… 79

Figure 1. Waterfall life cycle

Agility allows systems to change during the process of development. While

traditional methodologies are concentrated on processes specification, develop-

ment tools application, planning, documentation completion, the agile ones pre-

fer communication, co-operation with customers, quick changes. The objective

here is a speed of the whole process. Mutually various methodologies belonging

to this group differ, however, the principles are same: i.e. to offer the first proto-

type to users as soon as possible, to work very intensively – designers, pro-

grammers and users in one team, personal communication within the team is

preferred, quick changes of prototypes are expected.

The typical representative of agile methodologies is the eXtreme Program-

ming published by (Beck 2000). It is based on the development life cycle com-

posed of coding, testing, listening, and designing. Small teams of programmers

work together with users in short cycles, the requirements specification and de-

velopment is based on the “planning game” where customers first specify partic-

ular requirements as “story cards”, programmers estimate the necessary capaci-

ties then, all cards are assessed by necessity (customers) and risks (program-

mers), selected cards are finally put into the new system release. Programmers

transform “story cards” into the “task cards”, accept responsibility for them, bal-

ance the workload, write code and test that. The process carries on in further cy-

cles. Documentation is represented mostly by the code.

initiation

 planning

analysis

design

implementation

80 Jindrich KALUZA

The concluding question here could be: will the agile methodologies replace

the traditional ones in the future? The discussion carries on; some authors pre-

sent both approaches without any prediction, others predict either the agile

methodologies as the main stream of future software development (Mullaney &

Davidson 2007), or argue some limitations of that (Turk et al. 2008):

— limited support for distributed development environment

— limited support for subcontracting

— limited support for building reusable artefacts

Figure 2. Iterative life cycle

— limited support for development involving large teams

— limited support for developing safety-critical software

— limited support for developing large, complex software

It could be agreed with the last opinion that “practical processes lie some-

where in between the purely agile and purely predictive (i.e. traditional) spec-

trum extremes”. The nature of particular system – its size, complexity, unique-

ness, personal support, etc. should influence the selection.

iteration 1

requirements

specification

 design

implementation

requirements

specification

 analysis

requirements

specification
 design

implementation

 analysis

 analysis

 design

implementation

iteration 2

iteration 3

 Public Sector Information… 81

1.2. How to apply existing methodologies

Potential methodologies for the information system development were dis-

cussed in previous section. Further step in these considerations is the projection

of a set of potential methodologies into the practical problem solving, i.e. into

the concrete software development projects. Some authors talk here about the

“tailoring software development methodologies”. In accordance with (deCesare

et al. 2008) we could distinguish four different possibilities:

— individual methodology is tailored for particular project

— complete takeover of existing methodology

— mixing “best-of-breed” parts of various methodologies

— adaptation of one methodological framework to particular projects.

The first possibility represents a very expensive solution bringing the risk of

mistakes and misunderstandings caused by not proven methods application, risk

of reinventing things generally known and being utilised. This approach proba-

bly occurs very rarely in real world situations.

The second approach walks on proven path, however, some problems could

happen in two directions: a disposal of enough qualified staff being able to uti-

lise efficiently a full portfolio of tools and methods brought by particular meth-

odology implementation, and consistency of all aspects of a given methodology

with the nature of a concrete project. Nevertheless, this approach represent safer

route and more robust utilisation than the previous one.

The “mixing” approach enables to put together best fitting set of methods

and tools from various methodologies to particular project. This solution brings

a benefit of advantages of more methodologies to a concrete application. The

disadvantage here is a problem of harmonisation of different frameworks, para-

digm transformations, leading to difficulties in mapping of incompatible con-

structs. Practical implementation of this approach should be, then, very careful

with constraints caused by the above mentioned problems.

Following some research referenced in (deCesare et al. 2008), the fourth

possibility offers probably the most applicable solution. Particular institution or

project team adopt a methodological framework that tailor to specific projects. It

brings an advantage of a cosistent framework and flexible adaptation to individ-

ual needs. Modern methodologies like current versions of RUP are based on

building blocks (methods) enabling the assembly of some selected parts into

a specific whole. The positive aspect of this approach is also a know-how keep-

ing for the benefit of future projects.

82 Jindrich KALUZA

2. Systems architecture building

2.1. Component-based software

The idea of components forming the whole is not new. It was one of greatest

inventions of humans to break down the complex problem that is difficult to un-

derstand into smaller parts (possibly repeatedly) easier to be described and com-

puterised. Some thirty years ago the conception of modular programming has

been created. Same principle is a part of Yourdon’s structured method of sys-

tem analysis and design, i.e. hierarchical decomposition of functions.

Later on, in early 2000s, some authors talk about the Component-Based

Software Engineering – see e.g. (Brown 2000) or (Heineman 2001). Basic idea

of that is to build up the software systems by assembling components already

developed and prepared for integration. Eventually people are finding out that

permanent re-design of information systems following the development of new

hardware and system software platforms is enormously costly, time consuming

and from the implementation point of view less flexible.

The component is a key element here. Basically, the component is a part of

something. More precisely and specifically towards the software, adopting

(Szyperski 1998) the software component is a unit of composition with contrac-

tually specified interface and explicit context dependencies. The most valuable

aspect of that is a separation of component's interface from its implementation.

The integration of a component into the application is required to be independent

on the component development; there should be no need to rebuild the applica-

tion when updating with a new component.

Such understanding of a component has an impact on the whole software ar-

chitecture related to particular system. Any software system could be viewed in

terms of the decomposition into components which are in mutual relationships.

While the traditional architecture (i.e. non-component based one) is of monolith-

ic structure at the execution time (although possibly composed of some logical

parts or “components”), the component-based system has an architecture recog-

nizable during the system execution, the system still consists of clearly separated

components. Traditional approach thus utilises “components” during the devel-

opmental process, not in terms of the final product. The components at the exe-

cution time are possibly logically visible but they are hardly re-usable without

the code modification. It should be emphasised here that components are meant

in something like commercial sense, not as rather the “technical” modules deal-

ing with frequently used small parts of code. The software architecture is then

concerned with components specification and interactions among components.

Some architectural definition languages exist (e.g. ACME) and could be utilised

for the component-based systems design.

The nature of the software development process is also changing here. In

component-based development the process is oriented to re-using of existing

 Public Sector Information… 83

components. Some difficulties could occur with components interaction and

with fitting to all features of the stated requirements.

2.2. Service oriented architecture

Service Oriented Architecture (SOA) is a hit of last couple of years. There

are a number of definitions of SOA in relevant literature. For example, in (Sun

Microsystems 2005) the following definition is offered:

A service-oriented architecture is an information technology approach or strategy in

which applications make use of (perhaps more accurately, rely on) services available in

a network such as the World Wide Web. Implementing a service-oriented architecture

can involve developing applications that use services, making applications available as

services so that other applications can use those services, or both.

A service is understood as a specific function, typically a business function

(e.g. processing a purchase order). It can provide a single discrete function or

a set of related business functions. One way of looking at an SOA is then the ap-

proach to connecting applications (exposed as services) so that they can com-

municate with (and take advantage of) each other. In other words, a service-

oriented architecture is a way of sharing functions (typically business functions)

in a widespread and flexible way.

What distinguishes an SOA from other architectures is loose coupling. Loose

coupling means that the client of a service is essentially independent of the ser-

vice. The way a client (which can be another service) communicates with the

service doesn't depend on the implementation of the service. The client com-

municates with the service according to a specified, well-defined interface, and

then leaves it up to the service implementation to perform the necessary pro-

cessing. If the implementation of the service changes the client communicates

with it in the same way as before, provided that the interface remains the same.

Loose coupling enables services to be document-oriented (or document-centric).

A document-oriented service accepts a document as input, as opposed to some-

thing more granular like a numeric value or Java object. The client does not

know or care what business function in the service will process the document.

It's up to the service to determine what business function (or functions) to apply

based on the content of the document.

More detailed specification is in (W3C 2004): SOA is a form of distributed

systems architecture that is typically characterised by the following properties:

— Logical view: The service is an abstracted, logical view of actual programs,

databases, business processes, etc., defined in terms of what it does, typically

carrying out a business-level operation.

— Message orientation: The service is formally defined in terms of the messag-

es exchanged between provider agents and requester agents, and not the

properties of the agents themselves. The internal structure of an agent, in-

cluding features such as its implementation language, process structure and

84 Jindrich KALUZA

even database structure, are deliberately abstracted away in the SOA: using

the SOA discipline one does not and should not need to know how an agent

implementing a service is constructed. A key benefit of this concerns so-

called legacy systems. By avoiding any knowledge of the internal structure

of an agent, one can incorporate any software component or application that

can be “wrapped” in message handling code that allows it to adhere to the

formal service definition.

— Description orientation: A service is described by machine-processable me-

ta-data. The description supports the public nature of the SOA: only those

details that are exposed to the public and important for the use of the service

should be included in the description. The semantics of a service should be

documented, either directly or indirectly, by its description.

— Granularity: Services tend to use a small number of operations with relative-

ly large and complex messages.

— Network orientation: Services tend to be oriented toward use over a network,

though this is not an absolute requirement.

— Platform neutral: Messages are sent in a platform-neutral, standardized for-

mat delivered through the interfaces. XML is the most obvious format that

meets this constraint.

It does not make sense to bring more and more definitions of SOA. The

above specified ones bring enough information to realize the basic framework.

One of frequently discussed features here is the level of services granularity.

Basically, fine-grained services cause more complex interactions and higher

network overheads. On the other side, using services with extremely coarse-

grained interfaces externalizes complex data structures, creates interdependen-

cies, and potentially creates overlapping functionality. Some critical experience

with this problem is published in (Subramanian 2006). He reports that “... we

quickly realized that a system based on such fine grained services will have un-

wanted development, deployment, and performance overhead. What we have

learnt is that a service ... is something that the company wants to manage inde-

pendently”. Services must be specified at the correct level of abstraction and

granularity. It is not sufficient to proclaim only that services should be coarse-

grained and have well-defined interfaces. The relevant design methodology is

necessary guiding the whole process of reusable services (being something like

building blocks for business-level composite services) design. Further extensive

research here should be expected.

2.3. Service component architecture

The Service Component Architecture (SCA) represents an industry effort by

consortium OASIS sponsored by IBM, BEA, SAP, Sun and Primeton (OASIS

2005) to provide a set of specifications which describe a model for building ap-

plications and systems using a SOA. SCA extends and complements prior ap-

 Public Sector Information… 85

proaches to implementing services, and builds on open standards such as Web

services.

SCA encourages a SOA organisation of business application code based on

components that implement business logic, which offer their capabilities through

service-oriented interfaces and which consume functions offered by other compo-

nents through service-oriented interfaces, called service references. SCA divides up

the steps in building a service-oriented application into two major parts:

(1) implementation of components which provide services and consume other

services;

(2) assembly of sets of components to build business applications, through the

wiring of service references to services.

SCA emphasizes the decoupling of service implementation and of service

assembly from the details of infrastructure capabilities and from the details of

the access methods used to invoke services.

The basic artefact is the Module, which is the unit of deployment for SCA and

which holds Services which can be accessed remotely. A module contains one or

more Components, which contain the business function provided by the module.

Components offer their function as services, which can either be used by other

components within the same module or which can be made available for use out-

side the module through Entry Points. Components may also depend on services

provided by other components – these dependencies are called References.

References can either be linked to services provided by other components in

the same module, or references can be linked to services provided outside the

module, which can be provided by other modules. References to services pro-

vided outside the module, including services provided by other modules, are de-

fined by External Services in the module. Also contained in the module are the

linkages between references and services, represented by Wires.

Figure 3. Service Component Architecture

86 Jindrich KALUZA

A Component consists of a configured Implementation, where an implementa-

tion is the piece of program code implementing business functions. The component

configures the implementation with specific values for settable Properties declared

by the implementation. The component can also configure the implementation with

wiring of references declared by the implementation to specific target services.

Modules are deployed within an SCA System that is represented by a set of

services providing an area of business functionality that is controlled by a single

organisation. To help build and configure the SCA System, Subsystems are used

to group and configure related modules. Subsystems contain module compo-

nents, which are configured instances of modules. Subsystems, like modules, al-

so have entry points and external services which declare external services and

references which exist outside the system. Subsystems can also contain wires which

connect together the module components, entry points and external services.

SCA supports service implementations written using any one of many pro-

gramming languages, both including conventional object-oriented and procedur-

al languages or declarative languages. SCA also promotes the use of service data

objects to represent the business data that forms the parameters and return values

of services, providing uniform access to business data to complement the uni-

form access to business services offered by SCA itself.

2.4. Components and services

When comparing the term “component” specified both in component-based ap-

proach and in SOA we could summarize it is practically equal. The SOA approach

brings a conception considered in more detailed form and in more practically orient-

ed approach. Component–based approach adopts the software component as a pri-

mary element then leading to something like services. On the other side SOA was

primarily based on services and further methodological development led to the com-

ponents specification. So we could see the current state of methodology of SOA as

the adoption and further development of component-based approach.

2.5. Fusion in SOA

Leading software producers substantially changed their strategies recently.

They left the original strategy of purely in-house application software develop-

ment offering to users as much as possible the broadest spectrum of applications

(services) enabling also parametric modifications following their various needs.

Currently in accordance with (Pomazal 2007) they carry out the strategy

based on:

a) acquisitions of (not necessarily) smaller software houses offering in the

market some specific products

b) building the open software platforms enabling users to add some specific

external components to existing packages.

 Public Sector Information… 87

Good example of a) is Oracle Corp. uniting under single roof the Siebel’s

Enterprise CRM, JD Edwards’s World and PeopleSoft’s Enterprise.

The b) aspect in my opinion witnesses of something like a new trend in SOA

development currently (is this a revolution?). Originally the SOA conception

was oriented to the design of completely new systems and solutions. The Oracle

Fusion brings the opposite strategy: to utilise the SOA architecture as the

framework for implementation of various enterprise systems not only from its

own production but also externally. So the user should implement the platform

and then proceed following the “best-of-breed” approach.

Conclusions

A wide spectrum of IS development methodologies exist today being utilised

both in business and in public sector too. They could be compared and analysed

from various viewpoints. Two viewpoints seem to be most valuable here; they

both offer an appropriate tool for the stratification following the principal fea-

tures that could be currently observed in any individual case: iterativity and agil-

ity. While the aspect of iterativity fits more appropriately to real situations dur-

ing the system development process, the agility phenomenon brings a new para-

digm (compare to traditional methodologies) suitable either for a specific type of

applications as a unique methodology, or partially for remaining ones comple-

menting the traditional approach.

Practical applications (projects) stand in front of the decision-making pro-

cess – which of the disposable methodologies or their parts should be selected.

Out of four potential solutions the adaptation of one methodological framework

to particular projects accross the organisation seems to be the most valuable so-

lution. It brings an advantage of a cosistent framework and flexible adaptation to

individual needs, and, also, the know-how keeping for the benefit of future projects.

In terms of the system architecture, the component-based development building

up the software systems by assembling already developed components is more cul-

tivated into the service-oriented architecture conception. Currently, the SOA concep-

tion offers a revolutionary idea of building the open software platforms enabling us-

ers to add some specific external components to existing packages. Some providers

(Oracle Corp.) call this, for the future very promising aspect, as a “fusion”.

References

Beck K. (2000), eXtreme programming eXplained, Upper Saddle River, NJ: Ad-

dison-Wesley.

Brown A. (2000), Large-Scale Component-Based Development, Prentice Hall.

88 Jindrich KALUZA

Buchalcevová A., Leitl M. (2006), Průzkum používání agilních metodik v ČR.
In: Objekty 2006, Praha: ČZU.

Heineman G., Councill W. (2001), Component-Based Software Engineering,

Putting the Pieces Together, Addison Wesley.

Hoffer J.A., George J.F., Valacich J.S., (2002), Modern Systems Analysis and

Design, 3rd ed., Pearson Education, Inc., NJ, Prentice-Hall Int., Inc.

Kaluza J. (2002), Information Systems Development and Implementation – Still

Too Many Drawbacks and Problems, Int. Conf. “Organisation, Informatics,

Personnel, Management and the European Community”, University of Mari-
bor, Slovenia, Portoroz.

Mullaney J., Davidson M. (2007), Software Development Trends in 2008: Out-

sourcing, Agile Development.SearchSoftwareQuality.com, http://searchsoft

warequality.techtarget.com/news/article/0,289142,sid92_gci1287341,00.html.

OASIS (2005) http://xml.coverpages.org/ni2005-12-07-a.html.

Pomazal A. (2007), Blíže potřebám zákazníků prostřednictvím SOA, Int. Conf.

World of Information Systems, Zlín 2007.
Rational Unified Process, http://www.ibm.com/developerworks/rational/

products/rup/.

Stair R., Reynolds G., (2008), Fundamentals of Information Systems, 4th ed.,

Thomson Course Technology, Boston, Mass.

Subramanian S.N. (2006), Taking SOA from Paper to Production, Systems Inte-

gration 2006, 14
th
 Int. Conf. Prague.

Sun Microsystems (2005), http://java.sun.com/developer/technicalArticles/

WebServices/soa2/SOATerms.html#soaterms.

Szyperski C. (1998), Component Software – Beyond Object – Oriented Pro-

gramming, Addison Wesley.

Turk D., France R., Rumpe B. (2008), Limitations of Agile Software Process.

Agile Alliance, http://www.agilealliance.org/system/article/file/1096/file.pdf.

W3C (2004), http://www.w3.org/TR/2004/NOTE-ws-arch-20040211/.

Systemy informatyczne w administracji publicznej

Streszczenie

Zarządzanie strategiczne i systemy informatyczne są dziś bardzo ściśle ze sobą połączone. Sukces

w realizacji systemu informatycznego firmy jest kluczowy dla całego sukcesu zarządzania strategiczne-

go. Proces rozwoju systemu informacyjnego reprezentuje wciąż dużo indywidualnego wysiłku ludzkie-

go, chociaż wiele metodologii, metod i narzędzi programowych zostało wynalezionych w ciągu ostat-

niej dekady. Z drugiej strony, nie jest łatwo przyjąć, a następnie wybrać optymalną metodę dla celów

konkretnego projektu spośród wielu możliwości istniejących „na rynku”. Artykuł koncentruje się na

streszczeniu stanu obecnego oraz na trendach specyfikacji, które pojawiają się w tej dziedzinie.

Słowa kluczowe: systemy informacyjne, metodologie, sektor publiczny, cykl życia, SOA,

oprogramowanie oparte na komponentach.

