ON ASSOCIATIVE RATIONAL FUNCTIONS WITH MULTIPLICATIVE GENERATORS

KATARZYNA DOMAŃSKA

Abstract

We consider the class of rational functions defined by the formula

$$
F(x, y)=\varphi^{-1}(\varphi(x) \varphi(y))
$$

where φ is a homographic function and we describe associative functions of the above form.

1. Motivation

The functional equation of the form

$$
f(x+y)=F(f(x), f(y)), \quad x, y \in S
$$

where F is an associative rational function and S is a group or a semigroup, is called an addition formula. For the rational two-place real-valued function F given by

$$
F(x, y)=\varphi^{-1}(\varphi(x) \varphi(y)),
$$

where φ is a homographic function (such F is called a function with a multiplicative generator), the addition formula has the form

$$
h(x+y)=h(x) h(y), \quad x, y \in S
$$

where $h:=\varphi \circ f$ and it is a conditional functional equation if the domain of φ is not equal to \mathbb{R}.

It seems worth considering which homographic functions φ make F of the above form to be associative.

The following functions (with natural domains in question) are the only associative members of the class \mathcal{F} of rational functions of the form

$$
F(x, y)=\frac{a_{1} x y+a_{2}(x+y)+a_{3}}{a_{4} x y+a_{5}(x+y)+a_{6}},
$$

where $a_{i}=0$ for at last one of $i \in\{1, \ldots, 6\}$ (see [1]):
K. Domańska - Jan Długosz University in Częstochowa.

$$
\begin{gathered}
F(x, y)=\frac{x+y+\beta}{\alpha x y+\alpha \beta(x+y)+\alpha \beta^{2}+1} \quad, \quad \alpha, \beta \neq 0 ; \\
F(x, y)=\frac{(1+\alpha \beta) x y+\alpha(x+y)+\frac{\alpha}{\beta}}{\beta x y+x+y}, \quad \alpha \in \mathbb{R}, \beta \neq 0 ; \\
F(x, y)=\frac{\alpha x y}{x y+\beta(x+y)+\beta(\beta-\alpha)} \quad, \quad \alpha, \beta \neq 0 ; \\
F(x, y)=\frac{x y+\alpha}{x+y+\beta} \quad, \quad \alpha, \beta \in \mathbb{R} ; \\
F(x, y)=\frac{\alpha x y+x+y}{\beta x y+1} \quad, \quad \alpha \in \mathbb{R}, \beta \neq 0 .
\end{gathered}
$$

We examine which functions of the above form have a multiplicative generator.

The following lemma will be useful in the sequel.
Lemma. Let $A, B, C, D \in \mathbb{R}$ be given and let $A D \neq B C, C \neq 0$. For φ given by

$$
\varphi(x)=\frac{A x+B}{C x+D}
$$

it holds

$$
\varphi^{-1}(\varphi(x) \varphi(y))=\frac{\left(B C^{2}-A^{2} D\right) x y-B D(A-C)(x+y)-B D(B-D)}{A C(A-C) x y+A C(B-D)(x+y)+B^{2} C-A D^{2}} .
$$

Proof. We have

$$
\varphi(x) \varphi(y)=\frac{A^{2} x y+A B(x+y)+B^{2}}{C^{2} x y+C D(x+y)+D^{2}}
$$

and

$$
\varphi^{-1}(x)=\frac{-D x+B}{C x-A} .
$$

A simple calculation shows that the above equation holds true.

2. Results

We proceed with a description of the class \mathcal{F} of rational functions of the form

$$
F(x, y)=\frac{a_{1} x y+a_{2}(x+y)+a_{3}}{a_{4} x y+a_{5}(x+y)+a_{6}}
$$

(where $a_{i}=0$ for at last one of $i \in\{1, \ldots, 6\}$) with multiplicative generators.
The case of F being a polynomial is trivial, then in the light of Lemma, we can consider only such homographies φ that $A, C \neq 0$ and $(B-D)^{2}+$ $(C-A)^{2} \neq 0$.
Theorem 1. The following functions (with natural domains in question) are the only associative members with multiplicative generators of the class \mathcal{F} :

$$
\begin{gathered}
F(x, y)=\frac{x y}{(a-1) b x y+a(x+y)+\frac{a}{b}} \quad, \quad a, b \neq 0 ; \\
F(x, y)=\frac{x y-a b}{x+y+a+b} \quad, \quad a, b \in \mathbb{R}, a \neq b ; \\
F(x, y)=\frac{(a+b) x y+x+y}{1-a b x y}, \quad a, b \neq 0, a \neq b ; \\
F(x, y)=-\frac{\left(a^{2}+a b+b^{2}\right) x y+(a+b)(x+y)+1}{\left(a^{2} b+a b^{2}\right) x y+a b(x+y)} \quad, \quad a, b \neq 0, a \neq b ; \\
F(x, y)=-\frac{a b(x+y)+a^{2} b+a b^{2}}{x y+(a+b)(x+y)+a^{2}+a b+b^{2}} \quad, \quad a, b \neq 0, a \neq b .
\end{gathered}
$$

Proof. Assume that F is associative and that it has a multiplicative generator

$$
\varphi(x)=\frac{A x+B}{C x+D}
$$

where $A, B, C, D \in \mathbb{R}$ and $A D \neq B C$.
From Lemma, we get that

$$
\begin{equation*}
F(x, y)=\frac{\left(B C^{2}-A^{2} D\right) x y-B D(A-C)(x+y)-B D(B-D)}{A C(A-C) x y+A C(B-D)(x+y)+B^{2} C-A D^{2}} \tag{*}
\end{equation*}
$$

First, assume that $B=0$. If $D=0$, then $A D=B C$, which contradicts the assumption. Hence $D \neq 0$. Taking $B=0$ in (\star), we obtain

$$
\begin{aligned}
F(x, y) & =\frac{-A^{2} D x y}{-A C(C-A) x y-A C D(x+y)-A D^{2}} \\
& =\frac{x y}{\frac{C}{D}\left(\frac{C}{A}-1\right) x y+\frac{C}{A}(x+y)+\frac{D}{A}}
\end{aligned}
$$

Consequently, taking

$$
a=\frac{C}{A}, \quad b=\frac{C}{D},
$$

we infer that

$$
F(x, y)=\frac{x y}{(a-1) b x y+a(x+y)+\frac{a}{b}} \quad, \quad a, b \neq 0 .
$$

Now, let $D=0$. If $B=0$ then $A D=B C$, which contradicts the assumption. Thus, $B \neq 0$. Taking $D=0$ in (\star), we have

$$
\begin{aligned}
F(x, y) & =\frac{B C^{2} x y}{A C(A-C) x y+A B C(x+y)+B^{2} C} \\
& =\frac{x y}{\frac{A}{B C}(A-C) x y+\frac{A}{C}(x+y)+\frac{B}{C}}
\end{aligned}
$$

Consequently, taking

$$
a=\frac{A}{C}, \quad b=\frac{A}{B},
$$

we infer that

$$
F(x, y)=\frac{x y}{(a-1) b x y+a(x+y)+\frac{a}{b}} \quad, \quad a, b \neq 0 .
$$

In case $A=C$, we have $B \neq D$ and, by means of (\star), we obtain

$$
\begin{aligned}
F(x, y) & =\frac{\left(B C^{2}-A^{2} D\right) x y+B D(D-B)}{A C(B-D)(x+y)+B^{2} C-A D^{2}} \\
& =\frac{(B-D) x y+\frac{B D}{A^{2}}(D-B)}{(B-D)(x+y)+\left(B^{2}-D^{2}\right) \frac{1}{A}}=\frac{x y-a b}{x+y+a+b}
\end{aligned}
$$

with $a \neq b, a=\frac{B}{A}, b=\frac{D}{A}$.

In case $B=D$, we have $A \neq C$ and again, by means of (\star), we infer that

$$
\begin{aligned}
F(x, y) & =\frac{\left(B C^{2}-A^{2} D\right) x y+B D(C-A)(x+y)}{A C(A-C) x y+B^{2} C-A D^{2}} \\
& =\frac{\left(C^{2}-A^{2}\right) \frac{1}{B} x y+(C-A)(x+y)}{-\frac{A}{B} \cdot \frac{C}{B}(C-A)(x+y)+C-A}=\frac{(a+b) x y+x+y}{1-a b x y}
\end{aligned}
$$

with $a \neq b, a=\frac{A}{B}, b=\frac{C}{B}$.

Now, assume that $A, B, C, D \neq 0, A \neq C, B \neq D$. Let $B^{2} C-A D^{2}=0$. Applying this to (\star), we have

$$
\begin{aligned}
& F(x, y)= \frac{\left(B C^{2}-\frac{B^{4} C^{2}}{D^{4}} D\right) x y+B D\left(C-\frac{B^{2} C}{D^{2}}\right)(x+y)+B D(D-B)}{\frac{B^{2} C^{2}}{D^{2}}\left(\frac{B^{2} C}{D^{2}}-C\right) x y+\frac{B^{2} C^{2}}{D^{2}}(B-D)(x+y)}= \\
& \frac{\frac{C^{2}\left(D^{3}-B^{3}\right)}{D^{3}} x y+C D \frac{D^{2}-B^{2}}{D^{2}}(x+y)+D(D-B)}{\frac{B C^{3}}{D^{2}} \frac{B^{2}-D^{2}}{D^{2}} x y+\frac{B C^{2}}{D^{2}}(B-D)(x+y)}= \\
&-\frac{\frac{C^{2}}{D^{3}}\left(D^{2}+B D+B^{2}\right) x y+\frac{C}{D}(C+D)(x+y)+D}{\frac{B C^{3}}{D^{2}} \cdot \frac{B+D}{D^{2}} x y+\frac{B C^{2}}{D^{2}}(x+y)}= \\
&-\frac{\left(\frac{C^{2}}{D^{2}}+\frac{B C^{2}}{D^{3}}+\frac{B^{2} C^{2}}{D^{4}}\right) x y+\left(\frac{C}{D}+\frac{B C}{D^{2}}\right)(x+y)+1}{\left(\frac{B^{2} C^{3}}{D^{5}}+\frac{B C^{3}}{D^{4}}\right) x y+\frac{B C^{2}}{D^{3}}(x+y)}= \\
&-\frac{\left(a^{2}+a b+b^{2}\right) x y+(a+b)(x+y)+1}{\left(a^{2} b+a b^{2}\right) x y+a b(x+y)},
\end{aligned}
$$

where $a=\frac{B C}{D^{2}}, b=\frac{C}{D}$. Obviously $a \neq b$.
At last, assume that $B C^{2}-A^{2} D=0$ and $A, B, C, D \neq 0, A \neq C, B \neq D$. Applying this in (\star), we obtain

$$
\begin{gathered}
F(x, y)=\frac{\frac{B^{2} C^{2}}{A^{2}}(C-A)(x+y)+\frac{B^{2} C^{2}}{A^{2}} B\left(\frac{C^{2}}{A^{2}}-1\right)}{A C(A-C) x y+A B C\left(1-\frac{C^{2}}{A^{2}}\right)(x+y)+B^{2} C-A B^{2} \frac{C^{4}}{A^{4}}}= \\
-\frac{\frac{B^{2} C}{A^{2}}(C-A)(x+y)+\frac{B^{3} C}{A^{4}}\left(C^{2}-A^{2}\right)}{A(C-A) x y+\frac{B}{A}\left(C^{2}-A^{2}\right)(x+y)+\frac{B^{2}}{A^{3}}\left(C^{3}-A^{3}\right)}= \\
-\frac{\frac{B^{2} C}{A^{2}}(x+y)+\frac{B^{3} C}{A^{4}(A+C)}}{A x y+\frac{B}{A}(A+C)(x+y)+\frac{B^{2}}{A^{3}}\left(A^{2}+A C+C^{2}\right)}= \\
-\frac{\frac{B^{2} C}{A^{3}}(x+y)+\frac{B^{3} C^{2}}{A^{5}}+\frac{B^{3} C}{A^{4}}}{x y+\left(\frac{B C}{A^{2}}+\frac{B}{A}\right)(x+y)+\frac{B^{2}}{A^{2}}+\frac{B^{2} C}{A^{3}}+\frac{B^{2} C^{2}}{A^{4}}}= \\
-\frac{a b(x+y)+a^{2} b+a b^{2}}{x y+(a+b)(x+y)+a^{2}+a b+b^{2}}
\end{gathered}
$$

with $a=\frac{B C}{A^{2}}, b=\frac{B}{A}$. It is clear that $a \neq b$.

It is easy to check (see Theorem 2 or Theorem 1 in [1]) that each of the functions above yields to a rational associative function. Thus, the proof has been completed.

Now, we determine homographic functions φ which by means of the formula

$$
F(x, y)=\varphi^{-1}(\varphi(x) \varphi(y))
$$

lead to associative functions F.
Theorem 2. For the following homographic functions (with natural domains in question) we obtain by ($\star \star$) rational associative functions with a multiplicative generators:

$$
\begin{gathered}
\varphi(x)=\frac{1}{d} \cdot \frac{c x}{c x+1} \\
\varphi(x)=\frac{x+a}{x+b} \\
\varphi(x)=\frac{a x+1}{b x+1} \\
\varphi(x)=\frac{a}{b} \cdot \frac{a x+1}{b x+1} \\
\varphi(x)=\frac{a}{b} \cdot \frac{x+a}{x+b}
\end{gathered}
$$

where $a \neq b$ and $a, b, c, d \in \mathbb{R} \backslash\{0\}$ are arbitrary constants.
Proof. It is easy to check that each of the functions above is a generator of the rational associative function. Moreover, they generate

$$
\begin{gathered}
F(x, y)=\frac{x y}{(d-1) c x y+d(x+y)+\frac{d}{c}} \quad, \quad a, b \neq 0 \\
F(x, y)=\frac{x y-a b}{x+y+a+b} \quad, \quad a, b \in \mathbb{R}, a \neq b ; \\
F(x, y)=\frac{(a+b) x y+x+y}{1-a b x y} \quad, \quad a, b \neq 0, a \neq b ; \\
F(x, y)=-\frac{\left(a^{2}+a b+b^{2}\right) x y+(a+b)(x+y)+1}{\left(a^{2} b+a b^{2}\right) x y+a b(x+y)} \quad, \quad a, b \neq 0 \\
F(x, y)-\frac{a b(x+y)+a^{2} b+a b^{2}}{x y+(a+b)(x+y)+a^{2}+a b+b^{2}} \quad, \quad a, b \neq 0
\end{gathered}
$$

respectively. Thus, according to Theorem 1 , the proof is completed.

Notice that for any homography φ the following equality is fullfiled:

$$
\varphi^{-1}(\varphi(x) \varphi(y))=\breve{\varphi}^{-1}(\breve{\varphi}(x) \breve{\varphi}(y)),
$$

where $\breve{\varphi}=\frac{1}{\varphi}$.
At last, let us observe that

$$
F(x, y)=\frac{x y}{(a-1) b x y+a(x+y)+\frac{a}{b}} \quad, \quad a, b \neq 0
$$

is of the form

$$
F(x, y)=\frac{\alpha x y}{x y+\beta(x+y)+\beta(\beta-\alpha)}
$$

with $\alpha=\frac{1}{(a-1) b}, \beta=\frac{a}{(a-1) b}$ in case $a \neq 1$ and of the form

$$
F(x, y)=\frac{x y+\alpha}{x+y+\beta}
$$

with $\alpha=0, \beta=\frac{1}{b}$, otherwise, i.e. $a=1$.
The rational function

$$
F(x, y)=\frac{x y-a b}{x+y+a+b} \quad, \quad a, b \in \mathbb{R}, a \neq b
$$

can be written in the form

$$
F(x, y)=\frac{x y+\alpha}{x+y+\beta} .
$$

It is clear that

$$
F(x, y)=\frac{(a+b) x y+x+y}{1-a b x y} \quad, \quad a, b \neq 0, a \neq b
$$

is of the form

$$
F(x, y)=\frac{\alpha x y+x+y}{\beta x y+1}
$$

Further,

$$
F(x, y)=-\frac{\left(a^{2}+a b+b^{2}\right) x y+(a+b)(x+y)+1}{\left(a^{2} b+a b^{2}\right) x y+a b(x+y)} \quad, \quad a, b \neq 0, a \neq b
$$

is of the form

$$
F(x, y)=\frac{(1+\alpha \beta) x y+\alpha(x+y)+\frac{\alpha}{\beta}}{\beta x y+x+y}
$$

with $\alpha=-\frac{a+b}{a b}, \beta=a+b$ if $a+b \neq 0$ and of the form

$$
F(x, y)=\frac{x y+\alpha}{x+y+\beta}
$$

with $\alpha=\frac{1}{a^{2}}, \beta=0$, otherwise, i.e. $a+b=0$.

Finally,

$$
F(x, y)=-\frac{a b(x+y)+a^{2} b+a b^{2}}{x y+(a+b)(x+y)+a^{2}+a b+b^{2}} \quad, \quad a, b \neq 0, a \neq b
$$

is of the form

$$
F(x, y)=\frac{x+y+\beta}{\alpha x y+\alpha \beta(x+y)+\alpha \beta^{2}+1}
$$

with $\alpha=-\frac{1}{a b}, \beta=a+b$ if $a+b \neq 0$ and of the form

$$
F(x, y)=\frac{\alpha x y+x+y}{\beta x y+1}
$$

with $\alpha=0, \beta=\frac{1}{a^{2}}$, otherwise, i.e. $a+b=0$.
Associative rational functions with an additive generator are described in [2].

References

[1] K. Domańska, An analytic description of the class of rational associative functions, Annales Universitatis Paedagogicae Cracoviesis Studia Mathematica 11 (2012), 111122
[2] K. Domańska, On associative rational functions with additive generators Scientific Issues Jan Długosz University in Częstochowa, Mathematics XVIII (2013), 7-10

Received: September 2015
Katarzyna Domańska
Jan Deugosz University,
Institute of Mathematics and Computer Science,
42-200 Częstochowa, Al. Armil Krajowej 13/15, Poland
E-mail address: k.domanska@ajd.czest.pl

