SOME DUAL LOGIC WITHOUT TAUTOLOGIES

ANETTA GÓRNICKA, ARKADIUSZ BRYLL

Abstract

On this paper we consider a logic dual to the $\operatorname{logic} C_{R_{A}}$ and prove that it does not contain tautologies.

1. Introduction

We consider a logic with the strongly adequate dual matrix and the empty set of tautologies. In a logic without tautologies there are no axioms, thus all theorems are proved on the base of some premisses with the use of fixed inference rules. In our approach a logic will be identified with a structural consequence operation ${ }^{1}$.

Let S be a set of formulas of a propositional language.
A function C mapping 2^{S} into 2^{S} is a consequence if it fulfills the following conditions:

$$
\begin{equation*}
X \subseteq Y \Rightarrow C(X) \subseteq C(Y) \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
C(C(X)) \subseteq C(X) \tag{2}
\end{equation*}
$$

for $X, Y \in 2^{S}$. Then,

$$
\begin{equation*}
C(X \cup C(Y))=C(X \cup Y) \tag{4}
\end{equation*}
$$

The consequence dual to a consequence C, denoted by $d C$, is defined as follows [11]:

Definition 1.

$\alpha \in d C(X) \Leftrightarrow \exists_{Y}\left(Y \subseteq X \wedge \operatorname{card}(Y)<\aleph_{0} \wedge \bigcap\{C(\{\beta\}): \beta \in Y \subseteq C(\{\alpha\})\}\right.$, for any $\alpha \in S$ and any $X \subseteq S$.

[^0]The dual consequence $d C$ has, among others, the following properties [2]:

Lemma 1.

For $\alpha, \beta \in S$:
a. $\beta \in d C(\{\alpha\}) \Leftrightarrow \alpha \in C(\{\beta\})$,
b. $d C(\emptyset)=\{\gamma: C(\{\gamma\})=S\}$.

Therefore,
Corollary 1. $\gamma \notin d C(\emptyset) \Leftrightarrow C(\{\gamma\}) \neq S$.
With every propositional language $\mathrm{J}=(S, \mathbb{F})$, where \mathbb{F} is a set of logical operators, we can associate an algebra $\mathrm{A}=(U, \mathbf{f})$ similar to J. By distinguishing in A a subset $V(\emptyset \neq V \subset U)$, which we call the set of distinguished values, we obtain a logical matrix corresponding to the language J :

$$
\mathfrak{M}=(U, V, \mathbf{f}) .
$$

The dual matrix to the matrix \mathfrak{M} is defined by

$$
\mathfrak{M}^{d}=(U, U-V, \mathbf{f}) .
$$

Matrices \mathfrak{M} i \mathfrak{M}^{d} differ only with respect to the set of distinguished values.

A consequence can be given by means of a set of rules \mathcal{R} (rule consequence $C_{\mathcal{R}}$) or by means of a logical matrix \mathfrak{M} (matrix consequence $C_{\mathfrak{M}}$). Here are the definitions:

Definition 2. $\alpha \in C_{\mathcal{R}}(X) \Leftrightarrow$ (there exists a proof of α based on X and $\mathcal{R}), \quad(X \cup\{\alpha\} \subseteq S)$.
Definition 3. $\alpha \in C_{\mathfrak{M}}(X) \Leftrightarrow \forall_{h \in H o m}[h(X) \subseteq V \Rightarrow h(\alpha) \in V]$, where Hom denotes the set of all homomorphisms of J into A .

Both $C_{\mathcal{R}}$ and $C_{\mathfrak{M}}$ fulfill the conditions of a consequence. Moreover, $C_{\mathcal{R}}$ is a finitistic consequence.

Let $E(\mathfrak{M})$ denote the content of a matrix \mathfrak{M}, i.e. the set of all its tautologies:

$$
\begin{equation*}
E(\mathfrak{M})=\left\{\alpha \in S: \forall_{h \in H o m}(h(\alpha) \in V)\right\} . \tag{5}
\end{equation*}
$$

By the definition

$$
\begin{equation*}
E(\mathfrak{M})=C_{\mathfrak{M}}(\emptyset) . \tag{6}
\end{equation*}
$$

If $C_{\mathfrak{M}}(\emptyset)=\emptyset$, then \mathfrak{M} does not contain any tautologies.
A logical matrix \mathfrak{M} is said to be strongly adequate for a logic C if $C(X)=$ $C_{\mathfrak{M}}(X)$ for every $X \subseteq S$.

Let T be a binary functor on S. We generalize T in the following way:

Definition 4.

a. $\mathrm{T}(\alpha)=\alpha$,
b. $\mathrm{T}(\alpha, \beta)=\mathrm{T} \alpha \beta$,
c. $\mathrm{T}\left(\alpha_{1}, \ldots, \alpha_{n}, \alpha_{n+1}\right)=\mathrm{T}\left(\mathrm{T}\left(\alpha_{1}, \ldots, \alpha_{n}\right), \alpha_{n+1}\right)$.

It is easy to prove by means of induction the following facts.

Lemma 2.

a. If a consequence C has, with regard to a functor T , the property

$$
C(\{\mathrm{~T} \alpha \beta\})=C(\{\alpha, \beta\})
$$

then

$$
\left.C\left(\left\{\mathrm{~T}\left(\alpha_{1}, \ldots, \alpha_{n}\right)\right\}\right)=C\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}\right)
$$

b. If a consequence C has, with regard to a functor T , the property

$$
C(\{\mathrm{~T} \alpha \beta\})=C(\{\alpha\}) \cap C(\{\beta\})
$$

then

$$
C\left(\left\{\mathrm{~T}\left(\alpha_{1}, \ldots, \alpha_{n}\right)\right\}\right)=\bigcap_{i=1}^{n} C\left(\left\{\alpha_{i}\right\}\right)
$$

In our further considerations we apply the well known Lindenbaum Theorem [10]:

Theorem 1. For every $\alpha \in S$ and $X \subseteq S$
$\alpha \notin C(X) \Rightarrow \exists_{Y \subseteq S}\left(C(Y)=Y \wedge \alpha \notin Y \wedge \forall_{\beta \notin Y}(\alpha \in C(Y \cup\{\beta\}))\right)$.
The set Y fulfilling the above condition is called a relatively maximal supersystem of X with regard to α. For every $\alpha \notin C(X)$ there can exist many different relatively maximal supersystems of X. The set of all such supersystems shall be denoted by L_{X}^{α}.

2. MAIN RESULTS

In [7] the logic $C_{R_{A}}$ with the functor A of the alternative is considered. This logic is based on the set $R_{A}=\left\{r_{1}, r_{2}, r_{3}, r_{4}\right\}$ of inference rules, where

$$
r_{1}: \frac{\alpha}{A \alpha \beta}, \quad r_{2}: \frac{A \alpha \alpha}{\alpha}, \quad r_{3}: \frac{A \alpha \beta}{A \beta \alpha}, \quad r_{4}: \frac{A A \alpha \beta \gamma}{A \alpha A \beta \gamma} .
$$

The matrix

$$
\mathfrak{M}_{a}=(\{0,1\},\{1\},\{a\}),
$$

where $a(x, y)=\max (x, y), \quad x, y \in\{0,1\}$, is strongly adequate for the $\operatorname{logic} C_{R_{A}}$.

It is proven in [7] that
Theorem 2. $C_{R_{A}}(X)=C_{\mathfrak{M}_{a}}(X)$ for every $X \subseteq S$.
The logic $C_{R_{A}}$ does not contain tautologies since

$$
\begin{equation*}
C_{R_{A}}(\emptyset)=C_{\mathfrak{M}_{a}}(\emptyset)=E\left(\mathfrak{M}_{a}\right)=\emptyset \tag{7}
\end{equation*}
$$

The equality $E\left(\mathfrak{M}_{a}\right)=\emptyset$ results from the fact that for any formula α the homomorphism h_{0} assigning to all propositional variables the value 0 fulfills the condition $h(\alpha)=0$. Therefore, it is not true that $\forall_{h \in H o m} h(\alpha)=1$.

In [7] it is also proven that
Lemma 3. For every $X \subseteq S$ and all $\alpha, \beta \in S$

$$
C_{R_{A}}(X \cup\{\alpha\}) \cap C_{R_{A}}(X \cup\{\beta\}) \subseteq C_{R_{A}}(X \cup\{A \alpha \beta\})
$$

Applying the rules r_{1} i r_{3} one can show that
Lemma 4. For every $X \subseteq S$ and all $\alpha, \beta \in S$

$$
C_{R_{A}}(X \cup\{A \alpha \beta\}) \subseteq C_{R_{A}}(X \cup\{\alpha\}) \cap C_{R_{A}}(X \cup\{\beta\})
$$

Proof. By means of r_{1} we obtain $A \alpha \beta \in C_{R_{A}}(\alpha)$ and $A \beta \alpha \in C_{R_{A}}(\beta)$. Applying r_{3} we get $A \alpha \beta \in C_{R_{A}}(\{A \beta \alpha\})$. By monotonicity of $C_{R_{A}}$ we have $C_{R_{A}}(\{A \alpha \beta\}) \subseteq C_{R_{A}}(\{\beta\})$. Then $A \alpha \beta \in C_{R_{A}}(\{\beta\}$. By the property (4) of a consequence, $C_{R_{A}}(X \cup\{A \alpha \beta\}) \subseteq C_{R_{A}}\left(X \cup C_{R_{A}}(\{\alpha\})\right)=C_{R_{A}}(X \cup\{\alpha\})$. Similarly $C_{R_{A}}(X \cup\{A \alpha \beta\}) \subseteq C_{R_{A}}\left(X \cup C_{R_{A}}(\{\beta\})\right)=C_{R_{A}}(X \cup\{\beta\})$. Thus $C_{R_{A}}(X \cup\{A \alpha \beta\}) \subseteq C_{R_{A}}(X \cup\{\alpha\}) \cap C_{R_{A}}(X \cup\{\beta\})$.

From the above Lemmas we conclude that
Theorem 3. For every $X \subseteq S$ and all $\alpha, \beta \in S$

$$
C_{R_{A}}(X \cup\{A \alpha \beta\})=C_{R_{A}}(X \cup\{\alpha\}) \cap C_{R_{A}}(X \cup\{\beta\})
$$

Therefore,
Corollary 2. For all $\alpha, \beta \in S$

$$
C_{R_{A}}(\{A \alpha \beta\})=C_{R_{A}}(\{\alpha\}) \cap C_{R_{A}}(\{\beta\})
$$

Let us consider the consequence $C_{R_{A}^{d}}$ based on the following set of inference rules:

$$
R_{A^{d}}=\left\{r_{1}^{d}, r_{2}^{d}\right\}, \quad \text { where } r_{1}^{d}: \frac{A \alpha \beta}{\alpha, \beta}, r_{2}^{d}: \frac{\alpha, \beta}{A \alpha \beta}
$$

The above rules express the classical property of the alternative: the alternative is false if and only if both its components are false. It is clear that the consequence $C_{R_{A}^{d}}$ has the following property:

Lemma 5. For every $X \subseteq S$ and for all $\alpha, \beta \in S$

$$
C_{R_{A}^{d}}(X \cup\{A \alpha \beta\})=C_{R_{A}^{d}}(X \cup\{\alpha, \beta\}) .
$$

Therefore,
Corollary 3. For all $\alpha, \beta \in S$

$$
C_{R_{A}^{d}}(\{A \alpha \beta\})=C_{R_{A}^{d}}(\{\alpha, \beta\}) .
$$

The matrix consequence $C_{\mathfrak{M}_{a}^{d}}$ with a matrice $\mathfrak{M}_{a}^{d}=(\{0,1\},\{0\},\{a\}\}$ dual with respect to the matrix \mathfrak{M}_{a} is defined as follows:

Definition 5. For every $\alpha \in S$

$$
\alpha \in C_{\mathfrak{M}_{a}^{d}}(X) \Leftrightarrow \forall_{h \in \operatorname{Hom}}(h(X) \subseteq\{0\} \Rightarrow h(\alpha)=0),
$$

where Hom is the set of all homomorphisms, i.e., functions $h: S \longrightarrow\{0,1\}$ such that

$$
h(A \alpha \beta)=a(h(\alpha, \beta))
$$

The set of tautologies of the matrix \mathfrak{M}_{a}^{d} is empty, i.e.

$$
\begin{equation*}
E\left(\mathfrak{M}_{a}^{d}\right)=C_{\mathfrak{M}_{a}^{d}}(\emptyset)=\emptyset \tag{8}
\end{equation*}
$$

It results from the fact that for the homomorphism h assigning to all propositional variables the value 1 we have $h(\alpha)=1$ for any α.

Let us notice that the set $C_{\mathfrak{M}_{a}^{d}}(X)$ is closed with regard to the rules from R_{A}^{d}, i.e.

$$
\begin{equation*}
C_{R_{A}^{d}}\left(C_{\mathfrak{M}_{a}^{d}}(X)\right) \subseteq C_{\mathfrak{M}_{a}^{d}}(X), \quad X \subseteq S \tag{9}
\end{equation*}
$$

We show that the matrix \mathfrak{M}_{a}^{d} is strongly adequate for the $\operatorname{logic} C_{R_{A}^{d}}$:
Theorem 4. $C_{R_{A}^{d}}(X)=C_{\mathfrak{M}_{a}^{d}}(X)$, for every $X \subseteq S$.
Proof. The inclusion $C_{R_{A}^{d}}(X) \subseteq C_{\mathfrak{M}_{a}^{d}}(X)$ results from (9) since $C_{R_{A}^{d}}(X) \subseteq$ $C_{R_{A}^{d}}\left(C_{\mathfrak{M}_{a}^{d}}(X)\right) \subseteq C_{\mathfrak{M}_{a}^{d}}(X)$.
To prove $C_{\mathfrak{M}_{a}^{d}}(X) \subseteq C_{R_{A}^{d}}(X)$ let us assume that $\alpha \notin C_{R_{A}^{d}}(X)$. By Theorem 1, there exists a set $Y_{0} \in L_{X}^{\alpha}$ such that

$$
\begin{gather*}
X \subseteq Y_{0} \tag{10}\\
C_{R_{A}^{d}}\left(Y_{0}\right)=Y_{0} \tag{11}\\
\alpha \notin Y_{0} \tag{12}\\
\forall_{\beta \notin Y_{0}}\left(\alpha \in C_{R_{A}^{d}}\left(Y_{0} \cup\{\beta\}\right)\right) . \tag{13}
\end{gather*}
$$

According to Lemma 5 and property (11), we have

$$
\begin{equation*}
A \beta \gamma \in Y_{0} \Leftrightarrow\left(\beta \in Y_{0} \wedge \gamma \in Y_{0}\right) \tag{14}
\end{equation*}
$$

Indeed, for any $\beta, \gamma \in S$ we get:
$A \beta \gamma \in Y_{0} \Rightarrow Y_{0} \cup\{A \beta \gamma\}=Y_{0} \Rightarrow C_{R_{A}^{d}}\left(Y_{0} \cup\{A \beta \gamma\}\right)=C_{R_{A}^{d}}\left(Y_{0}\right)=Y_{0}=$ $C_{R_{A}^{d}}\left(Y_{0} \cup\{\beta, \gamma\}\right)$. As $\beta, \gamma \in C_{R_{A}^{d}}\left(Y_{0} \cup\{\beta, \gamma\}\right)=Y_{0}$, so $\beta, \gamma \in Y_{0}$. Therefore, $\beta, \gamma \in Y_{0} \Rightarrow Y_{0} \cup\{\beta, \gamma\}=Y_{0} \Rightarrow C_{R_{A}^{d}}\left(Y_{0} \cup\{\beta, \gamma\}\right)=C_{R_{A}^{d}}\left(Y_{0}\right)=Y_{0}=$ $C_{R_{A}^{d}}\left(Y_{0} \cup\{A \beta \gamma\}\right)$. Since $A \beta \gamma \in C_{R_{A}^{d}}\left(Y_{0} \cup\{A \beta \gamma\}\right)=Y_{0}$, then $A \beta \gamma \in Y_{0}$.
We can consider the following homomorphism $h_{Y_{0}}: S \longrightarrow\{0,1\}$ based on the set Y_{0} :

$$
h_{Y_{0}}(\alpha)= \begin{cases}0, & \text { gdy } \alpha \in Y_{0} \tag{15}\\ 1, & \text { gdy } \alpha \notin Y_{0}\end{cases}
$$

We show that $h_{Y_{0}}$ is a homomorphism. By (14) i (15) we get:
$h_{Y_{0}}(A \beta \gamma)=0 \Leftrightarrow A \beta \gamma \in Y_{0} \Leftrightarrow \beta, \gamma \in Y_{0} \Leftrightarrow h_{Y_{0}}(\beta)=0 \wedge h_{Y_{0}}(\gamma)=0 \Leftrightarrow$ $a\left(h_{Y_{0}}(\beta), h_{Y_{0}}(\gamma)\right)=0$;
$h_{Y_{0}}(A \beta \gamma)=1 \Leftrightarrow A \beta \gamma \notin Y_{0} \Leftrightarrow \beta \notin Y_{0} \vee \gamma \notin Y_{0} \Leftrightarrow h_{Y_{0}}(\beta)=1 \vee h_{Y_{0}}(\gamma)=$ $1 \Leftrightarrow a\left(h_{Y_{0}}(\beta), h_{Y_{0}}(\gamma)\right)=1$.
Thus,

$$
\begin{equation*}
h_{Y_{0}}(A \beta \gamma)=a\left(h_{Y_{0}}(\beta), h_{Y_{0}}(\gamma)\right) \tag{16}
\end{equation*}
$$

According to $(10), h_{Y_{0}}(X) \subseteq h_{Y_{0}}\left(Y_{0}\right)$ for any $X \subseteq S$. As $h_{Y_{0}}\left(Y_{0}\right)=\left\{h_{Y_{0}}(\delta)\right.$: $\left.\delta \in Y_{0}\right\}=\{0\}$, then $h_{Y_{0}}(X) \subseteq\{0\}$.
By (12) we have $h_{Y_{0}}(\alpha)=1$. Then, $\exists_{h \in H o m}(h(X) \subseteq\{0\} \wedge h(\alpha)=1)$ and, by Definition 5, we obtain $\alpha \notin C_{\mathfrak{M}_{a}^{d}}(X)$. Therefore, $C_{\mathfrak{M}_{a}^{d}}(X) \subseteq C_{R_{A}^{d}}(X)$ and having $C_{R_{A}^{d}}(X) \subseteq C_{\mathfrak{M}_{a}^{d}}(X)$ we get $C_{R_{A}^{d}}=C_{\mathfrak{M}_{a}^{d}}$.

3. Final REmarks

We show that the logic $C_{R_{A}^{d}}$ is dual to the logic $C_{R_{A}}$ (in the sense of Definition 1).
First, we prove by means of induction (with respect on the complexity of formulas) that

Lemma 6. $d C_{R_{A}}(\emptyset)=\emptyset$.
Proof. If α is a variable, then $C_{R_{A}}(\{\alpha\}) \neq S$, because we cannot get (by means of the rules from R_{A}) any formula from S starting from a single propositional variable.
Assume inductively that $C_{R_{A}}\left(\left\{\alpha_{1}\right\}\right) \neq S$ i $C_{R_{A}}\left(\left\{\alpha_{2}\right\}\right) \neq S$ holds for formulas α_{1}, α_{2}. Then, by Corollary 2, regarding the formula $A \alpha_{1} \alpha_{2}$ we get
$C_{R_{A}}\left(\left\{A \alpha_{1} \alpha_{2}\right\}\right)=C_{R_{A}}\left(\left\{\alpha_{1}\right\}\right) \cap C_{R_{A}}\left(\left\{\alpha_{2}\right\}\right) \neq S$. Then, according to Corollary 1, we have $C_{R_{A}}(\{\gamma\}) \neq S$ for any $\gamma \in S$ and then $\gamma \notin d C_{R_{A}^{d}}(\emptyset)$, so $d C_{R_{A}}(\emptyset)=\emptyset$.

From Theorem 4 and property (8), we have $C_{R_{A}^{d}}(\emptyset)=\emptyset$, then, by Lemma 6:

Lemma 7. $d C_{R_{A}}(\emptyset)=C_{R_{A}^{d}}(\emptyset)$.
Now, we prove
Lemma 8. If $\alpha \in C_{R_{A}^{d}}(X)$, then $\alpha \in d C_{R_{A}}(X)$ for any $X \subseteq S$.
Proof. Let $\alpha \in C_{R_{A}^{d}}(X)$. Since $C_{R_{A}^{d}}$ is a finitary consequence, then there exists a finite subset Y_{0} of the set X such that $\alpha \in C_{R_{A}^{d}}\left(Y_{0}\right)$. Let us notice that $Y_{1} \neq \emptyset$. Indeed, if $Y_{1}=\emptyset$, then $\alpha \in C_{R_{A}^{d}}(\emptyset)$ and as $C_{R_{A}^{d}}(\emptyset)=\emptyset$, we get $\alpha \in \emptyset$, which leads to a contradiction. Thus, let us assume $Y_{0}=$ $\left\{\beta_{1}, \ldots, \beta_{n}\right\}$. By Corollary 3 and Lemma 2a., we obtain

$$
\alpha \in C_{R_{A}^{d}}\left(\left\{\beta_{1}, \ldots, \beta_{n}\right\}\right)=C_{R_{A}^{d}}\left(\left\{A\left(\beta_{1}, \ldots, \beta_{n}\right)\right\}\right)
$$

Then, by Theorem $4, \alpha \in C_{\mathfrak{M}_{a}^{d}}\left(\left\{A\left(\beta_{1}, \ldots, \beta_{n}\right)\right\}\right)$, so

$$
\forall_{h \in \operatorname{Hom}}\left(h\left(A\left(\beta_{1}, \ldots, \beta_{n}\right)\right)=0 \Rightarrow h(\alpha)=0\right) .
$$

We get $\forall_{h \in \operatorname{Hom}}\left(h(\alpha)=1 \Rightarrow h\left(A\left(\beta_{1}, \ldots, \beta_{n}\right)=1\right)\right.$, then $A\left(\beta_{1}, \ldots, \beta_{n}\right) \in$ $C_{\mathfrak{M}_{a}}(\{\alpha\})=C_{R_{A}}(\{\alpha\})$, hence, by Corollary 2 and Lemma 2 b we conclude that

$$
\bigcap\left\{C_{R_{A}}(\{\beta\}): \beta \in Y_{0}\right\} \subseteq C_{R_{A}}(\{\alpha\})
$$

Therefore,

$$
\exists_{Y}\left(Y \subseteq X \wedge \operatorname{card}(Y)<\aleph_{0} \wedge \bigcap\left\{C_{R_{A}}(\{\beta\}): \beta \in Y \subseteq C_{R_{A}}(\{\alpha\})\right)\right.
$$

According to Definition 1, we get $\alpha \in d C_{R_{A}}(X)$.

Lemma 9. If $X \neq \emptyset$, then $\left.d C_{R_{A}}(X) \subseteq C_{R_{A}^{d}}(X)\right)$ for every $X \subseteq S$.
Proof. Let $X \neq \emptyset$ and let us suppose $\alpha \in d C_{R_{A}}(X)$. By Definition 1, there exists a set Y_{0} such that

$$
Y \subseteq X \wedge \operatorname{card}(Y)<\aleph_{0} \wedge \bigcap\left\{C_{R_{A}}(\{\beta\}): \beta \in Y \subseteq C_{R_{A}}(\{\alpha\})\right\}
$$

Let us consider two cases: $Y_{0}=\emptyset$ or $Y_{0} \neq \emptyset$.
Let $Y_{0}=\emptyset$, then $\bigcap\left\{C_{R_{A}}(\{\beta\}): \beta \in \emptyset\right\}=S$. Therefore, $C_{R_{A}}(\alpha)=S$ and $\forall_{\gamma \in S}\left(\gamma \in C_{R_{A}}(\{\alpha\})\right.$. According to our assumption $X \neq \emptyset$, there is $\gamma_{1} \in X$, hence $\gamma_{1} \in S$. Therefore $\gamma_{1} \in C_{R_{A}}(\{\alpha\})=C_{\mathfrak{M}_{a}}(\{\alpha\})$. By Definition of the matrix consequence we have $\forall_{h \in H o m}\left(h(\alpha)=1 \Rightarrow h\left(\gamma_{1}\right)=1\right)$, so
$\forall_{h \in \operatorname{Hom}}\left(h\left(\gamma_{1}\right)=0 \Rightarrow h(\alpha)=0\right)$, hence $\alpha \in C_{\mathfrak{M}_{a}^{d}}\left(\left\{\gamma_{1}\right\}\right)=C_{R_{A}^{d}}\left(\left\{\gamma_{1}\right\}\right)$.
However, $C_{R_{A}^{d}}\left(\left\{\gamma_{1}\right\}\right) \subseteq C_{R_{A}^{d}}(X)$, then $\alpha \in C_{R_{A}^{d}}(X)$.
If $Y_{0}=\left\{\beta_{1}, \ldots, \beta_{n}\right\}$, then, by Corollary 2 and Lemma 2 b , we obtain that $\bigcap\left\{C_{R_{A}}(\{\beta\}): \beta \in Y_{1}\right\}=C_{R_{A}}\left(\left\{A\left(\beta_{1}, \ldots, \beta_{n}\right)\right\}\right.$, so $C_{R_{A}}\left(\left\{A\left(\beta_{1}, \ldots, \beta_{n}\right)\right\}\right) \subseteq$ $C_{R_{A}}(\{\alpha\})$, and hence $A\left(\beta_{1}, \ldots, \beta_{n}\right) \in C_{R_{A}}(\{\alpha\})=C_{\mathfrak{M}_{a}}(\{\alpha\})$. Therefore, $\forall_{h \in \operatorname{Hom}}\left(h(\alpha)=1 \Rightarrow h\left(A\left(\beta_{1}, \ldots, \beta_{n}\right)=1\right)\right.$, so $\forall_{h \in \operatorname{Hom}}\left(h\left(A\left(\beta_{1}, \ldots, \beta_{n}\right)=\right.\right.$ $0 \Rightarrow h(\alpha)=0)$. Then, $\alpha \in C_{\mathfrak{M}_{a}^{d}}\left(\left\{A\left(\beta_{1}, \ldots, \beta_{n}\right)\right\}\right)=C_{R_{A}^{d}}\left(\left\{A\left(\beta_{1}, \ldots, \beta_{n}\right)\right\}\right)$, hence, according to Corollary 3, $\alpha \in C_{R_{A}^{d}}\left(Y_{0}\right)$. Since $Y_{0} \subseteq X$, we get $\alpha \in$ $C_{R_{A}^{d}}\left(Y_{0}\right) \subseteq C_{R_{A}^{d}}(X)$, hence $\alpha \in C_{R_{A}^{d}}(X)$.

Then, we have proved that in both cases $d C_{R_{A}}(X) \subseteq C_{R_{A}^{d}}(X)$ for every $X \neq \emptyset$.

According to Lemmas 8, 9 i 10 we obtain

Theorem 5.

$$
C_{R_{A}^{d}}=d C_{R_{A}} .
$$

It means that the logic $C_{R_{A}^{d}}$ is dual with respect to the $\operatorname{logic} C_{R_{A}}$. It does not contain tautologies, neither. According to Theorem 4 we can conclude that the logic $C_{R_{A}^{d}}$ is de facto a conjuctional logic expressed by means of the operator A. To notice this fact it is enough to look closely at the rules r_{1}^{d} and r_{2}^{d} from R_{a}^{d}.

References

[1] G. Asser Einfürung in die mathematische Logik, Teil I. Leipzig, 1959.
[2] G. Bryll Metody odrzucania wyrażén, Akademicka Oficyna Wydawnicza PLJ, Warszawa, 1996.
[3] G. Bryll, A. Chotomska, L. Jaworski, A formalization of logik without tautologies, Prace Naukowe WSP w Częstochowie, Matematyka VIII (2000-2001), 9-12.
[4] A. Górnicka, Axiomatization of the sentential logic dual to Sobociński's n - valued logic, Bulletin of the Section of Logic, vol. 40:1/2 (2011), pp. 47-54.
[5] A. Górnicka, Badania nad pewnymi logikami dualnymi, Rozprawa doktorska (maszynopis), Wrocław, 2001.
[6] A. Górnicka, Dual consequence operations associated with a certain class of logical matrices, Bulletin of the Section of Logic, vol.29/4, (2000), 1-8.
[7] L. Jaworski, Z badań nad logikami bez tautologii, Rozprawa doktorska (maszynopis), Opole, 2005-2007.
[8] J. Łoś, An algebraic proof of completeness for the two - valued propositional calculus, Colloquium Mathematicum, no.2, (1951), 263-240.
[9] G. Malinowski, M. Spasowski, Dual counterparts of Łukasiewicz's sentential calculi, Studia Logica, vol.33, no. 2 (1974), 153-162.
[10] W.A. Pogorzelski, The classical propositional calculus (in Polish), PWN Warszawa, 1978.
[11] R. Wójcicki, Dual counterparts of consequence operations, Bulletin of the Section of Logic, vol.2, no. 1 (1973), 201-214.

Anetta Górnicka
Jan Deugosz University in Czestochowa,
Institute of Mathematics and Computer Science,
42-200 Czestochowa, Al. Armil Krajowej 13/15, Poland
E-mail address: a.gornicka@ajd.czest.pl
Arkadiusz Bryll
Częstochowa University of Technology,
The Faculty of Menagement,
42-201 Czestochowa, ul. Dąbrowskiego 69, room. nr 2,Poland
E-mail address: tex@op.pl

[^0]: ${ }^{1}$ Terms of a logic and a consequence will be used interchangeably

