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ALL SPLITTING LOGICS IN THE LATTICE

NEXT (KTB.3′A)

ZOFIA KOSTRZYCKA

Abstract

We examine a special modal logic which is a normal extension of the Brouwer modal
logic. It is determined by linearly ordered chains of clusters and the relation between
clusters is reflexive and symmetric. The appropriate axiomatization of this logic is pro-
posed in the papers [11] and [12]. There is also proved that all normal extensions of the
investigated logic are Kripke complete and have f.m.p. Unfortunately, the cardinality of
this family is continuum [13]. One may imagine that the structure of the lattice of these
extensions is immensely complex. Then we use the technics of splitting to characterize
this lattice and to describe some quite simple fragments. We characterize all the logics
that split the lattice.

1. Introduction

The Brouwer logic KTB is defined as a normal extension of the minimal
normal modal logic K. We get KTB := K⊕ T ⊕B where:

T := �p→ p

B := p→ �♦p

Semantically, it is determined by Kripke frames with the accessibility
relation being reflexive and symmetric. On the other side, logics determined
by reflexive and symmetric Kripke frames are called Brouwerian. Also, they
are called intransitive, since the relation does not have to be transitive. The
absence of transitivity involves many difficulties in studying these logics.
One approach to intransitive logics is to add the weak transitivity prop-

erty (4n) := �np→ �n+1p for n > 1. If n = 1 then, of course, we get just
transitivity. In 1964 Thomas defined the following family of logics:

T
+
n

:= KTB⊕ (4n) .
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He also proved that for different n the logics T
+
n
are different; see [21].

Logics T+
n
have quite strong algebraic characterization; see [20]. Recently,

such logics (especially T
+
2
) were intensively examined and some important

facts concerning the existence of their Kripke incomplete extensions were
established; see [7] and [8].
Anyway, the purely intransitive logics still need examination. Our propo-

sition in this field is to study a subfamily of NEXT (KTB), which is deter-
mined by frames with a clear semantical characterization. Such semantical
feature is linearity. The motivation for such a choice has two sources. First,
is the logic S4.3, which is complete with respect to linearly quasi ordered
frames (xRy or yRx for any distinct x, y ∈W ). They are usually presented
as chains of clusters. Below, we remind two famous results for its normal
extensions due to [1] and [5], respectively.

Theorem 1. Every normal modal logic extending S4.3 has finite model
property.

Theorem 2. Every normal modal logic extending S4.3 is finitely axioma-
tizable.

The second source for our motivation comes from the logic KTB⊕ alt3,
where

(alt3) := �p ∨�(p→ q) ∨�((p ∧ q)→ r)) ∨�((p ∧ q ∧ r)→ s).

This logic is determined by the class of reflexive and symmetric frames
forming chains of points. Byrd and Ullrich proved in 1970’s that all logics
from NEXT (KTB⊕alt3), have f.m.p. and are finitely axiomatizable (and
hence - decidable).
It seems to be interesting to compare the above result with Bull’s and

Fine’s. Anyway, we need to be careful in this comparison. For logics above
S4.3, frames are uniquely represented as chains of disjoint clusters, whereas
for logics extending KTB, clusters do not have to be disjoint in the appro-
priate frame. In a reflexive and symmetric Kripke frame, some clusters
may have non-empty intersection. The logics studied by Byrd and Ullrich
are determined by reflexive and symmetric frames forming chains of points;
each two points being in relation form, in fact, two-element cluster. Two
neighboring clusters have a common point. In the paper we will consider a
more general condition of linearity in reflexive and symmetric frames. We
accept the existence of n-element clusters for any n ∈ N. The property of
linearity for reflexive and symmetric frames is characterized as follows:

(1) Each cluster has a non-empty intersection with at most two others
(similarly as two-element clusters in frames for NEXT (KTB ⊕
alt3)),
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(2) If some cluster has non-empty intersections with two other clusters,
then each point of the cluster belongs to one of the intersections.

Below, we prepare some tools for dealing with splitting of lattices. As
it was said in Introduction the Brouwer logic KTB is determined by the
class of reflexive and symmetric Kripke frames (symb. KTB-frames). Note
that for an arbitrary KTB-frame F = 〈W,R〉 the transitive closure of R is
universal on W . For our purpose we will consider only connected frames.

Definition 1. Let F = 〈W,R〉 be a Kripke frame. Then F is connected if
for any x, y ∈W there is a number n ∈ N such that xRny.

In a frame F = 〈W,R〉, the point r ∈W is called a root if for any x ∈W
there exists a number n such that rRnx. In a connected KTB-frame each
its point x ∈ W is a root. Moreover, KTB-frame is connected iff each its
point is its root.
Logics determined by the class of frames K is defined as usual:

L(K) := {α ∈ Form : F |= α for each F ∈ K} .

The class K may consist of one frame only. To compare strength of logics
determined by classes of Kripke frames p-morphisms are used.

Definition 2. Let F1 = 〈W1, R1〉 and F2 = 〈W2, R2〉 be Kripke frames.
A map f : W1 →W2 is a p-morphism from F1 to F2, if it satisfies the
following conditions:

(p1) f is from W1 onto W2,

(p2) for all x, y ∈W1, xR1y implies f(x)R2f(y),

(p3) for each x ∈W1 and for each a ∈W2, if f(x)R2a then there exists

y ∈W1 such that xR1y and f(y) = a.

Each p-morphism is also called a reduction. If there is a p-morphims from
F1 onto F2 then we say that F1 is reducible to F2 and F2 is a p-morphic
image of F1.
By R(x) we mean a set of neighboring points of x ∈ W for F = 〈W,R〉.

Formally:
R(x) := {y ∈W : xRy}.

One may notice that the conditions (p1) and (p2) are equivalent to the
following one:

f(R1(x)) = R2(f(x)) for any x ∈W1.(1)

The next lemma is a logical folklore:

Lemma 1. Let F1, F2 be Kripke frames. If there exists a p-morphism from
F1 to F2 then L(F1) ⊆ L(F2).
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Let us also remind two basic algebraic notions such as modal algebra and
KTB-algebra.

Definition 3. An algebra A = 〈A,∩,∪,−, I, 0, 1〉 is a modal algebra if
〈A,∩,∪,
−, 0, 1〉 is a Boolean algebra and the unary operator I satisfies the con-
ditions:

(1): I(1) = 1,
(2): I(a ∩ b) = I(a) ∩ I(b) for any a, b ∈ A.

Definition 4. A modal algebra A = 〈A,∩,∪,−, I, 0, 1〉 is called a KTB-
algebra if the unary operator I satisfies the following conditions for any
a ∈ A:

(3): I(a) ≤ a,
(4): a ≤ I(−I(−a)).

There is a nice duality between Kripke frames and modal algebras. It is
easy to describe in the finite case. For a finite modal algebra A we define
the dual frame A∗ = 〈W∗, R∗〉 where W∗ is the set of atoms of algebra A

and R∗ is a binary relation defined for any x, y ∈W∗ as follows:

xR∗y iff ∀z∈A (x ≤ I(z) ⇒ y ≤ z).

It is known that both A and A∗ validate the same formulas. Conversely,
for each finite Kripke frame F = 〈W,R〉 we define its dual algebra F∗ =
〈2W ,∩,∪,−, I, ∅,W 〉 where for any X ⊆W

I(X) = {x ∈W : ∀y(xRy ⇒ y ∈ X)}.

Similarly, both frame F and its dual algebra F∗ validate the same modal
formulas. For more details see [4]. Moreover, for finite cases we have

(F∗)∗ ∼= F and (A∗)
∗ ∼= A.

For infinite case there is only the isomorphism (A∗)
∗ ∼= A.

For some special Kripke frames Lemma 1 may be strengthened to an
equivalence.

Lemma 2. Let F1, F2 be finite Kripke frames such that their dual algebras
are simple. Then L(F1) ⊆ L(F2) iff there exists a p-morphism from F1 to
F2.

Proof. It is proven by Jónsson’s lemma, the congruence extension property
of modal algebras, finiteness and simplicity of the dual algebra for F1. For
details, see for example [18] or [9]. �

In the paper [18] it is also proven:
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Lemma 3. Let F = 〈W,R〉 be a finite KTB-frame and A a finite KTB-
algebra. Then, A is subdirectly irreducible iff A is simple. Moreover

(i): F∗ is simple iff F is connected,
(ii): A is simple iff A∗ is connected.

Then we get:

Corollary 1. Let F1, F2 be finite and connected KTB-frames. Then L(F1) ⊆
L(F2) iff there exists a p-morphism from F1 to F2.

2. Main results

2.1. Linear Brouwer systems. We start this section with recalling some
basic definitions from [11] and [12].

Definition 5. Let F = 〈W,R〉 be a KTB-Kripke frame (R is reflexive and
symmetric relation on W ). Then R is called a tolerance on F.

Definition 6. A non-empty subset U ⊆W is called a block of the tolerance
R, if U is a maximal subset with U × U ⊆ R (if U ⊆ V and V × V ⊆ R,
then U = V ).

The term: block of tolerance has the same meaning as the term: clus-
ter. But we prefer to use the first one because, in KTB-Kripke frames,
clusters may have non-empty intersections. Hereafter, instead of ‘a block of
tolerance’ we simply use a shorter name ‘a block’.

Definition 7. We say that a frame 〈W,R〉 consists of linearly ordered blocks
if the following two conditions hold:

(L1) B1 ∩B2 ∩B3 = ∅,

(L2) (B1 ∩B2 6= ∅ & B2 ∩B3 6= ∅) ⇒ (B1 ∩B2) ∪ (B2 ∩B3) = B2

for any three distinct blocks B1, B2, B3

It occurred that the generalized notion of linearity for reflexive and sym-
metric structures has an adequate syntactic characterization [11], [12]. The
following formulas are given there:

(3′) := �p ∨�(�p→ �q) ∨�((�p ∧�q)→ r),

(A) := �((�p ∧ q)→ r) ∨�((�q ∧ r)→ s) ∨�((�r ∧ s ∧ ♦¬s)→ p) ∨

∨�((�s ∧ p ∧ ♦¬p)→ q).

and the logic: KTB.3′A := KTB ⊕ (3′) ⊕ (A) is considered. In [11], it is
also proven that:

Theorem 3. Logic KTB.3′A is complete with respect to the class of re-
flexive and symmetric frames with linearly ordered blocks. Logic KTB.3′A
has f.m.p.
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One may asked question if all Kripke frames validating formulas T, B,
(3′) and (A) are these frames (reflexive and symmetric) fulfilling the condi-
tions (L1) and (L2)? The answer to this question is: yes.

Lemma 4. Let F be a Kripke frame such that F |= T,B, (3′), (A). Then F

is reflexive and symmetric and the conditions (L1) and (L2) hold.

Proof. Obviously, if in a given Kripke frame there exists a point which is
irreflexive, then the axiom T is falsified. Also, if in a frame exist two points
being in a relation which is not symmetric, then axiom B is falsified. Sup-
pose that the condition (L1) does not hold in some reflexive and symmetric
Kripke frame. Then there are at least four points x1, x2, x3 and x4 belonging
to three different blocks, i.e. {x1, x2} ⊂ B1, {x2, x3} ⊂ B2, {x2, x4} ⊂ B3

and x2 ∈ B1 ∩ B2 ∩ B3. Also ¬x1Rx3, ¬x1Rx4 and ¬x3Rx4. See Fig. 2
from [11]. We define valuation:

{x2, x3, x4} ⊆ V (p) and x1 6∈ V (p),

{x2, x4} ⊆ V (q) and {x1, x3} 6⊆ V (q), and x4 6∈ V (r).

Then we get:

x3 |=V �p, x4 |=V �p ∧�q, and x3 6|=V �p→ �q,

x4 6|=V (�p ∧�q)→ r.

Hence x2 6|=V �p, x2 6|=V �(�p → �q) and x2 6|=V �[(�p ∧ �q) → r].
And x2 6|=V (3′).

Suppose, on the contrary, that the condition (L2) does not hold in
some Kripke frame F = 〈W,R〉. Hence there exists at least five points
x1, x2, x3, x4, x5 belonging to three different blocks, i.e. {x1, x2} ⊂ B1,
{x2, x3, x4} ⊂ B2, {x4, x5} ⊂ B3. Then x3 6∈ (B1 ∩ B2) ∪ (B2 ∩ B3) and
(B1 ∩B2) ∪ (B2 ∩B3) 6= B2. See Fig. 4 from [11].
We define valuation:

{x2, x3, x4, x5} ⊆ V (p) and x1 6∈ V (p),

{x2, x3, x4} ⊆ V (q) and x5 6∈ V (q), and x3 6∈ V (r).

Since the points x1, x3, x5 belong to three different blocks then they are
not in relation R. Hence we get:

x3 |=V �p ∧�q, and x3 6|=V (�p ∧�q)→ r, and x4 |= �p, and

x4 6|=V �p→ �q.

Point x2 sees x1, x3 and x4 then we get:

x2 6|=V �p, x2 6|=V �(�p→ �q), x2 6|=V �[(�p ∧�q)→ r].

Hence: x2 6|=V (3′).
�
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Similarly to logics from NEXT (S4.3) and NEXT (KTB⊕alt3) we also
have:

Theorem 4. All logics from NEXT (KTB.3′A) are Kripke complete and
have f.m.p.

In contrast to logics from NEXT (S4.3) or NEXT (KTB⊕ alt3) it oc-
curred that (see [13]):

Theorem 5. The cardinality of the family NEXT (KTB.3′A) is contin-
uum.

For further research we need to specify vocabulary concerning details of
the structure of frames with linearly ordered blocks. First of all, we denote
the whole class of such frames by LOB and any Kripke frame from this class
by LOB-frame. We say that a block B1 sees B2 if B1∩B2 6= ∅ and B1 6= B2.
In a LOB-frame any block sees at most two others. If it saw more than two,
then (L1) or (L2) would not hold. Let F = 〈W,R〉 be a connected LOB-
frame. Then if some block B sees no other blocks then B = W . Such a frame
is called a trivial one. Hence, in non-trivial LOB-frames at least two blocks
exist. Second, in a LOB-frame we may distinguish two kinds of blocks: an
external block sees one block and the internal block sees two blocks. If F
does not contain external blocks then an arbitrary fixed block B0 gives rise
to the sequences of blocks: B1, B2, B3, ... and B−1, B−2, B−3, ...such that
any Bi sees Bi−1 and Bi+1. This is an infinite (ω ∗+ω)-chain of blocks (if
all of them are distinct) or a finite circle of blocks of a length n ≥ 4 (if
Bi = Bj for i < j). The case n = 2 is impossible to occur (two blocks are
necessarily external) as well as n = 3 (a circle which consists of 3 blocks is
trivial). The class of closed LOB-frames will be denoted by CLOB and its
members as CLOB-frames. Third, if F contains an external block B0 then
again we obtain a chain of internal blocks: B1, B2, B3, ..., which can be an
infinite ω-chain or a finite chain of a length n ≥ 2 (if another external block
stops the construction). Frames having external blocks will be called open
(denoted as OLOB-frames) and their class will be denoted by OLOB.
Let us add that the trivial frames will be treated by us as open ones.

Then we assume that an open frame consists of at least one external blocks.
Then we introduce the notion of a cell.

Definition 8. Let F ∈ OLOB be a connected frame consisting of n ≥ 2
blocks. Suppose they are numerated as B1, B2,...,Bn,... accordingly with the
order. The internal cell is defined: Ci = Bi−1 ∩ Bi for i = 2, ..., n, .... The
external cell is defined as C1 = B1 \B2. For finite open frames consisting of
n blocks, the other external block is defined as Cn+1 = Bn \Bn−1. Internal
and external cells will be called just cells.
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One may observe that a finite and connected OLOB-frame having n
blocks is divided into n + 1 nonempty cells. In the trivial case for n = 1,
we treat the whole block as one cell. If n = 2 then we may divide the
OLOB-frame into two external cells and one internal. And so on.

Definition 9. Let F ∈ CLOB be a connected frame consisting of at least
four blocks. Suppose they are numerated as ..., B−n,...,B−2,B−1,B0, B1,
B2,...,Bn, ..., n ≥ 2. Then we consider the intersections Ci = Bi−1 ∩Bi for
i ∈ Z and called them also internal cells (or simply - cells).

A finite and connected CLOB-frame with n blocks is also divided into
n + 1 nonempty cells. Let us observe that points belonging to the same
cell are modally indistinguishable. If x, y ∈ Ci and Ci = Bi−1 ∩ Bi then
R(x) = R(y) = Bi−1 ∪ Bi. Hence if x |= �α then z |= α for any z ∈ R(x).
But R(x) = R(y). Then y |= �α.
Frames from OLOB will be called chains and denoted by Ch; frames from

CLOB – circles and denoted by C. Additionally, by Chkn we mean a family
of chain frames having n cells and such that the number of points in each
cell is less or equal to k. Any frame from this family will be denoted as
Ch(k1, k2, ..., kn), where the ki ≤ k for i = 1, 2, ..., n is the number of points
in the i-th cell. We allow that n = 1. Then we get we get one cell frame,
which is a trivial one. For n = 2 we get Ch(k1, k2) = Ch(k1 + k2), which
is, actually one cell frame. So, in fact, we do not have two cell chains.
But we will allow that the symbol Ch(k1, k2) anyway has sense. An infinite
chain frame is denoted Ch(k1, k2, ...). Similarly, by Ck

n we mean a family
of circle frames having n cells such that the number of points in each cell
is less or equal to k. The appropriate frame is denoted C(k1, k2, ..., kn).
In infinite case we simply write C(k1, k2, ...). We see that C(k1) = Ch(k1),
C(k1, k2) = Ch(k1, k2) = Ch(k1 + k2). Also C(k1, k2, k3) = Ch(k1 + k2 + k3).
We introduce the abbreviations: instead of Ch (1, 1, ..., 1)

︸ ︷︷ ︸
n

(or C (1, 1, ..., 1)
︸ ︷︷ ︸

n

)

we shall write Chn (or Cn). Formal definitions are given below.

Definition 10. Let Chn = 〈Wn, R〉 be a frame defined as follows: Wn =
{xi : 1 ≤ i ≤ n}, the relation R is the following:

xiRxj iff |i− j| ≤ 1; for every 1 ≤ i, j ≤ n.

The frame Chn is called a chain frame of depth n.

Definition 11. The circle frame Cn, n > 3 of depth n is defined as follows.
Cn = 〈Wn, R〉, where Wn = {xi : 1 ≤ i ≤ n}. The relation R is defined as
follows:

xiRxj iff |i− j|[mod(n− 1)] ≤ 1; for every 1 ≤ i, j ≤ n.
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Further we distinguish two subclasses from OLOB and CLOB:

• OLOB(1) - subclass of open frames with linearly ordered blocks,
whose each cell has one point.

• CLOB(1) - subclass of closed frames with linearly ordered blocks,
whose each cell has one point.

Example 1. In Fig. 1 there is presented a frame from OLOB(1) having
5 cells: C1 = B1\B2, C2 = B1 ∩ B2, C3 = B2 ∩ B3, C4 = B3 ∩ B4, C5 =
B5\B4. Symbolically we write it as Ch5.

❝ ❝ ❝ ❝ ❝x1 x2 x3 x4 x5
✤
✣

✜
✢

B1✤
✣

✜
✢

B2 ✤
✣

✜
✢

B3 ✤
✣

✜
✢

B4

Figure 1. Frame from OLOB(1) having 5 cells written as Ch5
.

Example 2. In Fig. 2 there is presented a frame from OLOB having 4 cells:
C1 = B1\B2, C2 = B1 ∩ B2, C3 = B2 ∩ B3, C4 = B3\B2,. Symbolically we
write it as Ch(1, 1, 2, 1). Additionally, we see that x3 |= �α ⇔ x4 |= �α
for any formula α.

✟✟
✟✟
✟

❍❍❍❍❍✟✟
✟✟
✟

❍❍❍❍❍❝ ❝
❝
❝
❝x1 x2 x5

x3

x4

★
✧

✥
✦

B1

✬

✫

✩

✪

B2
✬

✫

✩

✪
B3

Figure 2. Frame from OLOB having 4 cells written as Ch(1, 1, 2, 1)
.

Example 3. In Fig. 3 there is presented a frame from CLOB(1) having 9
cells: Ci = Bi−1 ∩ Bi, for i = 2, ..., 8 and C9 = B8 ∩ B1. Symbolically we
write it as C9.
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❅
❅❅

 
  ❅

❅❅

 
  ❜ ❜✤

✣
✜
✢

❜
✫✪
✬✩
❜✤

✣

✜

✢

❜
✫✪
✬✩❜✤

✣
✜
✢❜✫✪

✬✩

❜

✤

✣

✜

✢❜✫✪
✬✩

B1

B2

B3

B4

B5

B6

B7

B8

Figure 3. Frame from CLOB(1) having 9 cells written as C9.

2.2. Reductions in LOB. To compare strength of logics determined by
Kripke frames from LOB, we described the possible p-morphism between
them. We start with reductions in OLOB.

2.2.1. Reductions in OLOB. In this part of the paper we describe possible
reductions between chain frames. Some of the presented proofs are similar
to the proofs of reductions between parasol frames from [9]. We start with
reduction in the class OLOB(1).

Lemma 5. If n > m ≥ 1, then L(Chm) 6⊆ L(Chn).

Proof. Obviously, there is no p-morphism from Chm to Chn. From Corollary
1 we conclude that L(Chm) 6⊆ L(Chn). �

Suppose that m ≥ n. The case with m = n is trivial. Thus, we shall
consider only the cases withm > n. We prove the existence of a p-morphism
between Ch2n and Chn.

Lemma 6. Let Ch2n = 〈W2n, R〉, with W2n = {x1, . . . , x2n} and Chn =
〈Wn, R

′〉, with Wn = {x′1, . . . , x
′

n} be two chain frames. The relation R
and R′ are defined in the appropriate way (see Definition 10). The following
function:

f(xi) = x′i for each i ≤ n ,
f(xi) = x′2n−(i−1) for each n < i ≤ 2n

is a p-morphism from Ch2n to Chn.
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Proof. The mapping f defines the operation on the chain frame Ch2n which
could be described as folding up the frame on half. As a result we obtain
the frame Chn. The appropriate folding for n = 3 is shown in Fig. 4.

❜ ❜ ❜

✟✟
✟✟

✟✟
✟✟

✟✟

❜
❜
❜

❍❍❍❍❍❍❍❍❍❍

❜
❜
❜

Ch3

Ch6

❙
❙

❙
❙❙♦

◗
◗◗❦

PP✐

✓
✓

✓
✓✓✴

✑
✑✑✰ ✏✏✮x′1 x′2 x′3

x1

x2

x3

x4

x6

x5

Figure 4. The diagram of p-morphism from Ch6 to Ch3

The function f is onto. The condition (1) also holds. This is because the
function f maps x1 to x′1, then it moves along Chn with a short (1-step)
stop at the final point x′n. The final point of the whole journey is x

′

1.
�

We may generalize the above lemma by proving the existence of a suitable
p-morphism from Chkn to Chn, for each k ≥ 1. In this case the frame with
kn points are folded up k-times.

Lemma 7. Let Chkn = 〈Wkn, R〉, Wkn = {x1, . . . , xkn}, k ≥ 1 and Chn =
〈Wn, R

′〉, Wn = {x′1, . . . , x
′

n} be two chain frames. Then the following
function:

f(xi) = f(xi+2n) = . . . = f(xi+2sn) = x′i for any i ≤ n

and i+ 2sn ≤ kn ,

f(xi+n) = f(xi+3n) = . . . = f(xi+(2s+1)n) = x′n−(i−1) for any

i ≤ n and i+ (2s+ 1)n ≤ kn

is a p-morphism from Chkn to Chn.

Proof. Analogous to the proof of Lemma 6. �
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The p-morphism between chain frames, which is described above, is not
the unique one. Below we describe another one.

Lemma 8. Let Ch2n−1 = 〈W2n−1, R〉, W2n−1 = {x1, . . . , x2n−1} and
Chn = 〈Wn, R

′〉, Wn = {x′1, . . . , x
′

n} be two chain frames. Then the fol-
lowing function:

g(xi) = x′i for any i ≤ n
g(xi) = x′2n−i for any n < i ≤ 2n− 1

is a p-morphism from Ch2n−1 to Chn.

Proof. This time, the map g is another kind of folding up on half the chain
frame Ch2n−1. Now, the point xn laying in the middle is the point of folding
up. For n = 3 the folding looks like in Fig. 5.

❜ ❜ ❜
✟✟
✟✟

✟✟
✟✟
✟✟

❜
❜
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❍❍❍❍❍❍❍❍❍❍

❜
❜

◗
◗

◗
◗◗❦ ❳❳❳❳❳②

✑
✑

✑
✑✑✰ ✘✘✘✘✘✾

✛Ch3

Ch5

x′1 x′2 x′3

x1

x2

x3

x4

x5

Figure 5. The diagram of the p-morphism from Ch5 to Ch3.

The function g maps Ch2n−1 to Chn similarly as the function f described
in Lemma 7, but now without the intermediate stop. �

We may also generalize the above lemma; we take, for instance, two
frames: Chn+k(n−1) and Chn, for any k ≥ 1. The first frame may be folded
up k-times to get Chn.

Lemma 9. Let Chn+k(n−1) = 〈Wn+k(n−1), R〉, Wn+k(n−1) =

= {x1, . . . , xn+k(n−1)}, k ≥ 1 and Chn = 〈Wn, R
′〉, Wn = {x′1, . . . , x

′

n}
be two chain-frames. Then the following function:

g(xi) = g(xi+2(n−1)) = . . . = g(xi+2s(n−1)) = x′i

for any i ≤ n and i+ 2s(n− 1) ≤ n+ k(n− 1) ,

g(xi+(n−1)) = g(xi+3(n−1)) = . . . = g(xi+(2s+1)(n−1)) = x′n−(i−1)

for any i ≤ n and i+ (2s+ 1)(n− 1) ≤ n+ k(n− 1)

is a p-morphism from Chn+k(n−1) to Chn.
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Proof. Analogous to the proof of Lemma 8 �

One may observe that the two ways of folding up chain frames presented
above, can be mixed up. For example, for Ch8 and Ch3 there is the following
p-morphism:

p(xi) =







x′i for i ≤ 3,
x′6−i for 3 < i ≤ 5,
x′i−5 for 6 ≤ i ≤ 8.

The first folding up is made according to the p-morphism g, the second one
– to f , see Fig. 6.
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Figure 6. The diagram of p-morphism from Ch8 to Ch3

One may notice that there are plenty of reductions in OLOB(1). For
example, the chain frame Ch3 is a p-morphic reduct of the following ones:

Ch5, Ch6, Ch7, Ch8, Ch9, Ch10, . . .

what means, in fact, that almost all chain frames Chm are reducible to Ch3.
Now, we are ready to prove the main theorem concerning the reduction
between frames from OLOB(1).

Theorem 6. Let m = kn+(n− 1)l for some k ≥ 1 and l ≥ 0. Then Chm
is reducible to Chn.

Proof. Let us observe that for k = 1 the required p-morphism is the func-
tion g defined in Lemma 9. Let k ≥ 2. The idea of the proof combines both
previous constructions: we ‘move’ along Chn back and forth k+ l times, and
‘make stop’ k− 1 times and ‘pass’ l intermediate endpoints without a stop.
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The exact definition of the required p-morphism may be found in [9],
p.66–67.

�

Corollary 2. The chain frame Chn is a reduct of the following chain frames
with k ∈ N:

Ch2n−1, Ch2n ,

Ch3n−2, Ch3n−1, Ch3n ,

Ch4n−3, Ch4n−2, Ch4n−1, Ch4n ,

. . .

Chkn−(k−1), Chkn−(k−2), . . . , Chkn ,(2)

. . . .

Let us notice that, for a given n, the numbers kn−(k−p) with 1 ≤ p ≤ k
cover an infinite segment of N. Indeed, for each given n one can take
k := n − 1, p := n − 1 and then k := n, p := 1. For such a choice we get
two natural numbers which are consecutive: (n−1)n and n2− (n−1). The
first number is the last index in some line of (2) and the second one is the
first index in the next line of (2). The line from which the infinite segment
starts is the one with the index (n− 1)n− (n− 2) = (n− 1)2 +1. Then we
may reformulate the above result in the following way:

Corollary 3. For any number n and any m ≥ (n−1)2+1, the chain frame
Chm is reducible to Chn.

Theorem 6 may be strengthened to an equivalence.

Theorem 7. Let n < m and n ≥ 3. The frame Chm is reducible to Chn iff
m = kn+ (n− 1)l for some k ≥ 1 and l ≥ 0.

Proof. The proof of the simple implication proceeds analogously to the one
for parasol frames, which may be found in the paper [9], pp. 66-71 or in [10].
We however sketch the proof. We describe the possible p-morphism from
Chm = 〈Wm, R〉 to Chn = 〈Wn, R

′〉. Let Wm = {x1, x2, ..., xm} and Wn =
{y1, y2, ..., yn}. First, we prove that any function f gluing two neighboring
points in Chm and mapping them into some inner point from Chn is not a
p-morphism. Suppose, on the contrary, that xiRxi+1Rxi+2Rxi+3 for 1 ≤
i ≤ m − 3 and f(xi+1) = f(xi+2) = yj , j 6= 1 and j 6= n. Then R(xi+1) =
{xi, xi+1, xi+2}, f(R(xi+1)) = {yj , yj+1} (or f(R(xi+1)) = {yj , yj−1} - it
depends on the chosen direction of the mapping). See Fig. 7. But then
R′(f(xi+1)) = {yj−1, yj , yj+1} and the condition (1) of p-morphism does
not hold. A contradiction. contradiction. So, we see that if we glue any
two neighboring points, then we have to map them onto an external point
from Chn. But then we get the p-morphism f described in Lemma 6.
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Similarly, one may prove that any function gluing more than two neigh-
boring points in Chm and mapping them into some inner point from Chn is
not a p-morphism.

❜ ❜ ❜ ❜

❜ ❜ ❜

Chm

Chn

xi xi+1 xi+2 xi+3

yj+1 yj yj−1

◗
◗

◗
◗

◗
◗◗s

❅
❅

❅
❅❅❘ ❄ ❄

Figure 7

Then we will prove that it is impossible to glue three (or more) points
and map them onto some external point from Chn; such a function, if ex-
ists is not a p-morphism. Suppose, on the contrary, that it is. Hence we
get: that xiRxi+1Rxi+2Rxi+3Rxi+4 for 1 ≤ i ≤ m − 3 and f(xi+1) =
f(xi+2) = f(xi+3) = yn, (if they are mapped to y1 then the proof is analo-
gous). Then R(xi+2) = {xi+1, xi+2, xi+3} and f(R(xi+2)) = {yn}. But then
R(f(xi+2)) = {yn−1, yn}. The condition (1) does not hold. A contradiction.
Then we see that any p-morphism between chain frames must be a com-

bination of these two described in Lemmas 6 and 8.
�

Let us add that if the frame Ch is a trivial one, then any other frame
(also from OLOB(1), but not necessarily) is reducible to it.
We should shortly discuss the infinite case. Suppose we have an infinite

chain frame Ch
∞
. Suppose it has the beginning (if not, then we may treat

the infinite frame as an infinite circle).

Lemma 10. The frame Ch
∞
is reducible to Chn for any n ≥ 1.

Proof. We map the ‘first’ point of Ch
∞
onto the external point of Chn. Then

the next point of Ch
∞
onto the next one of Chn, and so on. If we reach

the other external point of Chn then we turn back. The mapping takes an
infinite number of times. Such function is a p-morphism. �

Now, we describe reduction between classes OLOB and OLOB(1). In-
deed, the following holds:

Lemma 11. Let F ∈ Chkn, k ∈ N and Chn ∈ OLOB(1) be two chain frames
having n-cells each, with n ≥ 3. Then F is reducible to Chn.
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Proof. Let F = (k1, k2, ..., kn), 1 ≤ ki ≤ k for i = 1, 2, ..., n. Appropriately,
Chn = (1, 1, ..., 1)

︸ ︷︷ ︸
n

. Then the p-morphism from F to Chn is simply a gluing

of the points from each cell from the first frame and mapping them onto
the appropriate one-point cells from Chn. Such a gluing is the needed p-
morphism. �

On the other side any function mapping points from one cell onto two
points from distinct cells is not a p-morphism.

Lemma 12. Let F ∈ Chkn, k ∈ N and Chn+1 ∈ OLOB(1), n ≥ 3 be two
chain frames such that at least one cell in the F has two points. Then F is
not reducible to Chn+1.

Proof. In order to set attention suppose that the frame F has n−1 one-point
cells and exactly one cell has two elements. Then both the frames has the
same number of points. Let xi, xi+1 belong to the same cell and there are
xi−1, xi+2 from R(xi, xi+1) but from different cells. We map these points
onto four points from Chn+1: f(xk) = yk for k = i−1, i, i+1, i+2 and such
that yi−1RyiRyi+1Ryi+2. Obviously Obviously ¬yi−1Ryi+1 and ¬yiRyi+2

and ¬yi−1Ryi+2. But then we obtain ¬f(xi)Rf(xi+2) although xiRxi+2.
This contradicts the condition (p2) of p-morphism.
This reasoning may be generalized for frames having cells with a larger

number of points. �

We conclude, that the p-morphism described in Lemma 11, is a unique
one (up to isomorphism of p-morphic images of frames from Chkn). As a
conclusion of Lemmas 11 and 12 we get:

Corollary 4. Let m ≥ 3, n ≥ m, k ∈ N. Then any frame F ∈ Chkn is
reducible to Chm iff the appropriate frame Chn ∈ OLOB(1) is reducible to
Chm.

By combining Lemma 11 and Corollary 3 we obtain:

Corollary 5. Let k ∈ N, n ≥ 3. For any number m ≥ (n − 1)2 + 1, the

chain frame F ∈ Chkm is reducible to Chn.

From Lemmas 10 and 11 we conclude:

Corollary 6. red2’Let F ∈ Chk
∞
. Then F is reducible to Chn for any n ≥ 1.

2.2.2. Reductions in CLOB. First, we describe reductions in CLOB(1).

Lemma 13. Let Ckn = 〈Wkn, R〉, Wkn = {x1, . . . , xkn}, k ≥ 2 and Cn =
〈Wn, R

′〉, Wn = {y1, . . . , yn} be two circular frames. Then the following
function:

f(xj) = yi iff i = j[mod(n)]; for any i ≤ n , j ≤ kn
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is a p-morphism from Ckn to Cn.

Proof. The function f may be described as winding Ckn to Cn k-times. It
is onto. Let xjRxj+1. Obviously, f(xj)R

′f(xj+1) since f(xj) = yj[mod(n)],
f(xj+1) = yj+1[mod(n)] and yj[mod(n)]R

′yj+1[mod(n)]. Now, we check the con-
dition (p3) of p-morphism. Let f(xj)R

′xi. If f(xj) = xi then the thesis
is trivial. Let f(xj) 6= xi and suppose f(xj) = yi+1 (it could be also
f(xj) = yi−1, but it is analogous). Then we take the point xj−1 if j ≥ 2
(or xkn if j = 1). We get xjRxj−1 and f(xj−1) = yi (or x1Rxkn and
f(xkn) = y1, appropriately). �

The above Lemma may be strengthened to an equivalence.

Theorem 8. Let n ≥ 5. The frame Cm is reducible to Cn iff n|m.

Proof. The proof of the simple implication proceeds analogously to the one
for wheel frames, which may be found in the paper [18]. Below, we present
its shortcut. In the circle Cm all cells are internal and have one point. Any
function gluing more than two neighboring points from Cm and mapping
them onto some point from Cn is not a p-morphism (see proof of Theorem
7). Hence, let f : Cm → Cn, Cm = 〈Wm, R〉, Wm = {x1, . . . , xm}, m ≥ 5
and Cn = 〈Wn, R

′〉, Wn = {y1, . . . , yn}. We may suppose that f(x1) = y1
and f(x2) = y2 (up to a re-enumeration and re-orientation of Cn). Now,
again, if f(xi) = yj and f(xi−1) = yj−1 then f(xi+1) = yj+1, etc. Hence
we wind wind Cm to Cn and finish at f(xm) = yn. If not then we get a
contradiction with (1).

�

Similarly to Lemma 11 we may describe reductions from CLOB to
CLOB(1).

Lemma 14. Let F ∈ Ck
n and Cn ∈ CLOB(1). Then F is reducible to Cn.

Proof. Let C(k1, k2, ..., kn), 1 ≤ ki ≤ k for i = 1, 2, ..., n. To reduct Ck
n to

Cn we glue points from each cell from the first frame and map them onto
the one-point cells from Cn. Such a gluing is the p-morphism. �

Let us remind (see the proof of Lemma 12) that any function mapping
points from one cell onto two points from distinct cells is not a p-morphism.
We notice again, that the described in Lemma 14 p-morphism, is a unique
one (up to isomorphism of Cn). As a conclusion of Lemma 14 (and a coun-
terpart of Lemma 12 for circles) we get:

Corollary 7. Let k, n,m ≥ 1. Then any frame F ∈ Ck
n is reducible to Cm

iff the appropriate frame Cn ∈ CLOB(1) is reducible to Cm.
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2.2.3. Reductions between CLOB and OLOB. Now, we describe p-morphisms
from CLOB to OLOB. We start with the classes CLOB(1) and OLOB(1).

Lemma 15. Let C2n, n ≥ 1 be a circular frame from CLOB(1) and Chn –
a chain frame from OLOB(1). Then C2n is reducible to Chn.

Proof. Let C2n = 〈W2n, R〉, where W2n = {x1, x2, ..., x2n} and Chn =
〈W ′

n, R
′〉 where W ′

n = {x′1, x
′

2, ..., x
′

n}. We define the p-morphism as fol-
lows:

f(xi) = x′i for each i ≤ n ,
f(xi) = x′2n−(i−1) for each n < i ≤ 2n.

We notice that the p-morphism is very similar to the one defined in the
proof of Lemma 6. It is holding up of the circle in half. See Fig. 8. The
proof proceeds similarly to the earlier one. �

❜
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❜ ✬
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✪❜
❜
❜

❜
❜
❜
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PPPP✐

✏✏✏✏✮
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x′3

✓
✒

✏
✑

✓
✒

✏
✑

✓
✒

✏
✑

Figure 8. The diagram of p-morphism from C6 to Ch3.

For circle frames with an even number of points there is possible to define
another kind of p-morphism.

Lemma 16. Let C2n, n ∈ N be a circular frame from CLOB(1) and Chn+1

– a chain frame from OLOB(1). Then C2n is reducible to Chn+1.

Proof. Let C2n = 〈W2n, R〉, where W2n = {x1, x2, ..., x2n} and Chn+1 =
〈W ′

n+1, R
′〉 where W ′

n+1 = {x
′

1, x
′

2, ..., x
′

n, x
′

n+1}. We define the p-morphism
as follows:

f(xi) = x′i for each i ≤ n+ 1 ,
f(xi) = x′2n−(i−2) for each n+ 1 < i ≤ 2n.

We notice that the p-morphism is very similar to the one defined in the
proof of Lemma 8. It is another holding up in half of the circle and gluing
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2n− 2 points. Two points are not glued and they are mapped onto x′1 and
x′n+1, respectively. �

Circle frame with an odd number of points is also reducible to a chain
frame.

Lemma 17. Let C2n−1, n ∈ N be a circular frame from CLOB(1) and Chn
– a chain frame from OLOB(1). Then C2n−1 is reducible to Chn.

Proof. Let C2n−1 = 〈W2n−1, R〉, where W2n−1 = {x1, x2, ..., x2n−1} and
Chn = 〈W ′

n, R
′〉 where W ′

n = {x′1, x
′

2, ..., x
′

n}. We define the p-morphism as
follows:

g(xi) = x′i for any i ≤ n
g(xi) = x′2n−i for any n < i ≤ 2n− 1

The p-morphism is also very similar to the one defined in Lemma 8 and
the proof is actually analogous to the earlier one. �
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❜ ✬

✫

✩

✪❜
❜
❜
❜
❜

Ch3 C5

✏✏✏✏✮

✛

✏✏✏✏✮
x1

x2

x3

x5

x4
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x′2

x′3

✓
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✏
✑

✓
✒

✏
✑

Figure 9. The diagram of p-morphism from C5 to Ch3

To describe more precisely the reductions from CLOB(1) to OLOB(1)
we also get:

Lemma 18. For each n > 2, the chain frame Chn is a reduct of the following
circle frames: C2n−2, C2n−1 and C2n. There is no smaller circle frame
reducible to Chn.

Proof. The first part follows from Lemmas 15-17 The second one is a con-
sequence of the fact that there is no p-morphism from Cm, m ≥ 3 to Chn
such that 2n > m+ 2. �

To complete the description of reductions from CLOB toOLOB we notice
that:
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Corollary 8. For each n > 2 the chain frame Chn is a reduct of a circle
frame F ∈ Ck

m if m ∈ {2n− 2, 2n− 1, 2n} and any k ≥ 1.

Let us observe that there are more possible reductions CLOB(1) toOLOB(1).
They will be obtained by a superposition of the reduction described above
and the other described in two previous subsections.
Now, we discuss the case of reduction of infinite circle C∞.

Lemma 19. The frame C∞ is reducible to any Chn, n ≥ 1.

Proof. We choose the ‘first’ point of C∞ quite arbitrarily and map it onto
the external point of Chn. Then the next point (from ‘left side’) of C∞ is
mapped onto the next one of Chn, and and so on. Analogously for points
from ‘right side’ of the chosen point from C∞. If we reach the other external
point of Chn then we turn back. The mapping takes an infinite number of
times. Such function is a p-morphism. �

Theorem 9. Let Chn be a chain frame from OLOB(1). Then for any k ≥ 1
and any m ≥ 2(n− 1)2 + 2 the frames F ∈ Chkm and G ∈ Ck

m are reducible
to Chn.

Proof. From Corollary 5 we conclude that for any k ≥ 1 and any m ≥
(n − 1)2 + 1 frame F ∈ Chkm is reducible to Chn. Then it also holds for
m ≥ 2(n− 1)2 + 2.
For a circle frame G ∈ Ck

m we reduce it first to the circle frame Cm (see
Lemma 14). If m is even then by Lemma 16 we reduce Cn to Chm

2
; if m

is odd, then Cm is reducible to Chm+1

2

(see Lemma 15). Superposition of

two reductions is a reduction. We apply Corollary 3 to frames: Chm
2
and

Chm+1

2

. They are reducible to Chn for any m such that m
2 ≥ (n − 1)2 + 1

(and m+1
2 ≥ (n − 1)2 + 1 ). By a simple calculation we get that for any

m ≥ 2(n− 1)2 + 2, the frame G ∈ Ck
m, k ≥ 1 is reducible to Chn.

�

From Lemmas 19 and 14 we also get:

Corollary 9. Let F ∈ Ck
∞
. Then F is reducible to Chn for any n ≥ 1.

On the other side, one may noticed that there are no reductions from
OLOB(1) to CLOB(1) neither from OLOB to CLOB.

2.3. Splittings. Since the cardinality of the family NEXT (KTB.3′A) is
continuum, then we shall find and describe some interesting proper sub-
lattices of the whole investigated lattice. A powerful method of division
of a complete lattice into two special parts is the method of splitting. By
splitting we get a sharp line of division of the whole lattice.
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Definition 12. Let L := 〈L,∧,∨〉 be a lattice and a ∈ L. Then a splits L

if there exists b ∈ L such that for any x ∈ L, either x ≤ a or b ≤ x, but not
both. The pair (a, b) is called a splitting pair of the lattice L. The element
a splits the lattice, whereas the element b is called the splitting partner of a.

Sometimes, a trivial splitting holds when a < b.In such a case a is a
unique cocover of b and b is a unique cover of a.
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Figure 10. A splitting of a lattice L.

To deal with splittings we need the notion of a characteristic formula. It
was first introduced for intuitionistic logic (and Heyting algebras) by [6],
but later the notion was adopted to modal logics as well. Then, by the
theory of duality, characteristic formulas are also used for Kripke frames.
For each finite frame F = 〈W,R〉 we define its diagram ∆F as follows:

• for each element a ∈W we fix a distinct propositional variable pa.
• ∆F := {pa → ♦pb : aRb} ∪ {pa → ¬♦pb : ¬(aRb)} ∪ {pa → ¬pb :
a 6= b} ∪

{∨

x∈W px
}

The characteristic formula for the frame F is defined δF :=
∧

∆F. We
say that a KTB-frame F = 〈W,R〉 has a finite depth n if for any y ∈W it
holds that xRny, for any root x of F. The depth of F is a minimal such an
n. Let us remind that in a connected KTB-frame each point is a root.
If the frame F determines the logic L(F) that splits the given lattice,

then we say that F splits the lattice. Let F be a frame of finite depth
n, that splits NEXT (L0). For the given point x we take the formula
κF,x := �nδF → ¬px. Obviously, for the given valuation V we get

x 6|=V κF,x .
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Similarly, for any other point y (which may be also treated as a root) we
get

y 6|=V κF,y.

The formulas κF,x and κF,y are somehow equivalent in the sense that, for
any valuation V

x 6|=V κF,x ⇔ y 6|=V κF,y .

Hence, actually we may choose any point as a root.
The splitting partner of L(F) is the logic L0 ⊕ κF,x. It is the smallest

logic not verified by F. It will be also denoted by L0/F. Then the splitting
pair in NEXT (L0) is the following:

{L(F), L0 ⊕ κF,x}.

The following theorem [15] is called the general splitting theorem:

Theorem 10. Let L0 ∈ NEXT (K) and F be a finite Kripke frame with a
root r. Then the following conditions are equivalent:
(i) F splits NEXT (L0).

(ii)There is n ∈ N such that for any frame G with G |= L0, if �
(n)δF∧ is

satisfiable in G, then �(m)δF ∧ pr is also satisfiable in G for any m > n.

The symbol �(n) is defined as usual: �(1)p = p ∧ �p, �(n)p = p ∧
�(�(n−1)p). In reflexive structures (in KTB-frames as well) the condition
(ii) is simplified to the following one:

(ii’) There is n ∈ N such that for any frame G with G |= L0, if �
nδF∧ pr

is satisfiable in G, then �mδF ∧ pr is also satisfiable in G for any m > n.

Here, we also should remember that the root r may be chosen quite
arbitrarily.

Theorem 11. [17] Let L0 be a modal logic which has f.m.p. If L splits
NEXT (L0), then there exists a finite subdirectly irreducible algebra B such
that L = L(B).

Finite subdirectly irreducible KTB-algebras are in fact simple algebras
and they correspond to finite connected KTB-frames. The following two
logics split the lattice NEXT (KTB):

(1) L(◦), where ◦ is the frame of one reflexive point [16].
(2) L(◦ − ◦), where ◦ − ◦ is the frame of two points with full relation

[19].

One may notice that the frame of one reflexive point is the chain Ch1,
whereas the frame of two points with full relation belongs to the one-element
class Ch21. Further, in [14] it is proven that:

Theorem 12. The logics L(◦) and L(◦ − ◦) are the only logics that split
the lattice NEXT (KTB).
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2.4. Splitting in NEXT (KTB.3′A). By Theorem 11 we know, that look-
ing for frames that split the lattice NEXT (KTB.3′A) (which is a sublat-
tice of NEXT (KTB)), we may restrict our attention to the class of finite
connected frames from LOB.
We notice that:

Remark 1. Let F ∈ LOB has n + 1 of cells, n ≥ 3. Then its depth is at
most n.

Remark 2. Let F = 〈W,R〉 ∈ LOB consists of n+1 cells. Then �nδF∧ px
is satisfiable at x ∈W , for any x ∈W .

Lemma 20. Let F1 = 〈W1, R1〉, F2 = 〈W2, R2〉 be two connected frames
from LOB and F1 - a finite one. Then the following conditions are equiva-
lent

(i) there is a p-morphism from F2 to F1.
(ii) the formula �nδF1

∧px is satisfiable in F2 for any n ∈ N and x ∈W1.

Proof. (i)→ (ii) Let f : F2 → F1 be a p-morphism. We take the following
valuation in F2:

V : f−1(a)→ pa, for all points f−1(a) ∈W2.

Then the formula �nδF1
∧ px is satisfiable at f

−1(x) in F2 for any n ∈ N.
(2) → (1). If the formula �nδF1

∧ px is satisfiable at some point y ∈ W2

for any n ∈ N, then it means that we may follow the valuation V from F1

which leads to the characteristic formula. V in F1 was defined as usual:
for each point a ∈ W1 it assigns a variable pa. We stretch the valuation V
on the whole frame F2. Then the needed p-morphism is defined: obviously
f(y) = x and also f(yi) = xj iff V (yi) = pxj

for any xj ∈ W1 and yi ∈ W2.
The conditions (p2) and (p3) for p-morphisms are fulfilled. �

On the base the above equivalence between existence of p-morphisms and
satisfiability of characteristic formula we get:

Lemma 21. Let Chn with n ≥ 3, be a finite and connected chain frame
from OLOB(1). Then L(Chn) splits the lattice NEXT (KTB.3′A).

Proof. Let Chn be a chain frame from OLOB(1). From Theorem 9 we

deduce that for any k ≥ 1 and any m ≥ 2(n − 1)2 + 2 frames from Chkm
and Ck

m are reducible to Chn. From Lemma 20 we see that the formula
�mδChn ∧ px is satisfiable in these frames. Hence there is an m0 ∈ N (and

m0 = 2(n − 1)2 + 2) such that for any frame G ∈ LOB, if �m0δChn ∧ pr is

satisfiable in G, then �m′

δChn ∧ pr is also satisfiable in G for any m′ > m0.
The condition (ii’) of the Kracht theorem is fulfilled. Then we conclude that
for each n ≥ 3 the finite frame Chn splits the latticeNEXT (KTB.3′A). �
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Below, we shall prove that no other finite frame from LOB splits the
investigated lattice. Theorem 10 implies that a finite and connected frame F
from LOB does not split NEXT (KTB.3′A) if there is a sequence (Gn)n∈N
of frames from LOB such that for any n ∈ N the following conditions are
fulfilled:
(I) �nδF ∧ px is satisfiable in Gn

(II) there is an m > n such that �mδF ∧ px is not satisfiable in Gn.

Lemma 22. Let F ∈ Chks , s ≥ 3 be a frame from OLOB\OLOB(1). Then
F does not split NEXT (KTB.3′A).

Proof. Let the frame F = 〈W,R〉 be written as the following sequence
(k1, k2, ..., ks) of cells, where ki ≤ k for each i = 1, 2, ..., s. The number of
points in F is equal K =

∑s
i=1 ki. Additionally, the points belonging to the

cell Ci will get upper index and be denoted x
(i)
l . We take K propositional

variables and define the suitable map V for any x
(i)
l ∈W as: V (x

(i)
l ) = p

(i)
l ,

i = 1, 2, ..., s. At least one cell has more than 1 element. Let it be the cell
Ci0 . Suppose that 1 < i0 < s. Since Ci0 has at least two points, then the
following formulas belong to the diagram ∆F:

p
(i0−1)
1 → ♦p

(i0)
1 , p

(i0−1)
1 → ♦p

(i0)
2 , p

(i0)
1 → ♦p

(i0)
2 , p

(i0)
1 → ♦p

(i0+1)
1 ,

p
(i0)
2 → ♦p

(i0+1)
1 , p

(i0−1)
1 → ¬♦p

(i0+1)
1 , p

(i0−1)
1 → ¬p

(i0)
1 , p

(i0−1)
1 → ¬p

(i0)
2 ,

p
(i0)
1 → ¬p

(i0)
2 , p

(i0)
1 → ¬p

(i0+1)
1 , p

(i0)
2 → ¬p

(i0+1)
1 , p

(i0−1)
1 → ¬p

(i0+1)
1 .(3)

If i0 = 1, then the diagram includes the formulas:

p
(2)
1 → ♦p

(1)
1 , p

(2)
1 → ♦p

(1)
2 , p

(1)
1 → ♦p

(1)
2 , , p

(2)
1 → ♦p

(3)
1 ,

p
(1)
1 → ¬♦p

(3)
1 , p

(1)
2 → ¬♦p

(3)
1 , p

(2)
1 → ¬p

(1)
1 , p

(2)
1 → ¬p

(1)
2 ,(4)

p
(1)
1 → ¬p

(1)
2 , p

(1)
1 → ¬p

(3)
1 , p

(1)
2 → ¬p

(3)
1 , p

(2)
1 → ¬p

(3)
1 .

We define the sequence of frames (Gn)n∈N as follows. To the frame F

we add its copy by gluing to the cell Cs the same cell and then the other
part of the whole copy. After that we glue another copy F (now at the cell
C1) and so on. Then we add a tail, which is a chain of s one-point cells.
The applied method of pasting frames is actually very similar to the one
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described in [14].

G1 := (k1, k2, ..., ks, 1, 1, . . . , 1
︸ ︷︷ ︸

s

),

G2 := (k1, k2, ..., ks, ks, ..., k2, k1, 1, 1, . . . , 1
︸ ︷︷ ︸

s

),

G3 := (k1, k2, ..., ks, ks, ..., k2, k1, k1, k2, ..., ks, 1, 1, . . . , 1
︸ ︷︷ ︸

s

),

...

Formally, the sequence is defined as follows. The frame Gn has s(n + 1)
cells (C1, C2, ..., Cs(n+1)) and they have the following numbers of elements:

|Ci| = |Ci+2s| = . . . = |Ci+2ps| = ki for i = 1, 2, . . . , s and p ∈ N

and i+ 2ps < sn+ 1,
|Ci+s| = |Ci+3s| = . . . = |Ci+(2p+1)s| = ks+1−i for i = 1, 2, . . . , s and p ∈ N,

and i+ (2p+ 1)s < sn+ 1,
|Cns+1| = |Cns+2| = . . . = |C(n+1)s| = 1 .

As a root of each frame Gn, n ∈ N we may choose any point. So we take,

for example, x
(1)
1 ∈ C1. The formula �nδF ∧ p

(1)
1 is satisfiable in each frame

Gn at its root (for the given n). It is because the range of the formula is
n and points accessible from the the root in n steps follows the frame F.
Then we repeat the valuation V from F in each appropriate cell (but we
have to do this only in the distance n). But if we take m = s(n + 1) then

�mδF∧p
(1)
1 is not satisfiable at x

(1)
1 neither at any other point. It is because

in the tail each point sees at most two others (excluding itself). Hence the
conjunction of formulas (3) (or (4)) can not be satisfiable for any valuation.

�

Then we shall prove that no circular frame may split the lattice
NEXT (KTB.3′A). First, we shall consider frames from CLOB(1).

Lemma 23. Let Cs with s > 3 be a frame from CLOB(1). Then Cs does
not split NEXT (KTB.3′A).

Proof. The frame Cs = 〈W,R〉, s > 3 consists of s points forming a circle.
For technical reason we shall numerate them as x0, x1, ..., xs−1. For each
point xi we take a propositional variable pi, i = 0, 1, 2, ..., s − 1 and define
as usual the suitable map V (xi) = pxi

for all xi ∈W . One may notice that
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the following formulas belong to the diagram ∆Cs
:

p0 → ♦p1, p1 → ♦p2, ..., ps−2 → ♦ps−1, ps−1 → ♦p0,

p0 → ♦ps−1, p1 → ♦p0, ..., ps−2 → ♦ps−3, ps−1 → ♦ps−2,

p0 → ¬p1, p1 → ¬p2, ..., ps−2 → ¬ps−1, ps−1 → ¬p0.(5)

As a sequence (Gn)n∈N we take the sequence of chain frames:

Gn := Ch(n+1)s.

In each frame Gn, n ∈ N as a root we choose the point xs+n. The
valuation is defined as follows:

V ′(xk) = p(k−n)[mod(s)], for 0 ≤ k ≤ (n+ 1)s− 1.

Obviously, in the root we have V ′(xs+n) = p0. If k < n then the subtraction
(k − n)[mod(s)] is treated as adding the inverse element. For example, for
s := 4 and n := 5 we get k := 0, 1, ..., 23 and

V ′(x0) = p(0−5)[mod(4)] = p(0+3)[mod(4)] = p3,

V ′(x1) = p(0−4)[mod(4)] = p(0+0)[mod(4)] = p0, ... ,

V ′(x9) = p(9−5)[mod(4)] = p0, ... , V
′(x23) = p(23−5)[mod(4)] = p2.

Let us notice that the chosen root xs+n is distant from the external nodes
more than n steps. Then the formula �nδCs

∧ p0 is satisfiable in each frame
Gn at the chosen root. It is because the range of the modality is n, not
more. However for m = ns the formula �mδCs

∧p0 is not satisfiable at xs+n

neither at any other point. It is because, now, the range of modality covers
the entire frame (also its first and last points). In each chain frame Chns
the last point (say xns) sees only one other point: xns−1. If, we valuate xns
with some pk, k = 1, ..., s − 2, then it must be possible to valuate at xns
also: pk → ♦pk+1 and pk → ♦pk−1, and variables pk−1, pk and pk+1 are
distinct. (If k = 0 then we take variables: ps−1, p0 and p1; if k = s− 1 then
we take variables: ps−2, ps−1 and p0.) But it is impossible since xns sees
only one point. Hence the conjunction of formulas (5) can not be satisfiable.
We proved that the condition (II) does not hold for the defined sequence
Gn. �

Now, we shall prove that no other circular frame may split the lattice
NEXT (KTB.3′A). Then we consider frames from CLOB \ CLOB(1).

Lemma 24. Let F ∈ Ck
s , s > 3, k > 1 be a frame from CLOB. Then F

does not split NEXT (KTB.3′A).

Proof. The proof proceeds analogously to the proof of Lemma 23. The
number of points in cells is not important in the proof. As the sequence of
frames Gn we take again a sequence of chains (built up from cells having
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appropriate to Ck
s number of points). The formula �mδF ∧ p1 with m = ns

can not be satisfiable since the first and the last points exist in each Gn. �

Theorem 13. Let F be a finite and connected frame from LOB. Logic L(F)
splits the lattice NEXT (KTB.3′A) iff F ∈ OLOB(1).

Proof. It follows from Lemmas 21 – 24. Let us add that in the case of Ch1 we
get the logic L(◦) that splits also the bigger lattice NEXT (KTB), whereas
Ch2 is in fact, a chain frame having one two-point cell. But it determines the
logic L(◦ − −◦), (which also splits the bigger lattice NEXT (KTB)). �

2.5. Structure of the lattice NEXT (KTB.3′A). Studying the lattice
NEXT (KTB.3′A) we want to emphasize that all elements of the lattice
are Kripke complete modal logics [11]. The cardinality of lattice is contin-
uum [13]. From Theorem 13 we know all the logics that split the lattice
NEXT (KTB.3′A). They are the logics L(Chn), n > 0. For any such logic
its appropriate splitting partner is the logic KTB.3′A ⊕ �nδChn → ¬px
which is the smallest logic not verified by Chn.

Example 4. The logic L(Ch2) := L(◦ − ◦) splits the lattice
NEXT (KTB.3′A) trivially. The frame Ch2 is, in fact, the two-element
cluster. Then its splitting partner must be the trivial logic L(◦).

Example 5. The logic L(Ch3) := L(◦ − ◦ − ◦) splits the lattice
NEXT (KTB.3′A). See Fig. 11.
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Figure 11. The splitting of a lattice NEXT (KTB.3′A)
by L(Ch3).
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Let us notice that the logic S5, which is determined by family of clusters,
is not a splitting logic. It is a sup-logic of KTB.3′A⊕ κCh3 . Another sup-
logic of KTB.3′A ⊕ κCh3 is the logic L(Ch4) (since it is not sub-logic of
L(Ch3).
Analogously, S5 is a sup-logic ofKTB.3′A⊕κCh4 . Then we will consider

a join-splitting of NEXT (KTB.3′A).

Definition 13. Let L := 〈L,∧,∨〉 be a lattice. Then b ∈ L is a join-splitting
of L by F ⊆ L if all a ∈ F split L and b =

∨
{L/a : a ∈ F}. Element b is

denoted by L/F .

One may notice that all chain frames as well as circular frames which have
more than 3 cells are reduced to Ch3 or to Ch4. It follows from Theorem
6, Lemmas 11 and 14, and Lemmas 15 – 17. Then the join-splitting by
{L(Ch3), L(Ch4)} gets us the logic determined by frames having at most
two cells. But such frames are, in fact, clusters. Then we have:

Example 6. Let F = {L(Ch3), L(Ch4)}. Then S5 = KTB.3′A/F . See
Fig.12.
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Figure 12. A join-splitting of a lattice NEXT (KTB.3′A).

Remark 3. The logics L(Chn), n ≥ 1 have an elegant axiomatization. If
n = 1 then L(◦) = Triv and is axiomatized by adding the axiom p ↔ �p.
For n ≥ 2 we take the appropriate axiom (4n−1) and the axiom:

alt3 := �p ∨�(p→ q) ∨�((p ∧ q)→ r) ∨�((p ∧ q ∧ r)→ s).

And we get L(Chn) = KTB.3′A⊕ alt3 ⊕ (4n−1), for n ≥ 2.
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Our next aim is to characterize some fragments of the lattice
NEXT (KTB.3′A) in details. We would like to describe neighbors of some
well described logics, especially L(Chn) , n ∈ N.

Definition 14. A modal logic M is a cocover of L in the lattice
NEXT (L0) iff the following two conditions hold:
1) M ⊂ L
2) for any modal logic M ′, if M ⊂M ′ ⊂ L then M = M ′ or M ′ = L.

Respectively, one may define the notion of a cover M ⊃ L of a logic L.
Obviously, if M is cocover of L, then L is a cover of M .

We know that all normal extensions of KTB.3′A are Kripke complete
and have f.m.p. As a consequences of the Lemma 18, Theorem 7 and
Lemma 20 we conclude that cocovers of each L(Chn) with n ∈ N belong to
OLOB(1), CLOB(1) or are determined by some frames from Ch2n, n ∈ N.

Example 7. The logic L(Ch1) determined by the trivial chain Ch1 has one
cocover - the logic L(Ch2) = L(◦ − −◦).

Example 8. The logic L(Ch2) have 3 cocovers - logics: L(Ch(3)) (which is
the logic determined by three element cluster), L(Ch3), L(Ch4).

Example 9. The logic L(Ch3) has 8 cocovers: L(Ch5), L(Ch6), L(Ch7),
L(Ch8), L(C5), L(C6), L(Ch(1, 2, 1)) and L(Ch(1, 1, 2)).

Example 10. The logic L(Ch4) has 12 cocovers: L(Ch7), L(Ch8), L(Ch10),
L(Ch11), L(Ch12), L(Ch17), L(Ch18) L(C6), L(C7), L(C8), L(Ch(1, 1, 2, 1))
and L(Ch(1, 1, 1, 2)).

We see that L(Ch7), L(Ch8) and L(C6) are the common cocovers of both
the logics: L(Ch3) and L(Ch4). Let us consider Example 9. The splitting
partner of logic L(Ch3) is the smallest logic not verified by Ch3. We know
from Lemmas 15 – 17, Theorem 6 and Lemmas 11 and 14 that the only
frames from LOB which are not reduced to Ch3 are the once from the
classes: Chk4, C

k
3 , and Ck

7 , k ∈ N. Then the splitting partner of the logic

L(Ch3) is {L(F) : F ∈ Chk4 ∩ Ck′

3 ∩ Ck′′

7 } with k, k′, k′′ ≥ 1.
Similarly, as in Examples 9 and 10 we may describe cocovers of logics

L(Chn) for n > 4. One may notice that their number is always finite.

3. Final remarks

Although the family of NEXT (KTB.3′A) has cardinality continuum,
it has occurred that some fragments of its structure are relatively simple.
This is because the lattice NEXT (KTB.3′A) has countably many splitting
logics. They are splitting partners of the logics determined by chains of
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points. Moreover, the logic S5 has a strong position in this lattice being
the join-splitting logic by L(Ch3) and L(Ch4).
The lattice of NEXT (KTB.3′A) requires further investigations. For

example, we report the problems 1:

Problem 1. Let L = KTB.3′A⊕ κChn be the splitting partner of L(Chn),
for n > 2. And let NEXT (L) be the lattice of its extensions. Is its cardi-
nality finite for the given n? Is it possible to describe the structure of this
lattice?

Problem 2. The logics L(Chn), n ≥ 1 are tabular and form the decreasing
sequence

L1 ⊃ L2 ⊃ L3 ⊃ ...

where Li+1 is a cocover of Li. We define i-th slice as {L : L′i ⊆ L ⊆ Li}
where L′i is the splitting partner of Li+1. Is this possible to describe such
sequences of slices in NEXT (KTB.3′A)?

Our future work will also concern the following problems:

(1) Existence of Halldén complete logics in NEXT (KTB.3′A),
(2) Existence of logics with the interpolation property in

NEXT (KTB.3′A),
(3) Algebraic counterpart of KTB.3′A.

Let us also notice that the axiom (3′) can be generalized (analogously
like alt3 to altn). Then our next research will concern also Kripke frames
with a higher number of branching.

Acknowledgements. Author is very grateful anonymous referee for his
valuable remarks.
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