SCIENTIFIC ISSUES Jan Długosz University in Częstochowa Mathematics XXI (2016) 73–84 DOI http://dx.doi.org/10.16926/m.2016.21.06

SOME PROPERTIES OF OPENLY ρ -CONTINUOUS FUNCTIONS

KATARZYNA NOWAKOWSKA

Abstract

In the paper we present definition and some properties of openly ρ -upper continuous functions. Connections with ρ -upper continuous and porous continuous functions are studied.

1. Preliminaries

In the paper we apply standard symbols and notations. By \mathbb{R} we denote the set of all real numbers, by \mathbb{N} we denote the set of all positive integers. The symbol $\lambda(\cdot)$ stands for the Lebesgue measure on \mathbb{R} . By int A we denote the interior of a set A. In the whole paper I = (a, b) is an open interval (not necessarily bounded) and f is a real-valued function defined on I. By f|A we denote the restriction of f to a set $A \subset I$. Symbol |J| stands for length of a interval J.

Let E be a measurable subset of \mathbb{R} and let $x \in \mathbb{R}$. According to [4], the numbers

$$\underline{d}^+(E,x) = \liminf_{t \to 0^+} \frac{\lambda(E \cap [x, x+t])}{t}$$

and

$$\overline{d}^+(E,x) = \limsup_{t \to 0^+} \frac{\lambda(E \cap [x,x+t])}{t}$$

are called the right lower density of E at x and right upper density of E at x, respectively. The left lower and left upper densities of E at x are defined analogously. If

$$\underline{d}^{+}(E,x) = \overline{d}^{+}(E,x) \qquad \left(\underline{d}^{-}(E,x) = \overline{d}^{-}(E,x)\right)$$

then we call these numbers the right density (left density) of E at x and denote it by $d^+(E, x)$ ($d^-(E, x)$). The numbers

$$\overline{d}(E, x) = \max\{\overline{d}^+(E, x), \overline{d}^-(E, x)\}\$$

and

$$\underline{d}(E, x) = \min\{\underline{d}^+(E, x), \underline{d}^-(E, x)\}\$$

are called the upper and lower density of E at x, respectively.

If $\overline{d}(E, x) = \underline{d}(E, x)$ then we call this number the density of E at x and denote it by d(E, x). If d(E, x) = 1 then we say that x is a point of density of E.

First, we recall the notion of ϱ -upper continuity.

Definition 1.1. [6] Let E be a measurable subset of \mathbb{R} , $x \in \mathbb{R}$ and $0 < \varrho \leq 1$. We say that x is a point of ϱ -type upper density of E if either $\overline{d}(E, x) > \varrho$ if $\varrho < 1$ or $\overline{d}(E, x) = 1$ if $\varrho = 1$.

Definition 1.2. [6] The function $f: I \to \mathbb{R}$ is called ρ -upper continuous at $x \in I$ provided that there is a measurable set $E \subset I$ such that x is a point of ρ -type upper density of $E, x \in E$ and f|E is continuous at x. If f is ρ -upper continuous at each point of I then we say that f is ρ -upper continuous.

By \mathcal{UC}_{ϱ} we denote the class of all ϱ -upper continuous functions defined on I, whereas the symbol $\mathcal{UC}_{\varrho}(f)$ denotes the set of all points at which the function f is ϱ -upper continuous.

In an obvious way we define one-sided ρ -upper continuity. Obviously f is ρ -upper continuous at x if and only if it is ρ -upper continuous at x on the right or on the left.

Definition 1.3. [7] Let E be a measurable subset of \mathbb{R} . Let $x \in \mathbb{R}$ and $0 < \rho \leq 1$. We say that x is a point of weakly ρ -type upper density of E if $\overline{d}(E, x) \geq \rho$.

Definition 1.4. [7] The function $f: I \to \mathbb{R}$ is called weakly ϱ -upper continuous at $x \in I$ provided that there is a measurable set $E \subset I$ such that x is a point of weakly ϱ -type upper density of $E, x \in E$ and $f|_E$ is continuous at x. If f is weakly ϱ -upper continuous at each point of I then we say that f is weakly ϱ -upper continuous.

By $u\mathcal{UC}_{\varrho}$ we denote the class of all weakly ϱ -upper continuous functions defined on I, whereas the symbol $u\mathcal{UC}_{\varrho}(f)$ denotes the set of all points at which the function f is weakly ϱ -upper continuous.

In an obvious way we define one-sided weakly ρ -upper continuity. Observe that f is weakly ρ -upper continuous at x if and only if it is weakly ρ -upper continuous at x on the right or on the left.

We recall the definition of approximate continuity.

Definition 1.5. [4] The function $f: I \to \mathbb{R}$ is called approximately continuous at $x \in I$ provided that there is a measurable set $E \subset I$ such that x is

a point of density of $E, x \in E$ and $f|_E$ is continuous at x. If f is approximately continuous at each point of I then we say that f is approximately continuous.

By \mathcal{A} we denote the class of all approximately continuous functions.

In [1] J. Borsík and J. Holos introduced path continuity connected with the notion of porosity. For a set $A \subset \mathbb{R}$ and an open interval $I \subset \mathbb{R}$ let $\Lambda(A, I)$ denote the length of the largest subinterval of I having an empty intersection with A. Let $x \in \mathbb{R}$. Then, according to [1], [5], the numbers

$$p^+(A, x) = \limsup_{t \to 0^+} \frac{\Lambda(A, (x, x+t))}{t}$$

and

$$p^{-}(A, x) = \limsup_{t \to 0^{+}} \frac{\Lambda(A, (x - t, x))}{t}$$

are called the right-porosity of the set A at x and the left-porosity of the set A at x, respectively. The porosity of the set A at x is defined as

$$p(A, x) = \max\{p^{-}(A, x), p^{+}(A, x)\}.$$

The set A is called right-porous at a point x if $p^+(A, x) > 0$, left-porous at a point x if $p^-(A, x) > 0$ and porous at a point x if p(A, x) > 0. The set A is called porous if A is porous at each point $x \in A$. The set A is called strongly porous at a point x if $p^+(A, x) = 1$ or $p^-(A, x) = 1$.

Definition 1.6. [1] Let $r \in [0, 1)$, $A \subset \mathbb{R}$, $x \in A$. The point x will be called a point of π_r -density of the set A if $p(\mathbb{R} \setminus A, x) > r$.

Let $r \in (0,1]$, $A \subset \mathbb{R}$, $x \in A$. The point $x \in A$ will be called a point of μ_r -density of the set A if $p(\mathbb{R} \setminus A, x) \ge r$.

Definition 1.7. [1] Let $r \in [0, 1)$, $x \in \mathbb{R}$. The function $f : \mathbb{R} \to \mathbb{R}$ will be called

- 1. \mathcal{P}_r -continuous at x if there exists a set $A \subset \mathbb{R}$ such that $x \in A$, x is a point of π_r -density of A and f|A is continuous at x,
- 2. S_r -continuous at x if for each $\varepsilon > 0$ there exists a set $A \subset \mathbb{R}$ such that $x \in A, x$ is a point of π_r -density of A and $f(A) \subset (f(x) \varepsilon, f(x) + \varepsilon)$.

Let $r \in (0,1], x \in \mathbb{R}$. The function $f \colon \mathbb{R} \to \mathbb{R}$ will be called

- 3. \mathcal{M}_r -continuous at a point x if there exists a set $A \subset \mathbb{R}$ such that $x \in A$, x is a point of μ_r -density of A and f|A is continuous at x,
- 4. \mathcal{N}_r -continuous at x if for each $\varepsilon > 0$ there exists a set $A \subset \mathbb{R}$ such that $x \in A, x$ is a point of μ_r -density of A and $f(A) \subset (f(x) \varepsilon, f(x) + \varepsilon)$.

All these functions will be called porously continuous. Symbols $\mathcal{P}_r(f)$, $\mathcal{S}_r(f)$, $\mathcal{M}_r(f)$, $\mathcal{N}_r(f)$ will denote the sets of all points at which the function

f is \mathcal{P}_r -continuous, \mathcal{S}_r -continuous, \mathcal{M}_r -continuous, \mathcal{N}_r -continuous,

2. Open ρ -upper continuous functions

We define new classes of functions lying between the class of ρ -upper continuous and the class of porously continuous functions.

Definition 2.1. Let $\rho \in [0,1), x \in I$. The function $f: I \to \mathbb{R}$ is called

- 1. \mathscr{P}_{ϱ} -continuous at x if there exists an open set $U \subset \mathbb{R}$ such that $\overline{d}(U, x) > \varrho$ and $f|U \cup \{x\}$ is continuous at x.
- 2. \mathscr{S}_{ϱ} -continuous at x if for each $\varepsilon > 0$ there exists an open set $U \subset I$ such that $\overline{d}(U, x) > \varrho$ and $f(U) \subset (f(x) \varepsilon, f(x) + \varepsilon)$.

Let $\varrho \in (0,1], x \in I$. The function $f: I \to \mathbb{R}$ is called

- 1. \mathcal{M}_{ϱ} -continuous at x if there exists an open set $U \subset I$ such that $\overline{d}(U, x) \geq \varrho$ and $f|U \cup \{x\}$ is continuous at x.
- 2. \mathcal{N}_{ϱ} -continuous at x if for each $\varepsilon > 0$ there exists an open set $U \subset \mathbb{R}$ such that $\overline{d}(U, x) \ge \varrho$ and $f(U) \subset (f(x) \varepsilon, f(x) + \varepsilon)$.

We denote the class of all \mathscr{P}_{ϱ} -continuous, \mathscr{S}_{ϱ} -continuous, \mathscr{M}_{ϱ} -continuous, \mathscr{N}_{ϱ} -continuous by $\mathscr{P}_{\varrho}, \mathscr{S}_{\varrho}, \mathscr{M}_{\varrho}, \mathscr{N}_{\varrho}$, respectively. Symbols $\mathscr{P}_{\varrho}(f), \mathscr{S}_{\varrho}(f), \mathscr{M}_{\varrho}(f), \mathscr{N}_{\varrho}(f)$ denotes the sets of all points at which the function f is \mathscr{P}_{ϱ} -continuous, \mathscr{S}_{ϱ} -continuous, \mathscr{M}_{ϱ} -continuous, \mathscr{N}_{ϱ} -continuous, respectively.

Remark 2.1. In [3] similar functions are considered. But in the definitions $A_r(f)$ and $B_r(f)$ in [2] symmetric density is used. And there is connections between $A_r(f)$, $B_r(f)$, ρ -upper continuity and porous continuity.

Some obvious relations between sets of open ρ -continuity of f will be described in the following propositions.

Proposition 2.1. Let $f: I \to \mathbb{R}$. Then

1. $\mathcal{P}_{\varrho_2}(f) \subset \mathcal{P}_{\varrho_1}(f) \text{ and } \mathcal{S}_{\varrho_2}(f) \subset \mathcal{S}_{\varrho_1}(f) \text{ for } 0 \leq \varrho_1 < \varrho_2 < 1,$ 2. $\mathcal{M}_{\varrho_2}(f) \subset \mathcal{M}_{\varrho_1}(f) \text{ and } \mathcal{N}_{\varrho_2}(f) \subset \mathcal{N}_{\varrho_1}(f) \text{ for } 0 < \varrho_1 < \varrho_2 \leq 1,$ 3. $\mathcal{P}_{\varrho}(f) \subset \mathcal{M}_{\varrho}(f) \text{ and } \mathcal{S}_{\varrho}(f) \subset \mathcal{N}_{\varrho}(f) \text{ for } 0 < \varrho < 1,$ 4. $\mathcal{M}_{\varrho_2}(f) \subset \mathcal{P}_{\varrho_1}(f) \text{ and } \mathcal{N}_{\varrho_2}(f) \subset \mathcal{S}_{\varrho_1}(f) \text{ for } 0 \leq \varrho_1 < \varrho_2 \leq 1,$ 5. $\mathcal{P}_{\varrho}(f) \subset \mathcal{S}_{\varrho}(f) \text{ for } 0 \leq \varrho < 1,$ 6. $\mathcal{M}_{\varrho}(f) \subset \mathcal{N}_{\varrho}(f) \text{ for } 0 < \varrho \leq 1.$

Proposition 2.2. Let $f: I \to \mathbb{R}, \ \varrho \in [0,1)$. Then $\mathscr{P}_{\varrho}(f) \subset \mathcal{UC}_{\varrho}(f)$.

Proposition 2.3. Let $f: I \to \mathbb{R}, \ \varrho \in (0,1]$. Then $\mathscr{M}_{\varrho}(f) \subset \mathscr{uUC}_{\varrho}(f)$.

The following two propositions follow directly from the definitions.

76

Proposition 2.4. Let $\rho \in [0,1)$, $x \in I$. If $f: I \to \mathbb{R}$ is continuous at x from the left or from the right then $x \in \mathscr{S}_{\rho}(f) \cap \mathscr{P}_{\rho}(f)$.

Proposition 2.5. Let $\rho \in (0,1]$, $x \in I$. If $f: I \to \mathbb{R}$ is continuous at x from the left or from the right then $x \in \mathcal{N}_{\rho}(f) \cap \mathcal{M}_{\rho}(f)$.

We will show that approximate continuity does not imply any open ρ -upper continuity. To this end we need well known theorem of Zahorski.

Theorem 2.1. [4] Let E be a set of F_{σ} type such that d(E, x) = 1 for all $x \in E$. There exists an approximately continuous function $f: E \to \mathbb{R}$ such that $0 < f(x) \leq 1$ for all $x \in E$ and f(x) = 0 for all $x \notin E$. Then the function f is also upper semi-continuous.

Example 2.1. We will give an example of approximately continuous function which does not belong to \mathscr{S}_0 .

Let $E \subset \mathbb{R}$ be nowhere dense closed set with positive Lebesgue measure. Let L(E) be a set of density points of E. Then $\lambda(L(E)) = \lambda(E)$, by Lebesgue Density Theorem [4]. Let $F \subset L(E)$ be a set of F_{σ} type such that $\lambda(F) = \lambda(L(E))$. Then $F \subset L(F)$. By Theorem 2.1, there exists an approximately continuous function $f \colon \mathbb{R} \to \mathbb{R}$ such that $f(x) \in (0, 1]$ for all $x \in F$ and f(x) = 0 for all $x \in \mathbb{R} \setminus F$. Let $x_0 \in F$, so $f(x_0) > 0$. For all $0 < \varepsilon < f(x_0)$ we have

$$\{x \colon |f(x) - f(x_0)| < \varepsilon\} \subset F.$$

The set F is nowhere dense, so $\inf\{x: |f(x) - f(x_0)| < \varepsilon\} = \emptyset$. Hence f is not \mathscr{S}_0 -continuous at x_0 .

The class of all weakly ρ -upper continuous functions consists the class of all Lebesgue measurable functions [7], so all considered classes of functions $\mathcal{P}_{\varrho}, \mathcal{S}_{\varrho}, \mathcal{M}_{\varrho}, \mathcal{N}_{\varrho}$ consist the class of all Lebesgue measurable functions.

Lemma 2.1. Let $U \subset \mathbb{R}$ be open set, $x_0 \in \mathbb{R}$. Then

 $\overline{d}(U, x_0) \ge p(\mathbb{R} \setminus U, x_0).$

Proof. Let $p(\mathbb{R} \setminus U, x_0) = c$. Then $p^+(\mathbb{R} \setminus U, x_0) = c$ or $p^-(\mathbb{R} \setminus U, x_0) = c$. Without loss of generality we may assume that $p^+(\mathbb{R} \setminus U, x_0) = c$. Therefore there is decreasing sequence $\{h_n\}_{n\geq 1}$ of positive numbers such that $\lim_{n\to\infty} h_n = 0$ and

$$p^+(\mathbb{R} \setminus U, x_0) = \lim_{n \to \infty} \frac{\Lambda\left(\mathbb{R} \setminus U, (x_0, x_0 + h_n)\right)}{h_n}.$$

Therefore there is a sequence of open intervals $\{I_n\}_{n\geq 1}$ such that $I_n \cap (\mathbb{R} \setminus U) = \emptyset$ and $|I_n| = \Lambda (\mathbb{R} \setminus U, (x_0, x_0 + h_n))$. Then $I_n \subset U$ for each $n \geq 1$

and

$$\overline{d}(U, x_0) \ge \overline{d}^+(U, x_0) \ge \overline{d} \left(\bigcup_{k \ge 1} I_k, x_0 \right) \ge$$

$$\ge \limsup_{n \to \infty} \frac{\lambda \left(\bigcup_{k \ge 1} I_k \cap [x_0, x_0 + h_n] \right)}{h_n} =$$

$$= \limsup_{n \to \infty} \frac{\lambda \left(\bigcup_{k \ge n} I_k \right)}{h_n} \ge \limsup_{n \to \infty} \frac{\lambda(I_n)}{h_n} =$$

$$= \limsup_{n \to \infty} \frac{\Lambda \left(\mathbb{R} \setminus U, (x_0, x_0 + h_n) \right)}{h_n} = p^+(\mathbb{R} \setminus U, x_0) = p(\mathbb{R} \setminus U, x_0).$$

The next theorem follows immediately from Lemma 2.1

Theorem 2.2. Let $f: I \to \mathbb{R}$. Then

1. $\mathcal{P}_{\varrho}(f) \subset \mathscr{P}_{\varrho}(f) \text{ for } \varrho \in [0,1),$ 2. $\mathcal{S}_{\varrho}(f) \subset \mathscr{S}_{\varrho}(f) \text{ for } \varrho \in [0,1),$ 3. $\mathcal{M}_{\varrho}(f) \subset \mathscr{M}_{\varrho}(f) \text{ for } \varrho \in (0,1],$ 4. $\mathcal{N}_{\rho}(f) \subset \mathscr{N}_{\rho}(f) \text{ for } \varrho \in (0,1].$

We will show, in the next example, that all inclusions in Theorem 2.2 are proper.

Example 2.2. We will construct $f \in \mathcal{M}_1$ such that $0 \notin \mathcal{S}_0(f)$, e.g. $\mathcal{M}_1(f) \setminus \mathcal{S}_0(f) \neq \emptyset$.

Let $\{x_n\}_{n\geq 1}$ be a decreasing sequence of positive numbers such that $\lim_{n\to\infty} x_n = 0, x_n - x_{n+1} \geq x_{n+1} - x_{n+2}$ and $\lim_{n\to\infty} \frac{x_n - x_{n+1}}{x_{n+1}} = 0$ (for example, $x_n = \frac{1}{n}$). Let $y_n, z_n \in (x_{n+1}, x_n)$ be such that $x_n - z_n = \frac{1}{n+5}(x_n - x_{n+1})$, $y_n - x_{n+1} = \frac{1}{n+5}(x_n - x_{n+1})$. Thus $x_{n+1} < y_n < z_n < x_n$ for each $n \geq 1$. Notice that $z_n - y_n = \frac{n+3}{n+5}(x_n - x_{n+1})$ for each $n \geq 1$.. Let $f \colon \mathbb{R} \to \mathbb{R}$ be defined by

$$f(x) = \begin{cases} 0 & \text{if } x \in \bigcup_{n=1}^{\infty} [y_n, z_n] \cup \{0\}, \\ 1 & \text{if } x \in (0, \infty) \setminus \bigcup_{n=1}^{\infty} [y_n, z_n], \\ f(-x) & \text{if } x \in (\infty, 0). \end{cases}$$

Obviously, at each $x \neq 0$ the function f is continuous from the right or from the left, and therefore $\mathbb{R} \setminus \{0\} \subset \mathscr{M}_1(f)$. Let $U = \bigcup_{n=1}^{\infty} (y_n, z_n)$. Then for each $n \ge 1$ we have

$$\frac{\lambda(U \cap [0, x_n])}{x_n} = \frac{\sum_{k=n}^{\infty} \lambda([y_k, z_k])}{x_n} \ge \frac{\sum_{k=n}^{\infty} \frac{k+5}{k+7}(x_k - x_{k+1})}{y_n} \ge \frac{\sum_{k=n}^{\infty} \frac{x_k - x_{k+1}}{k+7}}{y_n} \ge \frac{\sum_{k=n}^{\infty} (x_k - x_{k+1})}{y_n} = \frac{n+5}{n+7} \frac{x_n}{x_n} = \frac{n+5}{n+7}$$

Therefore

$$d(U,0) = d^+(U,0) \ge \liminf_{n \to \infty} \frac{\lambda(U \cap [0, y_n])}{y_n} = \liminf_{n \to \infty} \frac{\lambda(U \cap [0, x_n])}{y_n} \ge \lim_{n \to \infty} \inf_{n \to \infty} \frac{n+5}{n+7} = 1.$$

Hence d(U,0) = 1 and f is approximately continuous at 0. Moreover, U is open, so $0 \in \mathcal{M}_1(f)$.

For each
$$\varepsilon \in (0,1)$$
, $\mathbb{R} \setminus \{x \colon |f(x) - f(0)| < \varepsilon\} \subset \mathbb{R} \setminus \bigcup_{n=1}^{\infty} \{x_n\}$. Let $h \in [x_{n+1}, x_n]$. Since $\frac{\Lambda\left(\mathbb{R} \setminus \bigcup_{n=1}^{\infty} \{x_n\}, (0,h)\right)}{h} \leq \frac{x_n - x_{n+1}}{x_{n+1}}$ and $\lim_{n \to \infty} \frac{x_n - x_{n+1}}{x_{n+1}} = 0$, we deduce

$$p(\mathbb{R} \setminus \{x \colon |f(x) - f(0)| < \varepsilon\}, 0) = \lim_{h \to 0^+} \frac{\Lambda\left(\mathbb{R} \setminus \bigcup_{n=1}^{\infty} \{x_n\}, (0, h)\right)}{h} = 0.$$

Thus $0 \notin \mathcal{S}_0(f)$.

Lemma 2.2. Let $\varrho \in [0,1]$ and $x \in \mathbb{R}$. Let $\{E_n : n \in \mathbb{N}\}$ be a descending family of open sets such that $x \in \bigcap_{n=1}^{\infty} E_n$, $\overline{d}(E_n, x) \ge \varrho$ for $n \ge 1$. Then there exists an open set E such that $\overline{d}(E, x) \ge \varrho$ and for every positive integer n there exists $\delta_n > 0$ such that $E \cap (x - \delta_n, x + \delta_n) \subset E_n$.

Proof. By assumptions, $\overline{d}(E_n, x) \ge \rho$ for $n \ge 1$. Therefore $\overline{d}^+(E_n, x) \ge \rho$ or $\overline{d}^-(E_n, x) \ge \rho$ for each n. Hence there exists an infinite family $\{E_{n_k} : k \in \mathbb{N}\}$ such that $\overline{d}^+(E_{n_k}, x) \ge \rho$ for all $k \ge 1$ or $\overline{d}^-(E_{n_k}, x) \ge \rho$ for all $k \ge 1$. Without loss of generality we may assume that the first possibility occurs. Then $\overline{d}^+(E_n, x) \ge \rho$ for all $n \ge 1$, because $\{E_n : n \in \mathbb{N}\}$ is a descending family.

We shall construct inductively a decreasing sequence $\{x_n\}_{n\geq 1}$ converging to x such that

(1)
$$\frac{\lambda(E_n \cap [x_{n+1}, x_n])}{x_n - x} > \varrho \left(1 - \frac{1}{2^n}\right) \quad \text{for } n \ge 1.$$

Let $x_1 > x$ be any point for which $\frac{\lambda(E_1 \cap [x, x_1])}{x_1 - x} > \varrho\left(1 - \frac{1}{2}\right)$ and $x_1 - x < 1$. Next, we can find $x_2 \in (x, x_1)$ such that $\frac{\lambda(E_1 \cap [x_2, x_1])}{x_1 - x} > \varrho\left(1 - \frac{1}{2}\right)$, $\frac{\lambda(E_2 \cap [x, x_2])}{x_2 - x} > \varrho\left(1 - \frac{1}{4}\right)$ and $x_2 - x < \frac{1}{2}$. There exists $x < x_3 < x_2$ for which $\frac{\lambda(E_2 \cap [x_3, x_2])}{x_2 - x} > \varrho\left(1 - \frac{1}{4}\right)$, $\frac{\lambda(E_3 \cap [x, x_3])}{x_3 - x} > \varrho\left(1 - \frac{1}{8}\right)$ and $x_3 - x < \frac{1}{3}$. Assume that points x_1, x_2, \dots, x_n with properties $x < x_n < \dots < x_1$, $\frac{\lambda(E_{i-1} \cap [x_i, x_{i-1}])}{x_{i-1} - x} > \varrho\left(1 - \frac{1}{2^{i-1}}\right)$ for $i \in \{2, \dots, n\}$, $\frac{\lambda(E_i \cap [x, x_i])}{x_i - x} > \varrho\left(1 - \frac{1}{2^i}\right)$

Assume that points x_1, x_2, \ldots, x_n with properties $x < x_n < \ldots < x_1$, $\frac{\lambda(E_{i-1}\cap[x_i,x_{i-1}])}{x_{i-1}-x} > \varrho\left(1-\frac{1}{2^{i-1}}\right) \text{ for } i \in \{2,\ldots,n\}, \quad \frac{\lambda(E_i\cap[x,x_i])}{x_i-x} > \varrho\left(1-\frac{1}{2^i}\right)$ and $x_i-x < \frac{1}{i}$ for $i \in \{1,2,\ldots,n\}$ are chosen. Then there exists $x < x_{n+1} < x_n$ such that $\frac{\lambda(E_n\cap[x_{n+1},x_n])}{x_n-x} > \varrho\left(1-\frac{1}{2^n}\right), \quad \frac{\lambda(E_{n+1}\cap[x_{n+1}])}{x_{n+1}-x} > \varrho\left(1-\frac{1}{2^{n+1}}\right)$ and $x_{n+1}-x < \frac{1}{n+1}$. Thus we have constructed inductively the

Thus we have constructed inductively the sequence $\{x_n\}_{n\geq 1}$ satisfying condition (1).

Let
$$E = \bigcup_{n=1}^{\infty} (E_n \cap (x_{n+1}, x_n))$$
. Obviously, E is open. Since

$$\limsup_{n \to \infty} \frac{\lambda(E \cap [x, x_n])}{x_n - x} \ge \limsup_{n \to \infty} \frac{\lambda(E_n \cap [x_{n+1}, x_n])}{x_n - x} \ge \lim_{n \to \infty} \varrho \left(1 - \frac{1}{2^n}\right) = \varrho$$

we obtain $\overline{d}(E, x) \ge \varrho$.

By the definition of the set E, for each n there exists $\delta_n = x_n - x > 0$ such that $E \cap (x - \delta_n, x + \delta_n) = E \cap [x, x_n) \subset E_n$. The proof is completed. \Box

Theorem 2.3. Let $f: I \to \mathbb{R}$ and $\varrho \in (0,1]$. Then $\mathscr{M}_{\varrho}(f) = \mathscr{N}_{\varrho}(f)$.

Proof. From Proposition 2.1 it is clear that it is sufficient to show $\mathcal{N}_{\varrho}(f) \subset \mathcal{M}_{\varrho}(f)$. Let $x_0 \in \mathcal{N}_{\varrho}(f)$. Then for each positive integer n there is an open set E_n such that $\overline{d}(E_n, x_0) \geq \varrho$ and $f(E_n) \subset (f(x_0) - \frac{1}{n}, f(x_0) + \frac{1}{n})$. By Lemma 2.2 for sets E_n , we can construct an open set E such that $\overline{d}(E, x_0) \geq \varrho$ and for each n there exists $\delta_n > 0$ for which $E \cap (x_0 - \delta_n, x_0 + \delta_n) \subset E_n$. The last condition implies that $f|E \cup \{x_0\}$ is continuous at x_0 . Thus $x_0 \in \mathcal{M}_{\varrho}(f)$.

Theorem 2.4. Let $\rho \in [0,1)$, $f: I \to \mathbb{R}$, $x_0 \in I$. Then $x_0 \in \mathscr{P}_{\varrho}(f)$ if and only if

$$\lim_{\varepsilon \to 0^+} \overline{d} \left(\inf\{x \colon |f(x) - f(x_0)| < \varepsilon\}, x_0 \right) > \varrho.$$

80

Proof. Assume that f is \mathscr{P}_{ϱ} -continuous at x_0 . Let $U \subset I$ be an open set such that $\overline{d}(U, x_0) > \varrho$ and $f|U \cup \{x_0\}$ is continuous at x_0 . Let $\varepsilon > 0$. Since $f|U \cup \{x_0\}$ is continuous at x_0 , we can find $\delta > 0$ such that $(x_0 - \delta, x_0 + \delta) \cap U \subset \{x : |f(x_0) - f(x)| < \varepsilon\}$. Hence

$$\overline{d}(\{x \in I : |f(x_0) - f(x)| < \varepsilon\}, x_0) \ge \\ \ge \overline{d}(\inf\{x \in U : |f(x_0) - f(x)| < \varepsilon\}, x_0) = \overline{d}(U, x_0)$$

for each $\varepsilon > 0$. Therefore

$$\lim_{\varepsilon \to 0^+} \overline{d} (\inf\{x \in I \colon |f(x_0) - f(x)| < \varepsilon\}, x_0) \ge \overline{d}(U, x_0) > \varrho.$$

Finally, assume that

$$\varrho_1 = \lim_{\varepsilon \to 0^+} \overline{d} \left(\inf\{x \in I : |f(x_0) - f(x)| < \varepsilon\}, x_0 \right) > \varrho.$$

Using Lemma 2.2 for sets $E_n = \{x \in I : |f(x_0) - f(x)| < \frac{1}{n}\}$ we can construct an open set U such that $\overline{d}(U, x_0) \ge \rho_1 > \rho$ and for each n there exists $\delta_n > 0$ for which $U \cap (x_0 - \delta_n, x_0 + \delta_n) \subset E_n$. The last condition implies that $f|_{U \cup \{x_0\}}$ is continuous at x_0 . It follows that f is \mathscr{P}_{ϱ} -continuous at x_0 , what was to be shown. \Box

Theorem 2.5. Let $0 < \varrho_1 < \varrho_2 < 1$ and $f: I \to \mathbb{R}$. Then

$$\mathcal{M}_{1}(f) = \mathcal{N}_{1}(f) \subset \mathcal{P}_{\varrho_{2}}(f) \subset \mathcal{P}_{\varrho_{2}}(f) \subset \mathcal{M}_{\varrho_{2}}(f) = \\ = \mathcal{N}_{\varrho_{2}}(f) \subset \mathcal{P}_{\varrho_{1}}(f) \subset \mathcal{P}_{0}(f) \subset \mathcal{P}_{0}(f).$$

Proof. The proof follows immediately from Proposition 2.1 and Theorem 2.3. \Box

Theorem 2.6. Let $0 < \rho_1 < \rho_2 < 1$. Then

$$\mathscr{M}_1 = \mathscr{N}_1 \subset \mathscr{P}_{\varrho_2} \subset \mathscr{S}_{\varrho_2} \subset \mathscr{M}_{\varrho_2} = \mathscr{N}_{\varrho_2} \subset \mathscr{P}_{\varrho_1} \subset \mathscr{P}_0 \subset \mathscr{S}_0$$

and all incusions are proper.

Proof. All inclusions follow from the previous theorem. We will only show (in Examples 2.3-2.5) that they are proper. \Box

Example 2.3. Let $0 \leq \varrho_1 < \varrho_2 \leq 1$. We will construct $f \colon \mathbb{R} \to \mathbb{R}$ such that $f \in \mathscr{P}_{\varrho_1} \setminus \mathscr{M}_{\varrho_2}$.

We can find a sequence $\{[a_n, b_n]\}_{n\geq 1}$ of pairwise disjoint closed intervals such that $0 < b_{n+1} < a_n < b_n$ for each n and $\overline{d}^+ (\bigcup_{n=1}^{\infty} [a_n, b_n], 0) = \frac{\varrho_1 + \varrho_2}{2}$. Denote $I_n = [a_n, b_n]$ for every $n \geq 1$. Define a function $f \colon \mathbb{R} \to \mathbb{R}$ letting

$$f(x) = \begin{cases} 0 & \text{if } x \in \{0\} \cup \bigcup_{n=1}^{\infty} I_n, \\ 1 & \text{if } x \in (-\infty, 0) \cup \bigcup_{n=1}^{\infty} (b_{n+1}, a_n) \cup (b_1, \infty). \end{cases}$$

The function f is continuous from the left or from the right at every point except 0. Hence $\mathbb{R} \setminus \{0\} \subset \mathscr{P}_{\varrho_1}(f)$. If $E = \bigcup_{n=1}^{\infty} (a_n, b_n)$ then E is open and the function f restricted to $E \cup \{0\}$ is constant, so in particular, it is continuous at zero. Moreover,

$$\overline{d}(E,0) = \overline{d}^+ \left(\bigcup_{n=1}^{\infty} (a_n, b_n), 0 \right) = \overline{d}^+ \left(\bigcup_{n=1}^{\infty} I_n, 0 \right) = \frac{\varrho_1 + \varrho_2}{2} > \varrho_1.$$

Hence $0 \in \mathscr{P}_{\varrho_1}(f)$ and $f \in \mathscr{P}_{\varrho_1}$. But

$$\overline{d}^+(\{x: f(x) < 1\}, 0) = \overline{d}^+\left(\bigcup_{n=1}^{\infty} I_n, 0\right) = \frac{\varrho_1 + \varrho_2}{2} < \varrho_2.$$

Moreover $\overline{d}^-(\{x: f(x) < 1\}, 0) = 0$. Hence $\overline{d}(\{x: f(x) < 1\}, 0) < \varrho_2$ and f is not \mathscr{M}_{ϱ_2} -continuous at 0. Therefore $0 \notin \mathscr{M}_{\varrho_2}(f)$ and $f \notin \mathscr{M}_{\varrho_2}$.

Example 2.4. Let $\rho \in (0,1)$. We will construct $f \colon \mathbb{R} \to \mathbb{R}$ such that $f \in \mathscr{M}_{\rho} \setminus \mathscr{S}_{\rho}$.

We can find a sequence $\{[a_n, b_n]\}_{n\geq 1}$ of pairwise disjoint closed intervals such that $0 < b_{n+1} < a_n < b_n$ for each n and $\overline{d}^+ (\bigcup_{n=1}^{\infty} [a_n, b_n], 0) = \varrho$. Define a function $f \colon \mathbb{R} \to \mathbb{R}$ letting

$$f(x) = \begin{cases} 0 & \text{if } x \in \{0\} \cup \bigcup_{n=1}^{\infty} [a_n, b_n], \\ 1 & \text{if } x \in (-\infty, 0) \cup \bigcup_{n=1}^{\infty} (b_{n+1}, a_n) \cup [b_1, \infty). \end{cases}$$

Observe that the function f is continuous from the left or from the right at every point except 0. Hence $\mathbb{R} \setminus \{0\} \subset \mathscr{M}_{\varrho}(f)$.Denote $E = \bigcup_{n=1}^{\infty} (a_n, b_n)$. Then the function $f|E \cup \{0\}$ is constant, so in particular, it is continuous at zero. Moreover,

$$\overline{d}(E,0) \ge \overline{d}^+(E,0) = \overline{d}^+\left(\bigcup_{n=1}^{\infty} [a_n, b_n], 0\right) = \varrho.$$

Hence $0 \in \mathscr{M}_{\varrho}(f)$ and $f \in \mathscr{M}_{\varrho}$.

Let $\varepsilon \in (0, 1)$. Since

$$\overline{d}\left(\{x\colon |f(x) - f(0)| < \varepsilon\}, 0\right) = \overline{d}^+\left(\bigcup_{n=1}^{\infty} [a_n, b_n], 0\right) = \varrho$$

we conclude that $0 \notin \mathscr{S}_{\varrho}(f)$ and $f \notin \mathscr{S}_{\varrho}$.

Example 2.5. Let $\rho \in [0,1)$. We will construct $f \colon \mathbb{R} \to \mathbb{R}$ such that $f \in \mathscr{S}_{\rho} \setminus \mathscr{P}_{\rho}$.

We can find a sequence $\{[a_n, b_n]\}_{n\geq 1}$ of pairwise disjoint closed intervals such that $0 < b_{n+1} < a_n < b_n$ for each n and $\overline{d}^+ (\bigcup_{n=1}^{\infty} [a_n, b_n], 0) = \varrho$. Define a function $f : \mathbb{R} \to \mathbb{R}$ by

$$f(x) = \begin{cases} 0 & \text{if } x \in \{0\} \cup (b_1, \infty) \cup \bigcup_{n=1}^{\infty} [a_n, b_n), \\ 1 & \text{if } x \in (-\infty, 0) \cup \bigcup_{n=2}^{\infty} \{b_n\}, \\ \frac{a_n - x}{a_n - b_{n+1}} & \text{if } x \in (b_{n+1}, a_n), n \ge 1. \end{cases}$$

The function f is continuous from the right at every point except 0. Hence $\mathbb{R} \setminus \{0\} \subset \mathscr{S}_{\varrho}(f)$. Let $U_{\varepsilon} = \{x \colon |f(x) - f(0)| < \varepsilon\} \setminus \{0\}$ for each $\varepsilon > 0$. Then $U_{\varepsilon} = \bigcup_{n=1}^{\infty} (a_n - \varepsilon(a_n - b_{n+1}), b_n)$. Hence U_{ε} is open. Moreover,

$$\overline{d} (U_{\varepsilon}, 0) = \overline{d}^{+} \left(\bigcup_{n=1}^{\infty} (a_n - \varepsilon(a_n - b_{n+1}), b_n), 0 \right) =$$

$$= \limsup_{n \to \infty} \frac{\sum_{k=n}^{\infty} (b_k - a_k + \varepsilon(a_k - b_{k+1}))}{b_n} =$$

$$= \limsup_{n \to \infty} \frac{\sum_{k=n}^{\infty} \left((1 - \varepsilon)(b_k - a_k) + \varepsilon(b_k - b_{k+1}) \right)}{b_n} =$$

$$= \limsup_{n \to \infty} \left((1 - \varepsilon) \frac{\sum_{k=n}^{\infty} (b_k - a_k)}{b_n} + \varepsilon \frac{b_n}{b_n} \right) =$$

$$= (1 - \varepsilon)\varrho + \varepsilon > \varrho.$$

Therefore $0 \in \mathscr{S}_{\varrho}(f)$ and $f \in \mathscr{S}_{\varrho}$. On the other hand,

$$\lim_{\varepsilon \to 0^+} \overline{d} \left(\inf\{x \colon |f(x) - f(0)| > \varepsilon\}, 0 \right) =$$
$$= \lim_{\varepsilon \to 0^+} \overline{d}^+ \left(\bigcup_{n=1}^{\infty} (a_n - \varepsilon(a_n - b_{n+1}), b_n), 0 \right) = \lim_{\varepsilon \to 0^+} \left((1 - \varepsilon)\varrho + \varepsilon \right) = \varrho.$$

Hence $0 \notin \mathscr{P}_{\varrho}(f)$ and $f \notin \mathscr{P}_{\varrho}$, by Theorem 2.4.

References

- J. Borsík, J. Holos, Some properties of porous continuous functions, Math. Slovaca 64 (2014), No. 3, 741-750.
- J. Borsík, Some classes of strongly quasicontinuous functions, Real Anal. Exchange 30 (2004-2005) 689-702.
- [3] J. Borsík, Quasicontinuous functions with small set of discontinuity points, Modern Real Analysis, Lódź University Press, Lodz 2015, 11-26.
- [4] A. M. Bruckner, Differentiation of Real Functions, Lecture Notes in Mathematics, Vol. 659, Springer-Verlag Berlin Heidelberg New York, 1978.
- [5] E. P. Dolženko, Boundary properties of arbitrary functions, Math. USSR Izv. 31 (1967), 3-14 (in Russian).
- [6] S. Kowalczyk, K. Nowakowska, A note on ρ-upper continuous functions, Tatra Mt. Math. Publ. 44 (2009), 153-158.
- [7] K. Nowakowska, M. Turowska, A note on weakly ρ-upper continuous functions, Jan Długosz University of Częstochowa, Scientific Issuse, Mathematics XIX (2014,) 195-206.

Received: September 2016

KATARZYNA NOWAKOWSKA Pomeranian University in Słupsk, Institute of Mathematics, ul. Kozietulskiego 6-7, 76-200 Słupsk, Poland *E-mail address*: nowakowska_k@go2.pl