Scientific Issues

Jan Długosz University
in Częstochowa
Mathematics XXI (2016)
105-111
DOI http://dx.doi.org/10.16926/m.2016.21.09

ON THE ALIENATION OF THE CAUCHY EQUATION AND THE LAGRANGE EQUATION

KATARZYNA TROCZKA-PAWELEC AND IWONA TYRALA

Abstract

In this article we look for all solutions of the Cauchy-Lagrange functional equation. The idea of considering such an equation is associated with the alienation phenomenon.

1. Introduction

In 1988 Dhombres in his article prove following
Theorem 1 (Dhombres, see [1]). Let X and Y be two unitary rings and X be 2-divisible. Then each solution $f: X \rightarrow Y$ of the equation

$$
\begin{equation*}
f(x+y)+f(x y)=f(x)+f(y)+f(x) f(y) \tag{1}
\end{equation*}
$$

where $x, y \in X$, such that $f(0)=0$ yields a solution of the system

$$
\left\{\begin{array}{l}
f(x+y)=f(x)+f(y) \tag{2}\\
f(x y)=f(x) f(y)
\end{array}\right.
$$

for $x, y \in X$.
Adding sidewise equations in the system (2), we obtain the equation (1). It turns out that (2) and (1) are equivalent if and only if $f(0)=0$. The above effect is called the alienation phenomenon. This kind of results, as well as their various generalizations, were considered in [2]-[9] and [12]-[14].

Our studies are connected with
Theorem 2 (Aczél, 1963, see [11]). Let functions $f, g: \mathbb{R} \rightarrow \mathbb{R}$ satisfy the Lagrange functional equation

$$
g(x)-g(y)=(x-y) f\left(\frac{x+y}{2}\right)
$$

for all $x, y \in \mathbb{R}$. Then, there exist constants α, β, γ such that

$$
\left\{\begin{array}{l}
g(x)=\alpha x^{2}+\beta x+\gamma \\
f(x)=2 \alpha x+\beta
\end{array}\right.
$$

for $x \in \mathbb{R}$.
We present the main result of the article [14] associated with the above theorem.

Theorem 3. Let $(R,+, \cdot)$ be a uniquely 2-divisible ring. Then each solution $f, g: R \rightarrow R$ of the functional equation

$$
\begin{equation*}
f(x+y)+g(x)-g(y)=f(x)+f(y)+(x-y) f\left(\frac{x+y}{2}\right) \tag{3}
\end{equation*}
$$

for all $x, y \in R$ yields a solution of the system

$$
\left\{\begin{array}{l}
f(x+y)=f(x)+f(y) \tag{4}\\
g(x)-g(y)=(x-y) f\left(\frac{x+y}{2}\right)
\end{array}\right.
$$

for $x, y \in R$.

2. Preliminary Results

Now, we study a generalization of the system (4). In order to do that we introduce a new function h in the equation (3). We prove the following

Theorem 4. Let $(R,+, \cdot)$ be a uniquely 2-divisible ring. If functions $f, g, h:$ $R \rightarrow R$ satisfy the functional equation

$$
\begin{equation*}
f(x+y)+g(x)-h(y)=f(x)+f(y)+(x-y) f\left(\frac{x+y}{2}\right) \tag{5}
\end{equation*}
$$

for all $x, y \in R$, then there exists an additive function $a: R \rightarrow R$ such that

$$
\left\{\begin{array}{l}
f(x)=a(x)+f(0) \\
g(x)=g(0)+\frac{1}{2} x a(x)+x f(0) \\
h(x)=g(0)+\frac{1}{2} x a(x)+x f(0)-f(0)
\end{array}\right.
$$

for all $x \in R$.
Proof. Replacing y by x in (5) we obtain

$$
\begin{equation*}
h(x)=f(2 x)-2 f(x)+g(x), \quad x \in R \tag{6}
\end{equation*}
$$

Applying (6) to (5), we get
(7) $\quad f(x+y)+g(x)-g(y)-f(2 y)=f(x)-f(y)+(x-y) f\left(\frac{x+y}{2}\right)$
for all $x, y \in R$. Let us take $y=0$ in (7). Then,

$$
\begin{equation*}
g(x)=g(0)+x f\left(\frac{x}{2}\right), \quad x \in R \tag{8}
\end{equation*}
$$

Using formula (8) in (7) we get the following relation:
(9) $f(x+y)+x f\left(\frac{x}{2}\right)-y f\left(\frac{y}{2}\right)-f(2 y)=f(x)-f(y)+(x-y) f\left(\frac{x+y}{2}\right)$.

Interchanging x and y, we get also

$$
\begin{equation*}
f(x+y)+y f\left(\frac{y}{2}\right)-x f\left(\frac{x}{2}\right)-f(2 x)=f(y)-f(x)+(y-x) f\left(\frac{x+y}{2}\right) \tag{10}
\end{equation*}
$$

Adding sidewise equations (9) and (10), we infer that

$$
2 f(x+y)=f(2 x)+f(2 y), \quad x, y \in R
$$

Replacing in the above equation x and y by $x / 2$ and $y / 2$, respectively, we have

$$
\begin{equation*}
\left.f\left(\frac{x+y}{2}\right)=\frac{f(x)+f(y)}{2}\right), \quad x, y \in R \tag{11}
\end{equation*}
$$

that is, f satisfies Jensen functional equation (see [10]), and there exists an additive function a such that $f=a+f(0)$. This together with (8) and (6) yields immediately the assertation of the theorem.

Note that a true statement similar to the previous can be formulated:

Theorem 5. Let $(R,+, \cdot)$ be a uniquely 2-divisible ring. If functions $f, g, h:$ $R \rightarrow R$ satisfy the functional equation

$$
\begin{equation*}
f(x+y)+g(x)-h(y)=f(x)+f(y)+(x-y)\left(\frac{f(x)+f(y)}{2}\right) \tag{12}
\end{equation*}
$$

for all $x, y \in R$, then there exist an additive function $a: R \rightarrow R$ such that

$$
\left\{\begin{array}{l}
f(x)=a(x)+f(0) \\
g(x)=g(0)+\frac{1}{2} x a(x)+x f(0) \\
h(x)=g(0)+\frac{1}{2} x a(x)+x f(0)-f(0)
\end{array}\right.
$$

where $x \in R$.
Proof. Let us take $y=x$ in (12). We get

$$
\begin{equation*}
h(x)=f(2 x)-2 f(x)+g(x), \quad x \in R \tag{13}
\end{equation*}
$$

By (13) and (12) we obtain for all $x, y \in R$
(14) $f(x+y)+g(x)-f(2 y)-g(y)=f(x)-f(y)+(x-y)\left(\frac{f(x)+f(y)}{2}\right)$.

Taking $y=0$ in the above, we deduce

$$
\begin{equation*}
g(x)=g(0)+\frac{1}{2} x(f(x)+f(0)), \quad x, y \in R \tag{15}
\end{equation*}
$$

Applying (15) in (14) we get
(16) $f(x+y)-f(2 y)+\frac{1}{2} f(0)(x-y)=f(x)-f(y)+\frac{1}{2} x f(y)-\frac{1}{2} y f(x)$.

Interchanging x and y, we have
(17) $f(x+y)-f(2 x)+\frac{1}{2} f(0)(y-x)=f(y)-f(x)+\frac{1}{2} y f(x)-\frac{1}{2} x f(y)$.

By (16) and (17) we obtain

$$
2 f(x+y)=f(2 x)+f(2 y), \quad x, y \in R
$$

Becouse of the above equation is the Jensen functional equation this completes the proof.

3. Alienation

Assuming that $f(0)=0$, we get the conclusion on alienation of appropriate equations.

Corollary 1. Let $(R,+, \cdot)$ be a uniquely 2-divisible ring and $f(0)=0$. Functions $f, g, h: R \rightarrow R$ satisfy the functional equation (5) if and only if

$$
\left\{\begin{array}{l}
f(x+y)=f(x)+f(y) \tag{18}\\
g(x)-h(y)=(x-y) f\left(\frac{x+y}{2}\right)
\end{array}\right.
$$

for all $x, y \in R$.
Proof. It is clear that (18) implies (5).
According to Theorem $4, h=g$ and f is an additive function. Applying (5) we deduce that

$$
g(x)-g(y)=(x-y) f\left(\frac{x+y}{2}\right), \quad x, y \in R
$$

Corollary 2. Let $(R,+, \cdot)$ be a uniquely 2-divisible ring and $f(0)=0$. Functions $f, g, h: R \rightarrow R$ satisfy for all $x, y \in R$ the functional equation (12) if and only if

$$
\left\{\begin{array}{l}
f(x+y)=f(x)+f(y) \tag{19}\\
g(x)-h(y)=(x-y)\left(\frac{f(x)+f(y)}{2}\right)
\end{array}\right.
$$

where $x, y \in R$.

Proof. The implication $(19) \Rightarrow(12)$ is obvious.
Now, assume that functions f, g, h satisfy the equation (12). The equality $h=g$ results from Theorem 5. Moreover, the function f is additive. On account of (12),

$$
g(x)-g(y)=(x-y)\left(\frac{f(x)+f(y)}{2}\right), \quad x, y \in R
$$

The next theorem is the main result of this paper.
Theorem 6. Let $(R,+, \cdot)$ be a uniquely 2-divisible ring. Functions $f, g, h:$ $R \rightarrow R$ satisfy for all $x, y \in R$ the functional equation

$$
\begin{equation*}
f\left(\frac{x+y}{2}\right)+g(x)-h(y)=\frac{f(x)+f(y)}{2}+(x-y) f\left(\frac{x+y}{2}\right) \tag{20}
\end{equation*}
$$

if and only if

$$
\left\{\begin{array}{l}
f\left(\frac{x+y}{2}\right)=\frac{f(x)+f(y)}{2} \tag{21}\\
g(x)-h(y)=(x-y) f\left(\frac{x+y}{2}\right)
\end{array}\right.
$$

for all $x, y \in R$.
Proof. It is clear that (21) implies (20).
Let us take $y=x$ in (20). We get

$$
\begin{equation*}
g(x)=h(x), \quad x \in R . \tag{22}
\end{equation*}
$$

By means of (22) and (20), we conclude

$$
\begin{equation*}
f\left(\frac{x+y}{2}\right)+g(x)-g(y)=\frac{f(x)+f(y)}{2}+(x-y) f\left(\frac{x+y}{2}\right) \tag{23}
\end{equation*}
$$

for every $x, y \in R$. By interchanging x and y, we obtain

$$
\begin{equation*}
f\left(\frac{x+y}{2}\right)+g(y)-g(x)=\frac{f(x)+f(y)}{2}+(y-x) f\left(\frac{x+y}{2}\right) \tag{24}
\end{equation*}
$$

By (23) and (24) we get

$$
g(x)-g(y)=(x-y) f\left(\frac{x+y}{2}\right), \quad x, y \in R
$$

Applying the above to (23), we have

$$
f\left(\frac{x+y}{2}\right)=\frac{f(x)+f(y)}{2}, \quad x, y \in R
$$

This finishes the proof.

Using a similar argument we receive an analogous theorem:
Theorem 7. Let $(R,+, \cdot)$ be a uniquely 2-divisible ring. Functions f, g, h : $R \rightarrow R$ satisfy for all $x, y \in R$ the functional equation

$$
f\left(\frac{x+y}{2}\right)+g(x)-h(y)=\frac{f(x)+f(y)}{2}+(x-y)\left(\frac{f(x)+f(y)}{2}\right)
$$

if and only if

$$
\left\{\begin{array}{l}
f\left(\frac{x+y}{2}\right)=\frac{f(x)+f(y)}{2} \\
g(x)-h(y)=(x-y)\left(\frac{f(x)+f(y)}{2}\right)
\end{array}\right.
$$

for all $x, y \in R$.

References

[1] J. Dhombres, Relations de dépendance entre les équations fonctionnelles de Cauchy, Aequationes Math. 35 (1988), 186-212. DOI: 10.1007/BF01830943
[2] W. Fechner, A characterization of quadratic-multiplicative mappings, Monatsh Math. 164 (2010), 383-392. DOI: 10.1007/s00605-010-0247-3
[3] W. Fechner, E. Gselmann, General and alien solutions of a functional equation and of a functional inequality, Publ. Math. Debrecen 80 (2012), 143-154. DOI: 10.5486/PMD.2012.4970
[4] R. Ger, On an equation of ring homomorphisms, Publ. Math. Debrecen 52 (1998), 397-417.
[5] R. Ger, Ring homomorphisms equation revisited, Rocznik Nauk.-Dydakt. Prace Mat. 17 (2000), 101-115.
[6] R. Ger, Additivity and exponentiality are alien to each other, Aequat. Math. 80 (2010), 111-118. DOI: 10.1007/s00010-010-0012-7
[7] R. Ger, Alienation of additive and logarithmic equations, Annales Univ. Sci. Budapest, 40 (2013), 269-274.
[8] R. Ger, L. Reich, A generalized ring homomorphisms equation, Monatsh. Math. 159 (2010), 225-233. DOI: 10.1007/s00605-009-0173-4
[9] G. Maksa, M. Sablik, On the alienation of the exponential Cauchy equation and Hosszu equation, Aequat. Math. 90 (2016), 57-66. DOI: 10.1007/s00010-015-0358-y
[10] P. K. Sahoo and P. Kannappan, Introduction to Functional Equations, CRC Press, Boca Raton-London-New York, 2011.
[11] P.K. Sahoo, T. Riedel, Mean value theorems and functional equations, World Scientific Publishing, USA, 1998.
[12] J. Sikorska, Z. Kominek, Alienation of the logarithmic and exponential functional equations, Aequat. Math. 90 (2015), 107-121. DOI: 10.1007/s00010-015-0362-2
[13] I. Tyrala, Solutions of the Dhombres-type trigonometric functional equation, Sci. Issues Jan Dlugosz Univ. Czestochowa, Mathematics XVI (2011), 87-94.
[14] I. Tyrala, The generalization of Lagrange functional equation, Sci. Issues Catholic University in Ruzomberok, Mathematica IV (2012), 177-181.

Received: August 2016

Katarzyna Troczka-Pawelec
Jan Dlugosz University in Częstochowa,
Institute of Mathematics and Computer Science,
al. Armil Krajowej $13 / 15,42-200$ Częstochowa, Poland
E-mail address: k.troczka@ajd.czest.pl
Iwona Tyrala
Jan Deugosz University in Częstochowa,
Institute of Philosophy,
al. Armii Krajowej 36a, 42-200 Czestochowa, Poland
E-mail address: i.tyrala@ajd.czest.pl

