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FROM ARITHMETIC EXPRESSIONS TO

PROPOSITIONAL FORMULAE

LIDIA STĘPIEŃ AND MARCIN R. STĘPIEŃ

Abstract

In papers [3], [4], [5] Authors presented a new method of solving some kinds of compu-

tational tasks in the area of linear algebra by applying SAT-solver as the highly optimized

algorithms for solving the problem of propositional satisfiability. On input SAT-solver

(cf. [1], [2]) takes a propositional formula in the clause form. In this paper we show in

detail how any arithmetical expression can be translated into propositional formula in the

CNF form skipping out its traditional form. For this, we define the notion of consistency

of arithmetic and boolean valuations.

1. Background and notations

In [3], [4], [5] it was proposed a new method of declarative program-
ming in the area of linear algebra. To solve a problem, the programmer
determines the constraints of an object and leaves searching for this object
to a computer. In this new method all algebraic conditions and proper-
ties are represented by propositional formulas in such a way that satisfying
valuations represent the problem. The task of finding a solution and all cal-
culations are left to a computer equipped with highly optimized algorithms
called SAT-testers.
In this work we present a direct translation of an algebraic expression

(which describes some algebraic problems) to a propositional formula in the
clause form. We consider arithmetic terms t, u, . . . constructed by means
of variables a, b, . . ., operators +, · and constants 0 and ✶. We denote
the countable set of arithmetic variables by PW , the set of arithmetic ex-
pressions by W , the 2-element field with standard operations +2 and ·2 by
F2 = ({0, 1},+2, ·2) and by w : W → {0, 1} – an arithmetic valuation such
that

• w(t1 + t2) = 1 iff w(t1) +2 w(t2) = 1,
• w(t1 · t2) = 1 iff w(t1) ·2 w(t2) = 1.
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We consider propositional formulae α, β, . . . constructed by means of
propositional variables p, q, . . ., propositional operators ⊕, ∧ and propo-
sitional constants F, T. We denote the set of propositional variables by F ,
by B – a Boolean Algebra and by v : F → {0,1} – a boolean valuation.
The paper is organized as follows. In the second section we introduce

a new translation of any arithmetic term into a propositional formula and
we define consistency of arithmetic and boolean valuations. In the third
section we present how any arithmetic term can be translated into a propo-
sitional formula in the CNF form over its traditional form. The last section
completes the paper with some conclusions.

2. Consistent valuations

Let fF :W→F be a function which translates any arithmetic term into
a propositional formula such that:

fF (t) =







pi, dla t = ai ∈ PW i i ∈ N,

fF (t1)⊕ fF (t2), dla t = t1 + t2,

fF (t1) ∧ fF (t2), dla t = t1 · t2.

(1)

In this natural translation the arithmetic variables are translated into the
propositional variables, the constant ✶ is translated into a propositional
variable, the constant 0is translated into a negated propositional variable
and, finally, the arithmetic operators + and · are translated into the propo-
sitional disjunction ⊕ and conjunction ∧, respectively. Notice that the
function fF is a well defined bijection due to commutative, associative and
distributive properties of the set of arithmetic expressions and the set of
propositional formulae, respectively. Moreover, the length of the output
propositional formula is equal to the length of an input arithmetic expres-
sion t and the number of propositional variables of fF (t) is equal to the
number of arithmetic variables of t.

Example 1. We transform the arithmetic term t = a1 · a3 + a2 to the

propositional formula α = p1 ∧ p3 ⊕ p2 by applying the function fF and

make the truth table.
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a1 a2 a3 a1 · a3 t α p1 ∧ p3 p1 p2 p3
1 1 1 1 0 0 1 1 1 1

1 1 0 0 1 1 0 1 1 0

1 0 1 1 1 1 1 1 0 1

1 0 0 0 0 0 0 1 0 0

0 1 1 0 1 1 0 0 1 1

0 1 0 0 1 1 0 0 1 0

0 0 1 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0

Definition 1 (Consistency of valuations). We say that an arithmetic val-
uation w and a boolean valuation v are consistent iff ∀a∈PW(w(a) = 1 ⇔
fF (a) = 1).

An arithmetic valuation w and a boolean valuation v are inconsistent iff
w and v are not consistent.

Lemma 1. An arithmetic valuation w and a boolean valuation v are con-

sistent iff

∀t∈W(w(t) = 1⇔ v(fF (t)) = 1).
Proof. Let len(t) denote the length of an arithmetic term t ∈ W (i.e. the
number of operators in t). The proof proceeds by the induction over the
length of t.

A. For len(t) = 0, lemma is valid by definition 1.
B. Induction hypothesis: lemma is valid for len(t) = n− 1.
C. We show that for len(t) = n lemma is valid.

w(t) = 1⇔ w(t1+t2) = 1⇔ w(t1) = 1 or w(t2) = 1⇔ by induction
hypothesis v(fF (t1)) = 1 or v(fF (t2)) = 1 ⇔ v(fF (t1)⊕ fF (t2)) =
1⇔ v(fF (t)) = 1

w(t) = 1 ⇔ w(t1 · t2) = 1 ⇔ w(t1) = 1 and w(t2) = 1 ⇔ by in-
duction hypothesis v(fF (t1)) = 1 and v(fF (t2)) = 1 ⇔ v(fF (t1) ∧
fF (t2)) = 1⇔ v(fF (t)) = 1

The arithmetic valuation w and boolean valuation v are consistent by defi-
nition 1 for t = a ∈ PW . Hence the valuations v and w are consistent for t
which is built with arithmetic variables. Finally, w and v are consistent for
all subexpressions of t. �

3. Convertion to CNF formula

In this section we show how any arithmetic expression can be converted to
a CNF formula. A standard translation produces the output propositional
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formula in the traditional form and then this formula is converted into the
CNF form by applying well known algorithm. In our translation we omit
the traditional form of a propositional formula by direct encoding arithmetic
operations by correspondent logical connectives.
Let t ∈ W , fF :W→F (see 1). The function toCNF () produces the CNF

formula of a polynomial length relative to the length of t. Let PV(fF (t)) be
the set of propositional variables occuring in formula fF (t). The function
toCNF () expands the set of propositional variables by new, other propo-
sitional variables from the set PVC(fF (t)) ⊆ PV of labels of subformulas
fF (t). It means, that a literal lt′ ∈PV

C(fF (t)) represents a subformula
fF (t

′) of the propositional formula fF (t), which codes subexpression t′ of
expression t. In order to standarize notation if p ∈PV(fF (t)) we denote
propositional variable p by lp, but we don’t introduce a new literal.
We define the function f : W → 2C which transforms any arithmetic

expresion into the set of clauses as follows:

f(t) =







T, for t = a,

(lt1 ∨ ¬lt) ∧ (lt2 ∨ ¬lt) ∧ (¬lt1 ∨ ¬lt2 ∨ lt), for t = t1 · t2,

(lt1 ∨ lt2 ∨ ¬lt) ∧ (¬lt1 ∨ lt2 ∨ lt)∧
(lt1 ∨ ¬lt2 ∨ lt) ∧ (¬lt1 ∨ ¬lt2 ∨ ¬lt), for t = t1 + t2.

(2)

If t is an arithmetic variable, the function f produces the formula T in the
conjunctive normal form. It is a tautology and represents the empty clause
set ∅.

Now, by applying f we define a function toCNF : W → 2C by:

toCNF (t) =







T, for t ∈ PW,

toCNF (t1) ∧ toCNF (t2) ∧ f(t), for t = t1 ♦ t2 i

♦ ∈ {+, ·}.

(3)

By length of a propositional formula toCNF (t) in the clause form, which
will be denoted by dl, we mean the cardinality of its set of clauses.

Lemma 2. The output of the transformation toCNF () is of the polynomial
length relative to the length of the input arithmetic term t.

Proof. The proof proceeds by the induction on length of an input arithmetic
term t. Below we present the proof for t built with +. If t is constructed
with ·, the reasoning is analogous.

1. If len(t0) = 0, then t0 = a and dl(toCNF (t0)) = 0.
2. If len(t1) = 1, then t1 = a1 + a2 and

dl(toCNF (t1)) = dl(toCNF (a1))+dl(toCNF (a2))+4 = 0+0+4 =
4 · 1 = 4 · len(t).
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3. If len(tn) = n, then t = tn−1 + an+1 and

dl(toCNF (t)) = dl(toCNF (tn−1)) + 0 + 4 =

= (dl(toCNF (tn−2) + 0 + 4) + 4 = . . . =

= (((dl(toCNF (t0)) + 0 + 4) + 4) + . . .+ 4)
︸ ︷︷ ︸

n−1

+4 =

= (4 + 4 + . . .+ 4)
︸ ︷︷ ︸

n−1

+4 = 4 · (n − 1) + 4 = 4 · n =

4 · len(tn)

If t is built with ·, then by analogous calculation we get

dl(toCNF (t)) = 3 · len(t).

Generally, for any arithmetic expression t,

dl(toCNF (t)) 6 4 · len(t). �

Example 2.

1. If t = a ∈ PW then toCNF (t) = T

2. Let t = a1 · a4
︸ ︷︷ ︸

t1

+ a2 · a3
︸ ︷︷ ︸

t2

. Then

toCNF (t) = toCNF (t1) ∧ toCNF (t2) ∧ f(t) =

= toCNF (a1) ∧ toCNF (a4) ∧ f(t1) ∧

∧ toCNF (a2) ∧ toCNF (a3) ∧ f(t2) ∧ (lt1 ∨ lt2 ∨¬lt)∧

∧ (¬lt1 ∨ lt2 ∨ lt) ∧ (lt1 ∨ ¬lt2 ∨ lt) ∧ (¬lt1 ∨ ¬lt2 ∨ ¬lt) =

= T∧T∧(la1∨¬lt1)∧(la4∨¬lt1)∧(¬la1∨¬la4∨lt1)∧T∧T∧

∧ (la2∨¬lt2)∧(la3∨¬lt2) ∧(¬la2∨¬la3∨lt2)∧(lt1∨lt2∨¬lt)∧

∧ (¬lt1 ∨ lt2 ∨ lt) ∧ (lt1 ∨ ¬lt2 ∨ lt) ∧ (¬lt1 ∨ ¬lt2 ∨ ¬lt)

Finally:

{(la1 ,¬lt1), (la4 ,¬lt1), (¬la1 ,¬la4 , lt1), (la2 ,¬lt2), (la3 ,¬lt2),

(¬la2 ,¬la3 , lt2), (¬la2 ,¬la3 , lt2), (lt1 , lt2 ,¬lt), (¬lt1 , lt2 , lt),

(lt1 ,¬lt2 , lt), (¬lt1 ,¬lt2 ,¬lt)}

For any arithmetic term t the transformation toCNF () outputs at most
4-clausal set of at most 3-literals. Hence, the output propositional formula
is of polynomial length relative to the length of t. Moreover, all literals
corresponding to respective subexpressions have the logical value consistent
with arithmetic value of subexpressions.
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Definition 1. For any arithmetic term t ∈ W , we say that boolean val-
uation v and arithmetic valuation w are t-consistent with iff w(t′) = 1 ⇔
v(lt′) = 1, for each subexpression t′ of the expression t.

Lemma 3. Let t ∈ W and w be any arithmetic valuation. For each boolean

valuation v, v(toCNF (t))=1 iff v and w are t-consistent.

Proof. The proof proceeds by the induction on the stucture of the arithmetic
term t.

⇒ Assume that v(toCNF (t))=1. We show that v and w are t-consistent.

A. For t = a ∈ PW , toCNF (t) = T. Hence, v(toCNF (t)) = 1 for
any boolean valuation v. Since lt is the only standarized notation
of a propositional variable pt = fF (t), v and w are t-consistent by
definition 1.

B. For t= t1·t2. Assume that v(toCNF (t1 · t2)) = 1 and we show that
v and w are (t1 ·t2)-consistent w.
Since toCNF (t1 · t2) = toCNF (t1) ∧ toCNF (t2) ∧ (lt1 ∨ ¬lt)∧
∧(lt2 ∨ ¬lt) ∧ (¬lt1 ∨ ¬lt2 ∨ lt), then v(toCNF (t1)) = 1 (by induc-
tion hypothesis v and w are t1-consistent), v(toCNF (t2)) = 1 (by
induction hypothesis v and w are t2-consistent) and all clauses are
true.

1. If w(t1) = 0 and w(t2) = 0, then w(t) = 0, v(lt1) = 0 and
v(lt2)=0. Therefore v(¬lt1 ∨ ¬lt2 ∨ lt)=1. Since v(lt1 ∨ ¬lt)=1 i
v(lt2 ∨ ¬lt)=1 then v(¬lt)=1. Hence v(lt)=0.

2. Assume that w(t1)=1 and w(t2)=0. Hence w(t)=0, v(lt1)=1

i v(lt2) = 0 and v(¬lt1 ∨ ¬lt2 ∨ lt) = 1 and v(lt1 ∨ ¬lt) = 1. Since
v(lt2 ∨ ¬lt)=1 then v(¬lt)=1. Hence v(lt)=0.

3. Assume that w(t1)=0 and w(t2)=1. Hence w(t)=0, v(lt1) =
0 and v(lt2) = 1 and v(¬lt1 ∨ ¬lt2 ∨ lt) = 1 and v(lt2 ∨ ¬lt) = 1.
Since v(lt1 ∨ ¬lt) = 1 then v(¬lt) = 1. Hence v(lt) = 0.

4. Suppose that w(t1) = 1 and w(t2) = 1. Hence v(lt1) = 1

and v(lt2) = 1 and v(lt1 ∨ ¬lt) = 1 and v(lt2 ∨ ¬lt) = 1. Since
v(¬lt1 ∨ ¬lt2 ∨ lt)=1 then v(lt)=1.

So we have shown that v and w are (t1 · t2)-consistent.

C. Let t= t1+t2. Assume that v(toCNF (t1+ t2))=1 and we will show
that v and w are (t1+t2)-consistent.
Since toCNF (t1+t2)= toCNF (t1) ∧ toCNF (t2) ∧ (lt1 ∨ lt2 ∨ ¬lt) ∧
(¬lt1 ∨ lt2 ∨ lt)∧ (lt1 ∨¬lt2 ∨ lt)∧ (¬lt1 ∨¬lt2 ∨¬lt) then by induction
hypothesis v(toCNF (t1))=1 (by induction hypothesis v and w are
t1-consistent), v(toCNF (t2))=1 (by induction hypothesis v and w

are t2-consistent) and all clauses are true for v.
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1 Assume that w(t1)=0 and w(t2)=0. Hence w(t)=0, v(lt1)=0,
because v and w are t1-consistent, and v(lt2)=0, because v and w

are t2-consistent and v(¬lt1 ∨ lt2 ∨ lt) = 1, v(lt1 ∨ ¬lt2 ∨ lt) = 1 and
v(¬lt1 ∨¬lt2 ∨¬lt) = 1. Since v(lt1 ∨ lt2 ∨¬lt) = 1 then v(¬lt) = 1.
Hence v(lt) = 0.

2 Assume that w(t1)=1 and w(t2)=0. Hence w(t)=1, v(lt1)=1,
because v and w are t1-consistent, and v(lt2)=0, because v and w

are t2-consistent and v(lt1 ∨ lt2 ∨ ¬lt) = 1, v(lt1 ∨ ¬lt2 ∨ lt) = 1 and
v(¬lt1 ∨ ¬lt2 ∨ ¬lt) = 1. Since v(¬lt1 ∨ lt2 ∨ lt) = 1 then v(lt) = 1.

3 Assume that w(t1) = 0 and w(t2) = 1. Hence w(t)=1, v(lt1) =
0, because v w are t1-consistent, v(lt2) = 1, because v and w are
t2-consistent, and v(lt1 ∨ lt2 ∨ ¬lt) = 1, v(¬lt1 ∨ lt2 ∨ lt) = 1 and
v(¬lt1 ∨ ¬lt2 ∨ ¬lt) = 1. Since v(lt1 ∨ ¬lt2 ∨ lt) = 1 then v(lt) = 1.

4 Assume that w(t1) = 1 and w(t2) = 1. Hence v(lt1) = 1, be-
cause v is t1-consistent and v(lt2) = 1, because v is t2-consistent and
v(lt1 ∨ lt2 ∨ ¬lt) = 1, v(¬lt1 ∨ lt2 ∨ lt) = 1 and v(lt1 ∨ ¬lt2 ∨ lt) = 1

Since v(¬lt1 ∨ ¬lt2 ∨ ¬lt) = 1 then v(¬lt) = 1. Hence v(lt) = 0.

So we have shown that v and w are (t1 + t2)-consistent.

(⇐) Assume that v and w are t-consistent and we are going to show that
v(toCNF (t)) = 1.

A. If t is propositional variable, then boolean valuation v and the arith-
metic valuation w are t-consistent and toCNF (t) = T. Therefore
v(toCNF (t)) = 1 for any boolean valuation v.

B. Let t = t1 · t2. Assume that v and w are (t1 · t2)-consistent and we
show that v(toCNF (t1 · t2)) = 1.
Since toCNF (t1 · t2) = toCNF (t1) ∧ toCNF (t2) ∧ (lt1 ∨ ¬lt)∧

∧(lt2 ∨ ¬lt) ∧ (¬lt1 ∨ ¬lt2 ∨ lt) then, by induction hypothesis, v and
w are t1-consistent and t2-consistents. Hence v(toCNF (t1)) = 1

and v(toCNF (t2)) = 1. Now, we have to show that all clauses are
true for the boolean valuation v. By assumption that v and w are
(t1 · t2)-consistent, we have that w(t) is consistent with v(lt).

1. Let w(t) = 0. Hence v(lt) = 0 and clauses (lt1 ∨ ¬lt) and
(lt2 ∨ ¬lt) are true for the boolean valuation v. Now, we are going
to determine the value of the clause (¬lt1 ∨ ¬lt2 ∨ lt) for v. Since
v(lt) = 0, then the value of disjunction depends on its summands
and is equivalent to its disjunction. Hence, by w(t1) = 0 or w(t2) =
0 (w(t1 · t2) = 0) it follows v(lt1) = 0 or v(lt2) = 0 and v(¬lt1 ∨
¬lt2 ∨ lt) = 1. Finally, v(toCNF (t1 · t2)) = 1.
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2. Assume that w(t) = 1. Then v(lt) = 1 and the clause (¬lt1 ∨
¬t2 ∨ Lt) is true for the boolean valuation v. Since w(t1) = 1 and
w(t2) = 1 and v(lt1) = 1 and v(lt2) = 1, then clauses (lt1 ∨ ¬lt)
and (lt2 ∨ ¬lt) are also true by assumption w(t1 · t2) = 1. Finally,
v(toCNF (t1 · t2)) = 1.
We have shown that since v and w are (t1 · t2)-consistent, then

v(toCNF (t1 · t2)) = 1.
C. Let t = t1 + t2. Assume that v and w are (t1 + t2)-consistent. We

show that v(toCNF (t1 + t2) = 1.
Since toCNF (t1+ t2) = toCNF (t1)∧ toCNF (t2)∧ (lt1 ∨ lt2 ∨¬lt)∧
(¬lt1∨ lt2∨ lt)∧(lt1∨¬lt2∨ lt)∧(¬lt1∨¬lt2∨¬lt) hence, by induction
hypothesis, if v and w are t1-consistent, then v(toCNF (t1)) = 1 and
if v and w are t2-consistent, then v(toCNF (t2)) = 1. We have to
show that all clauses are true for v. By assumption, if v and w are
(t1 + t2)-consistent then w(t) is consistent with v(lt).

1. Let w(t1 + t2) = 0. Then v(lt) = 0 and clauses (lt1 ∨ lt2 ∨¬lt)
and (¬lt1 ∨ ¬lt2 ∨ ¬lt) are true for v. Now we determine value of
(¬lt1∨lt2∨lt) and (lt1∨¬lt2∨lt) for v. Since v(lt) = 0, value of cluses
depends on its summands and is equivalent to its disjunction. Since
w(t1) = 0 and w(t2) = 0 or w(t1) = 1 and w(t2) = 1 then v(lt1) = 0

and v(lt2) = 0 or v(lt1) = 1 and v(lt2) = 1. Hence v(¬lt1 ∨ lt2 ∨ lt) =
1 and v(lt1 ∨ ¬lt2 ∨ lt) = 1. Finally v(toCNF (t1 + t2)) = 1.

2. Assume that w(t1+ t2) = 1. Then v(lt) = 1 and (¬lt1 ∨ lt2 ∨ lt)
and (lt1 ∨ ¬lt2 ∨ lt) are true for v. Since w(t1 + t2) = 1, then
w(t1) = 1 and w(t2) = 0 or w(t1) = 0 and w(t2) = 1 and v(lt1) = 1

and v(lt2) = 0 or v(lt1) = 0 and v(lt2) = 1 because v and w are
(t1 + t2)-consistent. Hence (lt1 ∨ lt2 ∨¬lt) and (¬lt1 ∨¬lt2 ∨¬lt) are
true for v. Finally, v(toCNF (t1+t2))=1.
By assumption that v and w are (α1⊕α2)-consistent, v(toCNF (α1⊕

α2))=1.

. �

Theorem 1. Let t ∈ W be any arithmetic expression. For every boolean

valuation v and for every arithmetic valuation w if v and w are t−consistent,
then w(t) = 1 iff v(toCNF (t) ∧ lt) = 1.

Proof. Since for every arithmetic term t ∈ W there exists a boolean valu-
ation v which is t-consistent (by definition 1) with w, therefore, by lemma
3, toCNF (t) is satisfiable. If w(t) = 1 and v and w are t-consistent, then
v(lt) = 1 and v(toCNF (t) ∧ lt) = 1. If w(t) = 0, then lt is false for any
boolean valuation t-consistent with w. Otherwise toCNF (t) is false if v
and w are not t-consistent, hence v(toCNF (t) ∧ lt) = 0. �
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4. Conclusions

The translation of an arithmetic expession to a propositional formula can
be executed with skipping out its traditional form. The solution presented
above increases memory and time efficiency of the algorithm of automatic
translation. It is very important for an automatic search of solutions of
some algebraic problems as it was shown in [3], [4], [5] and [6].
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[4] M. Srebrny, L. Stȩpień, SAT as a Programming Environment for Linear Algebra,
Fundamenta Informaticae, 102(1) (2010), 115-127.
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