# FROM ARITHMETIC EXPRESSIONS TO PROPOSITIONAL FORMULAE 

LIDIA STĘPIEŃ AND MARCIN R. STĘPIEŃ

## Abstract

In papers [3], [4], [5] Authors presented a new method of solving some kinds of computational tasks in the area of linear algebra by applying SAT-solver as the highly optimized algorithms for solving the problem of propositional satisfiability. On input SAT-solver (cf. [1], [2]) takes a propositional formula in the clause form. In this paper we show in detail how any arithmetical expression can be translated into propositional formula in the CNF form skipping out its traditional form. For this, we define the notion of consistency of arithmetic and boolean valuations.

## 1. Background and notations

In [3], [4], [5] it was proposed a new method of declarative programming in the area of linear algebra. To solve a problem, the programmer determines the constraints of an object and leaves searching for this object to a computer. In this new method all algebraic conditions and properties are represented by propositional formulas in such a way that satisfying valuations represent the problem. The task of finding a solution and all calculations are left to a computer equipped with highly optimized algorithms called SAT-testers.

In this work we present a direct translation of an algebraic expression (which describes some algebraic problems) to a propositional formula in the clause form. We consider arithmetic terms $t, u, \ldots$ constructed by means of variables $a, b, \ldots$, operators,$+ \cdot$ and constants 0 and $\mathbb{1}$. We denote the countable set of arithmetic variables by $\mathcal{P} \mathcal{W}$, the set of arithmetic expressions by $\mathcal{W}$, the 2 -element field with standard operations $+_{2}$ and $\cdot 2$ by $\mathbb{F}_{2}=\left(\{0,1\},+_{2}, \cdot_{2}\right)$ and by $w: \mathcal{W} \rightarrow\{0,1\}-$ an arithmetic valuation such that

- $w\left(t_{1}+t_{2}\right)=1$ iff $w\left(t_{1}\right)+2 w\left(t_{2}\right)=1$,
- $w\left(t_{1} \cdot t_{2}\right)=1$ iff $w\left(t_{1}\right) \cdot 2 w\left(t_{2}\right)=1$.

We consider propositional formulae $\alpha, \beta, \ldots$ constructed by means of propositional variables $p, q, \ldots$, propositional operators $\oplus, \wedge$ and propositional constants $\mathbf{F}, \mathbf{T}$. We denote the set of propositional variables by $\mathcal{F}$, by $\mathcal{B}$ - a Boolean Algebra and by $v: \mathcal{F} \rightarrow\{\mathbf{0}, \mathbf{1}\}$ - a boolean valuation.

The paper is organized as follows. In the second section we introduce a new translation of any arithmetic term into a propositional formula and we define consistency of arithmetic and boolean valuations. In the third section we present how any arithmetic term can be translated into a propositional formula in the CNF form over its traditional form. The last section completes the paper with some conclusions.

## 2. Consistent valuations

Let $f_{\mathcal{F}}: \mathcal{W} \rightarrow \mathcal{F}$ be a function which translates any arithmetic term into a propositional formula such that:

$$
f_{\mathcal{F}}(t)= \begin{cases}p_{i}, & \text { dla } t=a_{i} \in \mathcal{P} \mathcal{W} \mathrm{i} i \in \mathbb{N},  \tag{1}\\ f_{\mathcal{F}}\left(t_{1}\right) \oplus f_{\mathcal{F}}\left(t_{2}\right), & \text { dla } t=t_{1}+t_{2}, \\ f_{\mathcal{F}}\left(t_{1}\right) \wedge f_{\mathcal{F}}\left(t_{2}\right), & \text { dla } t=t_{1} \cdot t_{2} .\end{cases}
$$

In this natural translation the arithmetic variables are translated into the propositional variables, the constant $\mathbb{1}$ is translated into a propositional variable, the constant 0is translated into a negated propositional variable and, finally, the arithmetic operators + and $\cdot$ are translated into the propositional disjunction $\oplus$ and conjunction $\wedge$, respectively. Notice that the function $f_{\mathcal{F}}$ is a well defined bijection due to commutative, associative and distributive properties of the set of arithmetic expressions and the set of propositional formulae, respectively. Moreover, the length of the output propositional formula is equal to the length of an input arithmetic expression $t$ and the number of propositional variables of $f_{\mathcal{F}}(t)$ is equal to the number of arithmetic variables of $t$.

Example 1. We transform the arithmetic term $t=a_{1} \cdot a_{3}+a_{2}$ to the propositional formula $\alpha=p_{1} \wedge p_{3} \oplus p_{2}$ by applying the function $f_{\mathcal{F}}$ and make the truth table.

| $a_{1}$ | $a_{2}$ | $a_{3}$ | $a_{1} \cdot a_{3}$ | $t$ | $\alpha$ | $p_{1} \wedge p_{3}$ | $p_{1}$ | $p_{2}$ | $p_{3}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1 | 1 | 1 | 0 | $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{1}$ | $\mathbf{1}$ | $\mathbf{1}$ |
| 1 | 1 | 0 | 0 | 1 | $\mathbf{1}$ | $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{1}$ | $\mathbf{0}$ |
| 1 | 0 | 1 | 1 | 1 | $\mathbf{1}$ | $\mathbf{1}$ | $\mathbf{1}$ | $\mathbf{0}$ | $\mathbf{1}$ |
| 1 | 0 | 0 | 0 | 0 | $\mathbf{0}$ | $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{0}$ | $\mathbf{0}$ |
| 0 | 1 | 1 | 0 | 1 | $\mathbf{1}$ | $\mathbf{0}$ | $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{1}$ |
| 0 | 1 | 0 | 0 | 1 | $\mathbf{1}$ | $\mathbf{0}$ | $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{0}$ |
| 0 | 0 | 1 | 0 | 0 | $\mathbf{0}$ | $\mathbf{0}$ | $\mathbf{0}$ | $\mathbf{0}$ | $\mathbf{1}$ |
| 0 | 0 | 0 | 0 | 0 | $\mathbf{0}$ | $\mathbf{0}$ | $\mathbf{0}$ | $\mathbf{0}$ | $\mathbf{0}$ |

Definition 1 (Consistency of valuations). We say that an arithmetic valuation $w$ and a boolean valuation $v$ are consistent iff $\forall_{a \in \mathcal{P} \mathcal{W}}(w(a)=1 \Leftrightarrow$ $\left.f_{\mathcal{F}}(a)=1\right)$.

An arithmetic valuation $w$ and a boolean valuation $v$ are inconsistent iff $w$ and $v$ are not consistent.

Lemma 1. An arithmetic valuation $w$ and a boolean valuation $v$ are consistent iff

$$
\forall_{t \in \mathcal{W}}\left(w(t)=1 \Leftrightarrow v\left(f_{\mathcal{F}}(t)\right)=\mathbf{1}\right)
$$

Proof. Let $l e n(t)$ denote the length of an arithmetic term $t \in \mathcal{W}$ (i.e. the number of operators in $t$ ). The proof proceeds by the induction over the length of $t$.
A. For $\operatorname{len}(t)=0$, lemma is valid by definition 1 .
B. Induction hypothesis: lemma is valid for $\operatorname{len}(t)=n-1$.
C. We show that for $l e n(t)=n$ lemma is valid.
$w(t)=1 \Leftrightarrow w\left(t_{1}+t_{2}\right)=1 \Leftrightarrow w\left(t_{1}\right)=1$ or $w\left(t_{2}\right)=1 \Leftrightarrow$ by induction hypothesis $v\left(f_{\mathcal{F}}\left(t_{1}\right)\right)=\mathbf{1}$ or $v\left(f_{\mathcal{F}}\left(t_{2}\right)\right)=\mathbf{1} \Leftrightarrow v\left(f_{\mathcal{F}}\left(t_{1}\right) \oplus f_{\mathcal{F}}\left(t_{2}\right)\right)=$ $\mathbf{1} \Leftrightarrow v\left(f_{\mathcal{F}}(t)\right)=\mathbf{1}$
$w(t)=1 \Leftrightarrow w\left(t_{1} \cdot t_{2}\right)=1 \Leftrightarrow w\left(t_{1}\right)=1$ and $w\left(t_{2}\right)=1 \Leftrightarrow$ by induction hypothesis $v\left(f_{\mathcal{F}}\left(t_{1}\right)\right)=\mathbf{1}$ and $v\left(f_{\mathcal{F}}\left(t_{2}\right)\right)=\mathbf{1} \Leftrightarrow v\left(f_{\mathcal{F}}\left(t_{1}\right) \wedge\right.$ $\left.f_{\mathcal{F}}\left(t_{2}\right)\right)=1 \Leftrightarrow v\left(f_{\mathcal{F}}(t)\right)=1$

The arithmetic valuation $w$ and boolean valuation $v$ are consistent by definition 1 for $t=a \in \mathcal{P} \mathcal{W}$. Hence the valuations $v$ and $w$ are consistent for $t$ which is built with arithmetic variables. Finally, $w$ and $v$ are consistent for all subexpressions of $t$.

## 3. Convertion to CNF formula

In this section we show how any arithmetic expression can be converted to a CNF formula. A standard translation produces the output propositional
formula in the traditional form and then this formula is converted into the CNF form by applying well known algorithm. In our translation we omit the traditional form of a propositional formula by direct encoding arithmetic operations by correspondent logical connectives.

Let $t \in \mathcal{W}, f_{\mathcal{F}}: \mathcal{W} \rightarrow \mathcal{F}$ (see 1). The function $\operatorname{toCNF}()$ produces the CNF formula of a polynomial length relative to the length of $t$. Let $\mathcal{P} \mathcal{V}\left(f_{\mathcal{F}}(t)\right)$ be the set of propositional variables occuring in formula $f_{\mathcal{F}}(t)$. The function toCNF() expands the set of propositional variables by new, other propositional variables from the set $\mathcal{P} \mathcal{V}^{C}\left(f_{\mathcal{F}}(t)\right) \subseteq \mathcal{P} \mathcal{V}$ of labels of subformulas $f_{\mathcal{F}}(t)$. It means, that a literal $l_{t^{\prime}} \in \mathcal{P} \mathcal{V}^{C}\left(f_{\mathcal{F}}(t)\right)$ represents a subformula $f_{\mathcal{F}}\left(t^{\prime}\right)$ of the propositional formula $f_{\mathcal{F}}(t)$, which codes subexpression $t^{\prime}$ of expression $t$. In order to standarize notation if $p \in \mathcal{P} \mathcal{V}\left(f_{\mathcal{F}}(t)\right)$ we denote propositional variable $p$ by $l_{p}$, but we don't introduce a new literal.

We define the function $f: \mathcal{W} \rightarrow 2^{C}$ which transforms any arithmetic expresion into the set of clauses as follows:
$(\mathscr{F} X t)= \begin{cases}\mathbf{T}, & \text { for } t=a, \\ \left(l_{t_{1}} \vee \neg l_{t}\right) \wedge\left(l_{t_{2}} \vee \neg l_{t}\right) \wedge\left(\neg l_{t_{1}} \vee \neg l_{t_{2}} \vee l_{t}\right), & \text { for } t=t_{1} \cdot t_{2}, \\ \left(l_{t_{1}} \vee l_{t_{2}} \vee \neg l_{t}\right) \wedge\left(\neg l_{t_{1}} \vee l_{t_{2}} \vee l_{t}\right) \wedge & \\ \left(l_{t_{1}} \vee \neg l_{t_{2}} \vee l_{t}\right) \wedge\left(\neg l_{t_{1}} \vee \neg l_{t_{2}} \vee \neg l_{t}\right), & \text { for } t=t_{1}+t_{2} .\end{cases}$
If $t$ is an arithmetic variable, the function $f$ produces the formula $\mathbf{T}$ in the conjunctive normal form. It is a tautology and represents the empty clause set $\emptyset$.

Now, by applying $f$ we define a function toCNF: $\mathcal{W} \rightarrow 2^{C}$ by:
(3) $t o C N F(t)= \begin{cases}\mathbf{T}, & \text { for } t \in \mathcal{P} \mathcal{W}, \\ t o C N F\left(t_{1}\right) \wedge t o C N F\left(t_{2}\right) \wedge f(t), & \text { for } t=t_{1} \diamond t_{2} \mathrm{i} \\ & \diamond \in\{+, \cdot\} .\end{cases}$

By length of a propositional formula $\operatorname{toCNF}(t)$ in the clause form, which will be denoted by $d l$, we mean the cardinality of its set of clauses.
Lemma 2. The output of the transformation toCNF() is of the polynomial length relative to the length of the input arithmetic term $t$.

Proof. The proof proceeds by the induction on length of an input arithmetic term $t$. Below we present the proof for $t$ built with + . If $t$ is constructed with $\cdot$, the reasoning is analogous.

1. If $\operatorname{len}\left(t_{0}\right)=0$, then $t_{0}=a$ and $d l\left(t o C N F\left(t_{0}\right)\right)=0$.

2 . If $\operatorname{len}\left(t_{1}\right)=1$, then $t_{1}=a_{1}+a_{2}$ and

$$
\begin{aligned}
& d l\left(t o C N F\left(t_{1}\right)\right)=d l\left(\operatorname{toCNF}\left(a_{1}\right)\right)+d l\left(\operatorname{toCNF}\left(a_{2}\right)\right)+4=0+0+4= \\
& 4 \cdot 1=4 \cdot \operatorname{len}(t) .
\end{aligned}
$$

3. If $\operatorname{len}\left(t_{n}\right)=n$, then $t=t_{n-1}+a_{n+1}$ and

$$
\begin{aligned}
& d l(t o C N F(t))=d l\left(t o C N F\left(t_{n-1}\right)\right)+0+4= \\
&=\left(d l\left(t o C N F\left(t_{n-2}\right)+0+4\right)+4=\ldots=\right. \\
&=\underbrace{\left(\left(\left(d l\left(t o C N F\left(t_{0}\right)\right)+0+4\right)+4\right)+\ldots+4\right)}_{n-1}+4= \\
&=\underbrace{(4+4+\ldots+4)}_{n-1}+4=4 \cdot(n-1)+4=4 \cdot n= \\
& 4 \cdot \operatorname{len}\left(t_{n}\right)
\end{aligned}
$$

If $t$ is built with $\cdot$, then by analogous calculation we get

$$
d l(t o C N F(t))=3 \cdot \operatorname{len}(t)
$$

Generally, for any arithmetic expression $t$,

$$
d l(t o C N F(t)) \leqslant 4 \cdot \operatorname{len}(t)
$$

## Example 2.

1. If $t=a \in \mathcal{P W}$ then toCNF $(t)=\mathbf{T}$
2. Let $t=\underbrace{a_{1} \cdot a_{4}}_{t_{1}}+\underbrace{a_{2} \cdot a_{3}}_{t_{2}}$. Then

$$
\begin{aligned}
t o C N F(t) & =t o C N F\left(t_{1}\right) \wedge t o C N F\left(t_{2}\right) \wedge f(t)= \\
= & t o C N F\left(a_{1}\right) \wedge t o C N F\left(a_{4}\right) \wedge f\left(t_{1}\right) \wedge \\
& \wedge t o C N F\left(a_{2}\right) \wedge t o C N F\left(a_{3}\right) \wedge f\left(t_{2}\right) \wedge\left(l_{t_{1}} \vee l_{t_{2}} \vee \neg l_{t}\right) \wedge \\
& \wedge\left(\neg l_{t_{1}} \vee l_{t_{2}} \vee l_{t}\right) \wedge\left(l_{t_{1}} \vee \neg l_{t_{2}} \vee l_{t}\right) \wedge\left(\neg l_{t_{1}} \vee \neg l_{t_{2}} \vee \neg l_{t}\right)= \\
= & \mathbf{T} \wedge \mathbf{T} \wedge\left(l_{a_{1}} \vee \neg l_{t_{1}}\right) \wedge\left(l_{a_{4}} \vee \neg l_{t_{1}}\right) \wedge\left(\neg l_{a_{1}} \vee \neg l_{a_{4}} \vee l_{t_{1}}\right) \wedge \mathbf{T} \wedge \mathbf{T} \wedge \\
& \wedge\left(l_{a_{2}} \vee \neg l_{t_{2}}\right) \wedge\left(l_{a_{3}} \vee \neg l_{t_{2}}\right) \wedge\left(\neg l_{a_{2}} \vee \neg l_{a_{3}} \vee l_{t_{2}}\right) \wedge\left(l_{t_{1}} \vee l_{t_{2}} \vee \neg l_{t}\right) \wedge \\
& \wedge\left(\neg l_{t_{1}} \vee l_{t_{2}} \vee l_{t}\right) \wedge\left(l_{t_{1}} \vee \neg l_{t_{2}} \vee l_{t}\right) \wedge\left(\neg l_{t_{1}} \vee \neg l_{t_{2}} \vee \neg l_{t}\right)
\end{aligned}
$$

Finally:

$$
\begin{aligned}
& \left\{\left(l_{a_{1}}, \neg l_{t_{1}}\right),\left(l_{a_{4}}, \neg l_{t_{1}}\right),\left(\neg l_{a_{1}}, \neg l_{a_{4}}, l_{t_{1}}\right),\left(l_{a_{2}}, \neg l_{t_{2}}\right),\left(l_{a_{3}}, \neg l_{t_{2}}\right),\right. \\
& \left(\neg l_{a_{2}}, \neg l_{a_{3}}, l_{t_{2}}\right),\left(\neg l_{a_{2}}, \neg l_{a_{3}}, l_{t_{2}}\right),\left(l_{t_{1}}, l_{t_{2}}, \neg l_{t}\right),\left(\neg l_{t_{1}}, l_{t_{2}}, l_{t}\right), \\
& \left.\left(l_{t_{1}}, \neg l_{t_{2}}, l_{t}\right),\left(\neg l_{t_{1}}, \neg l_{t_{2}}, \neg l_{t}\right)\right\}
\end{aligned}
$$

For any arithmetic term $t$ the transformation $t o C N F()$ outputs at most 4 -clausal set of at most 3-literals. Hence, the output propositional formula is of polynomial length relative to the length of $t$. Moreover, all literals corresponding to respective subexpressions have the logical value consistent with arithmetic value of subexpressions.

Definition 1. For any arithmetic term $t \in \mathcal{W}$, we say that boolean valuation $v$ and arithmetic valuation $w$ are $t$-consistent with iff $w\left(t^{\prime}\right)=1 \Leftrightarrow$ $v\left(l_{t^{\prime}}\right)=\mathbf{1}$, for each subexpression $t^{\prime}$ of the expression $t$.
Lemma 3. Let $t \in \mathcal{W}$ and $w$ be any arithmetic valuation. For each boolean valuation $v, v(t o C N F(t))=\mathbf{1}$ iff $v$ and $w$ are $t$-consistent.
Proof. The proof proceeds by the induction on the stucture of the arithmetic term $t$.
$\Rightarrow$ Assume that $v(t o C N F(t))=\mathbf{1}$. We show that $v$ and $w$ are $t$-consistent.
A. For $t=a \in \mathcal{P} \mathcal{W}, t o C N F(t)=\mathbf{T}$. Hence, $v(t o C N F(t))=\mathbf{1}$ for any boolean valuation $v$. Since $l_{t}$ is the only standarized notation of a propositional variable $p_{t}=f_{\mathcal{F}}(t), v$ and $w$ are $t$-consistent by definition 1.
B. For $t=t_{1} \cdot t_{2}$. Assume that $v\left(t_{o C N} F\left(t_{1} \cdot t_{2}\right)\right)=\mathbf{1}$ and we show that $v$ and $w$ are $\left(t_{1} \cdot t_{2}\right)$-consistent $w$.
Since $t o C N F\left(t_{1} \cdot t_{2}\right)=t o C N F\left(t_{1}\right) \wedge t o C N F\left(t_{2}\right) \wedge\left(l_{t_{1}} \vee \neg l_{t}\right) \wedge$ $\wedge\left(l_{t_{2}} \vee \neg l_{t}\right) \wedge\left(\neg l_{t_{1}} \vee \neg l_{t_{2}} \vee l_{t}\right)$, then $v\left(t o C N F\left(t_{1}\right)\right)=\mathbf{1}$ (by induction hypothesis $v$ and $w$ are $t_{1}$-consistent), $v\left(t o C N F\left(t_{2}\right)\right)=\mathbf{1}$ (by induction hypothesis $v$ and $w$ are $t_{2}$-consistent) and all clauses are true.

1. If $w\left(t_{1}\right)=0$ and $w\left(t_{2}\right)=0$, then $w(t)=0, v\left(l_{t_{1}}\right)=\mathbf{0}$ and $v\left(l_{t_{2}}\right)=\mathbf{0}$. Therefore $v\left(\neg l_{t_{1}} \vee \neg l_{t_{2}} \vee l_{t}\right)=\mathbf{1}$. Since $v\left(l_{t_{1}} \vee \neg l_{t}\right)=\mathbf{1} \mathrm{i}$ $v\left(l_{t_{2}} \vee \neg l_{t}\right)=\mathbf{1}$ then $v\left(\neg l_{t}\right)=\mathbf{1}$. Hence $v\left(l_{t}\right)=\mathbf{0}$.
2. Assume that $w\left(t_{1}\right)=1$ and $w\left(t_{2}\right)=0$. Hence $w(t)=0, v\left(l_{t_{1}}\right)=\mathbf{1}$ i $v\left(l_{t_{2}}\right)=\mathbf{0}$ and $v\left(\neg l_{t_{1}} \vee \neg l_{t_{2}} \vee l_{t}\right)=\mathbf{1}$ and $v\left(l_{t_{1}} \vee \neg l_{t}\right)=\mathbf{1}$. Since $v\left(l_{t_{2}} \vee \neg l_{t}\right)=\mathbf{1}$ then $v\left(\neg l_{t}\right)=\mathbf{1}$. Hence $v\left(l_{t}\right)=\mathbf{0}$.
3. Assume that $w\left(t_{1}\right)=0$ and $w\left(t_{2}\right)=1$. Hence $w(t)=0, v\left(l_{t_{1}}\right)=$ $\mathbf{0}$ and $v\left(l_{t_{2}}\right)=\mathbf{1}$ and $v\left(\neg l_{t_{1}} \vee \neg l_{t_{2}} \vee l_{t}\right)=\mathbf{1}$ and $v\left(l_{t_{2}} \vee \neg l_{t}\right)=\mathbf{1}$. Since $v\left(l_{t_{1}} \vee \neg l_{t}\right)=\mathbf{1}$ then $v\left(\neg l_{t}\right)=\mathbf{1}$. Hence $v\left(l_{t}\right)=\mathbf{0}$.
4. Suppose that $w\left(t_{1}\right)=1$ and $w\left(t_{2}\right)=1$. Hence $v\left(l_{t_{1}}\right)=\mathbf{1}$ and $v\left(l_{t_{2}}\right)=1$ and $v\left(l_{t_{1}} \vee \neg l_{t}\right)=1$ and $v\left(l_{t_{2}} \vee \neg l_{t}\right)=1$. Since $v\left(\neg l_{t_{1}} \vee \neg l_{t_{2}} \vee l_{t}\right)=\mathbf{1}$ then $v\left(l_{t}\right)=\mathbf{1}$.

So we have shown that $v$ and $w$ are $\left(t_{1} \cdot t_{2}\right)$-consistent.
C. Let $t=t_{1}+t_{2}$. Assume that $v\left(t_{o} \operatorname{CNF}\left(t_{1}+t_{2}\right)\right)=\mathbf{1}$ and we will show that $v$ and $w$ are $\left(t_{1}+t_{2}\right)$-consistent.
Since toCNF $\left(t_{1}+t_{2}\right)=t o C N F\left(t_{1}\right) \wedge t o C N F\left(t_{2}\right) \wedge\left(l_{t_{1}} \vee l_{t_{2}} \vee \neg l_{t}\right) \wedge$ $\left(\neg l_{t_{1}} \vee l_{t_{2}} \vee l_{t}\right) \wedge\left(l_{t_{1}} \vee \neg l_{t_{2}} \vee l_{t}\right) \wedge\left(\neg l_{t_{1}} \vee \neg l_{t_{2}} \vee \neg l_{t}\right)$ then by induction hypothesis $v\left(t o C N F\left(t_{1}\right)\right)=\mathbf{1}$ (by induction hypothesis $v$ and $w$ are $t_{1}$-consistent), $v\left(t o C N F\left(t_{2}\right)\right)=\mathbf{1}$ (by induction hypothesis $v$ and $w$ are $t_{2}$-consistent) and all clauses are true for $v$.

1 Assume that $w\left(t_{1}\right)=0$ and $w\left(t_{2}\right)=0$. Hence $w(t)=0, v\left(l_{t_{1}}\right)=\mathbf{0}$, because $v$ and $w$ are $t_{1}$-consistent, and $v\left(l_{t_{2}}\right)=\mathbf{0}$, because $v$ and $w$ are $t_{2}$-consistent and $v\left(\neg l_{t_{1}} \vee l_{t_{2}} \vee l_{t}\right)=\mathbf{1}, v\left(l_{t_{1}} \vee \neg l_{t_{2}} \vee l_{t}\right)=\mathbf{1}$ and $v\left(\neg l_{t_{1}} \vee \neg l_{t_{2}} \vee \neg l_{t}\right)=\mathbf{1}$. Since $v\left(l_{t_{1}} \vee l_{t_{2}} \vee \neg l_{t}\right)=\mathbf{1}$ then $v\left(\neg l_{t}\right)=\mathbf{1}$. Hence $v\left(l_{t}\right)=\mathbf{0}$.

2 Assume that $w\left(t_{1}\right)=1$ and $w\left(t_{2}\right)=0$. Hence $w(t)=1, v\left(l_{t_{1}}\right)=\mathbf{1}$, because $v$ and $w$ are $t_{1}$-consistent, and $v\left(l_{t_{2}}\right)=\mathbf{0}$, because $v$ and $w$ are $t_{2}$-consistent and $v\left(l_{t_{1}} \vee l_{t_{2}} \vee \neg l_{t}\right)=\mathbf{1}, v\left(l_{t_{1}} \vee \neg l_{t_{2}} \vee l_{t}\right)=\mathbf{1}$ and $v\left(\neg l_{t_{1}} \vee \neg l_{t_{2}} \vee \neg l_{t}\right)=\mathbf{1}$. Since $v\left(\neg l_{t_{1}} \vee l_{t_{2}} \vee l_{t}\right)=\mathbf{1}$ then $v\left(l_{t}\right)=\mathbf{1}$.

3 Assume that $w\left(t_{1}\right)=0$ and $w\left(t_{2}\right)=1$. Hence $w(t)=1, v\left(l_{t_{1}}\right)=$ $\mathbf{0}$, because $v w$ are $t_{1}$-consistent, $v\left(l_{t_{2}}\right)=\mathbf{1}$, because $v$ and $w$ are $t_{2}$-consistent, and $v\left(l_{t_{1}} \vee l_{t_{2}} \vee \neg l_{t}\right)=\mathbf{1}, v\left(\neg l_{t_{1}} \vee l_{t_{2}} \vee l_{t}\right)=\mathbf{1}$ and $v\left(\neg l_{t_{1}} \vee \neg l_{t_{2}} \vee \neg l_{t}\right)=\mathbf{1}$. Since $v\left(l_{t_{1}} \vee \neg l_{t_{2}} \vee l_{t}\right)=\mathbf{1}$ then $v\left(l_{t}\right)=\mathbf{1}$.

4 Assume that $w\left(t_{1}\right)=1$ and $w\left(t_{2}\right)=1$. Hence $v\left(l_{t_{1}}\right)=\mathbf{1}$, because $v$ is $t_{1}$-consistent and $v\left(l_{t_{2}}\right)=\mathbf{1}$, because $v$ is $t_{2}$-consistent and $v\left(l_{t_{1}} \vee l_{t_{2}} \vee \neg l_{t}\right)=\mathbf{1}, v\left(\neg l_{t_{1}} \vee l_{t_{2}} \vee l_{t}\right)=\mathbf{1}$ and $v\left(l_{t_{1}} \vee \neg l_{t_{2}} \vee l_{t}\right)=\mathbf{1}$ Since $v\left(\neg l_{t_{1}} \vee \neg l_{t_{2}} \vee \neg l_{t}\right)=\mathbf{1}$ then $v\left(\neg l_{t}\right)=\mathbf{1}$. Hence $v\left(l_{t}\right)=\mathbf{0}$.

So we have shown that $v$ and $w$ are $\left(t_{1}+t_{2}\right)$-consistent.
$(\Leftarrow)$ Assume that $v$ and $w$ are $t$-consistent and we are going to show that $v(t o C N F(t))=\mathbf{1}$.
A. If $t$ is propositional variable, then boolean valuation $v$ and the arithmetic valuation $w$ are $t$-consistent and $t o C N F(t)=\mathbf{T}$. Therefore $v(t o C N F(t))=1$ for any boolean valuation $v$.
B. Let $t=t_{1} \cdot t_{2}$. Assume that $v$ and $w$ are $\left(t_{1} \cdot t_{2}\right)$-consistent and we show that $v\left(t_{o} C N F\left(t_{1} \cdot t_{2}\right)\right)=\mathbf{1}$.

Since $t o C N F\left(t_{1} \cdot t_{2}\right)=t o C N F\left(t_{1}\right) \wedge t o C N F\left(t_{2}\right) \wedge\left(l_{t_{1}} \vee \neg l_{t}\right) \wedge$ $\wedge\left(l_{t_{2}} \vee \neg l_{t}\right) \wedge\left(\neg l_{t_{1}} \vee \neg l_{t_{2}} \vee l_{t}\right)$ then, by induction hypothesis, $v$ and $w$ are $t_{1}$-consistent and $t_{2}$-consistents. Hence $v\left(t o C N F\left(t_{1}\right)\right)=\mathbf{1}$ and $v\left(t o C N F\left(t_{2}\right)\right)=\mathbf{1}$. Now, we have to show that all clauses are true for the boolean valuation $v$. By assumption that $v$ and $w$ are $\left(t_{1} \cdot t_{2}\right)$-consistent, we have that $w(t)$ is consistent with $v\left(l_{t}\right)$.

1. Let $w(t)=0$. Hence $v\left(l_{t}\right)=\mathbf{0}$ and clauses $\left(l_{t_{1}} \vee \neg l_{t}\right)$ and $\left(l_{t_{2}} \vee \neg l_{t}\right)$ are true for the boolean valuation $v$. Now, we are going to determine the value of the clause $\left(\neg l_{t_{1}} \vee \neg l_{t_{2}} \vee l_{t}\right)$ for $v$. Since $v\left(l_{t}\right)=\mathbf{0}$, then the value of disjunction depends on its summands and is equivalent to its disjunction. Hence, by $w\left(t_{1}\right)=0$ or $w\left(t_{2}\right)=$ $0\left(w\left(t_{1} \cdot t_{2}\right)=0\right)$ it follows $v\left(l_{t_{1}}\right)=\mathbf{0}$ or $v\left(l_{t_{2}}\right)=\mathbf{0}$ and $v\left(\neg l_{t_{1}} \vee\right.$ $\left.\neg l_{t_{2}} \vee l_{t}\right)=\mathbf{1}$. Finally, $v\left(t o C N F\left(t_{1} \cdot t_{2}\right)\right)=\mathbf{1}$.
2. Assume that $w(t)=1$. Then $v\left(l_{t}\right)=\mathbf{1}$ and the clause $\left(\neg l_{t_{1}} \vee\right.$ $\neg t_{2} \vee L_{t}$ ) is true for the boolean valuation $v$. Since $w\left(t_{1}\right)=1$ and $w\left(t_{2}\right)=1$ and $v\left(l_{t_{1}}\right)=\mathbf{1}$ and $v\left(l_{t_{2}}\right)=\mathbf{1}$, then clauses $\left(l_{t_{1}} \vee \neg l_{t}\right)$ and $\left(l_{t_{2}} \vee \neg l_{t}\right)$ are also true by assumption $w\left(t_{1} \cdot t_{2}\right)=1$. Finally, $v\left(t o C N F\left(t_{1} \cdot t_{2}\right)\right)=1$.

We have shown that since $v$ and $w$ are $\left(t_{1} \cdot t_{2}\right)$-consistent, then $v\left(t o C N F\left(t_{1} \cdot t_{2}\right)\right)=1$.
C. Let $t=t_{1}+t_{2}$. Assume that $v$ and $w$ are $\left(t_{1}+t_{2}\right)$-consistent. We show that $v\left(t o C N F\left(t_{1}+t_{2}\right)=1\right.$.
Since toCNF $\left(t_{1}+t_{2}\right)=t o C N F\left(t_{1}\right) \wedge t o C N F\left(t_{2}\right) \wedge\left(l_{t_{1}} \vee l_{t_{2}} \vee \neg l_{t}\right) \wedge$ $\left(\neg l_{t_{1}} \vee l_{t_{2}} \vee l_{t}\right) \wedge\left(l_{t_{1}} \vee \neg l_{t_{2}} \vee l_{t}\right) \wedge\left(\neg l_{t_{1}} \vee \neg l_{t_{2}} \vee \neg l_{t}\right)$ hence, by induction hypothesis, if $v$ and $w$ are $t_{1}$-consistent, then $v\left(t o C N F\left(t_{1}\right)\right)=\mathbf{1}$ and if $v$ and $w$ are $t_{2}$-consistent, then $v\left(t o C N F\left(t_{2}\right)\right)=\mathbf{1}$. We have to show that all clauses are true for $v$. By assumption, if $v$ and $w$ are $\left(t_{1}+t_{2}\right)$-consistent then $w(t)$ is consistent with $v\left(l_{t}\right)$.

1. Let $w\left(t_{1}+t_{2}\right)=0$. Then $v\left(l_{t}\right)=\mathbf{0}$ and clauses $\left(l_{t_{1}} \vee l_{t_{2}} \vee \neg l_{t}\right)$ and $\left(\neg l_{t_{1}} \vee \neg l_{t_{2}} \vee \neg l_{t}\right)$ are true for $v$. Now we determine value of $\left(\neg l_{t_{1}} \vee l_{t_{2}} \vee l_{t}\right)$ and $\left(l_{t_{1}} \vee \neg l_{t_{2}} \vee l_{t}\right)$ for $v$. Since $v\left(l_{t}\right)=\mathbf{0}$, value of cluses depends on its summands and is equivalent to its disjunction. Since $w\left(t_{1}\right)=0$ and $w\left(t_{2}\right)=0$ or $w\left(t_{1}\right)=1$ and $w\left(t_{2}\right)=1$ then $v\left(l_{t_{1}}\right)=\mathbf{0}$ and $v\left(l_{t_{2}}\right)=\mathbf{0}$ or $v\left(l_{t_{1}}\right)=\mathbf{1}$ and $v\left(l_{t_{2}}\right)=\mathbf{1}$. Hence $v\left(\neg l_{t_{1}} \vee l_{t_{2}} \vee l_{t}\right)=$ 1 and $v\left(l_{t_{1}} \vee \neg l_{t_{2}} \vee l_{t}\right)=1$. Finally $v\left(\operatorname{toCNF}\left(t_{1}+t_{2}\right)\right)=\mathbf{1}$.
2. Assume that $w\left(t_{1}+t_{2}\right)=1$. Then $v\left(l_{t}\right)=\mathbf{1}$ and $\left(\neg l_{t_{1}} \vee l_{t_{2}} \vee l_{t}\right)$ and $\left(l_{t_{1}} \vee \neg l_{t_{2}} \vee l_{t}\right)$ are true for $v$. Since $w\left(t_{1}+t_{2}\right)=1$, then $w\left(t_{1}\right)=1$ and $w\left(t_{2}\right)=0$ or $w\left(t_{1}\right)=0$ and $w\left(t_{2}\right)=1$ and $v\left(l_{t_{1}}\right)=\mathbf{1}$ and $v\left(l_{t_{2}}\right)=\mathbf{0}$ or $v\left(l_{t_{1}}\right)=\mathbf{0}$ and $v\left(l_{t_{2}}\right)=\mathbf{1}$ because $v$ and $w$ are $\left(t_{1}+t_{2}\right)$-consistent. Hence $\left(l_{t_{1}} \vee l_{t_{2}} \vee \neg l_{t}\right)$ and $\left(\neg l_{t_{1}} \vee \neg l_{t_{2}} \vee \neg l_{t}\right)$ are true for $v$. Finally, $v\left(t_{o C N F}\left(t_{1}+t_{2}\right)\right)=\mathbf{1}$.

By assumption that $v$ and $w$ are $\left(\alpha_{1} \oplus \alpha_{2}\right)$-consistent, $v\left(\right.$ toCNF $\left(\alpha_{1} \oplus\right.$ $\left.\alpha_{2}\right)=1$.

Theorem 1. Let $t \in \mathcal{W}$ be any arithmetic expression. For every boolean valuation $v$ and for every arithmetic valuation $w$ if $v$ and $w$ are $t-$ consistent, then $w(t)=1$ iff $v\left(t o C N F(t) \wedge l_{t}\right)=\mathbf{1}$.

Proof. Since for every arithmetic term $t \in \mathcal{W}$ there exists a boolean valuation $v$ which is $t$-consistent (by definition 1 ) with $w$, therefore, by lemma $3, \operatorname{toCNF}(t)$ is satisfiable. If $w(t)=1$ and $v$ and $w$ are $t$-consistent, then $v\left(l_{t}\right)=\mathbf{1}$ and $v\left(t o C N F(t) \wedge l_{t}\right)=1$. If $w(t)=0$, then $l_{t}$ is false for any boolean valuation $t$-consistent with $w$. Otherwise $t o C N F(t)$ is false if $v$ and $w$ are not $t$-consistent, hence $v\left(t o C N F(t) \wedge l_{t}\right)=\mathbf{0}$.

## 4. Conclusions

The translation of an arithmetic expession to a propositional formula can be executed with skipping out its traditional form. The solution presented above increases memory and time efficiency of the algorithm of automatic translation. It is very important for an automatic search of solutions of some algebraic problems as it was shown in [3], [4], [5] and [6].

## References

[1] M. Davis, H. Putnam, A Computing Procedure for Quantification Theory, J. of the ACM 7(1) (1960), 201-215.
[2] M. Davis, G. Logemann, D.W. Loveland, A Machine Program for Theorem Proving, Comm. of the ACM 5(7) (1962), 394-397.
[3] M. Srebrny, L. Stȩpień, A propositional programming environment for linear algebra, Fundamenta Informaticae, 81 (2007), 325-345.
[4] M. Srebrny, L. Stȩpień, SAT as a Programming Environment for Linear Algebra, Fundamenta Informaticae, 102(1) (2010), 115-127.
[5] L. Stȩpień, Propositional calculus as a programming environment for linear algebra, PhD thesis (in polish), Inst. of Comp. Science, Polish Academy of Science, Warsaw, Poland, 2009.
[6] L. Stȩpień, M. R. Stȩpień, Automatic search of automorphisms of Witt rings, Scientific Issues. Mathematics, XVI (2011), 141-146, Jan Długosz University, Czȩstochowa.

Received: September 2016

Lidia Stępień<br>Jan Deugosz University in Czestochowa, Institute of Mathematics and Computer Science, al. Armii Krajowej 13/15, 42-200 Czestochowa, Poland E-mail address: l.stepien@ajd.czest.pl<br>Marcin R. Stępień<br>Kielce University of Technology, Department of Mathematics and Physics, al. Tysiąclecia Państwa Polskiego 7, 25-314 Kielce, Poland<br>E-mail address: mstepien@tu.kielce.pl

