
Scientific Issues

Jan Długosz University

in Częstochowa
Mathematics XXI (2016)

189–206
DOI http://dx.doi.org/10.16926/m.2016.21.15

A COMPARISON OF SMT-SOLVERS FOR TIMED

WEIGHTED INTERPRETED SYSTEMS

AGNIESZKA M. ZBRZEZNY

Abstract

We compare four SMT-solvers for the same SMT-based bounded model checking al-

gorithm for multi-agent systems modelled by timed weighted interpreted systems and for

properties expressed in the existential fragment of epistemic weighted linear-time tempo-

ral logic (WELTLK). To this end, we use the timed weighted generic pipeline paradigm

(TWGPP) and the timed weighted train controller system (TWTCS). We consider sev-

eral properties of the problems that can be expressed in WELTLK, and we present the

performance evaluation of the mentioned bounded model checking method using four

different SMT-solvers: Z3, Yices, CVC4 and Mathsat, by means of the running time and

the memory used.

1. Introduction

Model checking [6] is an automatic verification technique for concurrent
systems. To be able to check automatically whether the system satisfies
a given property, one must first create a model of the system, and then
describe in a formal language both the created model and the property.
Bounded model checking (BMC) for multi-agent systems (MAS) is a sym-
bolic model checking method. It uses a reduction of the problem of truth of,
among others, an epistemic formula [8] in a model of MAS to the problem
of satisfiability of formulae. The reduction is typically to SAT, but more
recently to SMT.
Weighted formalisms are well known in the model checking research area

[4, 9] to reason about resource requirements. Another quantitative dimen-
sion is the temporal duration of actions. In this area were considered: the

• Agnieszka M. Zbrzezny — Jan Długosz University in Częstochowa.
Partly supported by National Science Centre under the grant

No. 2014/15/N/ST6/05079.

190 A.M. ZBRZEZNY

timed automata [1] the timed interpreted systems [10], and the weighted
timed automata [4].
We choose the bounded model checking method for TWIS and WELTLK

because it is one of most complicated SMT-BMC methods we developed.
In our previous methods we used only Z3 SMT-solver, which is one of the
best SMT-solvers, but we would like to check other SMT-solvers.
In this paper, we make the following contributions. Firstly, we recall the

SMT-based BMCmethod for WELTLK and for TWISs. Secondly, we report
on the initial experimental evaluation of our SMT-based BMC method and
analyse the results.

2. Preliminaries

2.1. SMT-solvers. We chose only four SMT-solvers which support SMT-
LIBv2 and logic QF_LIA (quantifier-free linear integer arithmetic) and
were submitted to The 11th International Satisfiability Modulo Theories
Competition http://smtcomp.sourceforge.net/2016/.

2.1.1. Z3. Z3 is a state-of-the art theorem prover from Microsoft Research.
It can be used to check the satisfiability of logical formulas over one or more
theories. Z3 offers a compelling match for software analysis and verification
tools, since several common software constructs map directly into supported
theories. Z3 is a low level tool. It is best used as a component in the
context of other tools that require solving logical formulas. Consequently,
Z3 exposes a number of API facilities to make it convenient for tools to
map into Z3, but there are no stand-alone editors or user-centric facilities
for interacting with Z3. The language syntax used in the front ends favor
simplicity in contrast to linguistic convenience [3] (https://github.com/
Z3Prover/z3/wiki).

2.1.2. Yices 2. The winner of SMT-COMP 2016 in the application track for
QF_LIA. Yices 2 is an SMT solver that decides the satisfiability of formulas
containing uninterpreted function symbols with equality, real and integer
arithmetic, bitvectors, scalar types, and tuples. Yices 2 supports both linear
and nonlinear arithmetic. Yices 2 can process input written in the SMT-LIB
notation (both versions 2.0 and 1.2 are supported). Alternatively, Yices 2
have its own specification language, which includes tuples and scalar types
[7] (http://yices.csl.sri.com/).

2.1.3. MathSAT. MathSAT 5 is the successor of MathSAT 4, supporting a
wide range of theories (including e.g. equality and uninterpreted functions,
linear arithmetic, bit-vectors, and arrays) and functionalities (including e.g.
computation of Craig interpolants, extraction of unsatisfiable cores, gener-
ation of models and proofs, and the ability of working incrementally) [5]

A COMPARISON OF SMT-SOLVERS FOR TWIS 191

(http://mathsat.fbk.eu/). MathSAT 5 is a joint project of Fondazione
Bruno Kessler and DISI-University of Trento.

2.1.4. CVC4. The winner of SMT-COMP 2016 in the main track for
QF_LIA. CVC4 is an efficient open-source automatic theorem prover for
satisfiability modulo theories (SMT) problems. It can be used to prove the
validity (or, dually, the satisfiability) of first-order formulas in a large num-
ber of built-in logical theories and their combination. CVC4 is the fourth in
the Cooperating Validity Checker family of tools (CVC, CVC Lite, CVC3)
but does not directly incorporate code from any previous version. A joint
project of NYU and U Iowa, CVC4 aims to support the features of CVC3
and SMT-LIBv2 while optimizing the design of the core system architec-
ture and decision procedures to take advantage of recent engineering and
algorithmic advances [2] (http://cvc4.cs.nyu.edu/).

2.2. Timed Weighted Interpreted Systems. Timed Weighted Inter-
preted Systems were proposed in [12] to extend interpreted systems (ISs)
in order to make possible reasoning about real-time aspects of MASs and
to extend ISs to make the reasoning possible about not only temporal and
epistemic properties, but also agents’s quantitative properties. In the for-
malism of interpreted systems, each agent is characterised by a set of local
states and by a set of local actions that are performed following a local
protocol. Given a set of initial states, the system evolves in compliance
with an evolution function that determines how the local state of an agent
changes as a function of its local state and of the other agents actions.
The evolution of all the agents local states describes a set of runs and a
set of reachable states. These can be used to interpret formulae involving
temporal operators, epistemic operators to reason about what agents know.
Let IN be a set of natural numbers, and IN+ = IN \ {0}. We assume a

finite set X of variables, called clocks. Each clock is a variable ranging over
a set of non-negative natural numbers. For x ∈ X , ⊲⊳∈ {<,≤,=, >,≥},
c ∈ IN we define a set of clock constraints over X , denoted by C(X), The
constraints are conjunctions of comparisons of a clock with a time constant
c from the set of natural numbers IN, generated by the following grammar:

cc := true | x ⊲⊳ c | cc ∧ cc.

A clock valuation v of X is a total function from X into the set of natu-
ral numbers. The set of all the clock valuations is denoted by INX . For
X ′ ⊆ X , the valuation which assigns the value 0 to all clocks is defined as:
∀x∈X ′v′(x) = 0 and ∀x∈X\X ′v′(x) = v(x). For v ∈ INX , succ(v) is the clock
valuation of X that assigns the value v(x) + 1 to each clock x. A clock
valuation v satisfies a clock constraint cc, written as v |= cc, iff cc evaluates
to true using the clock values given by v.

192 A.M. ZBRZEZNY

Let A = {1, . . . , n} denote a non-empty and finite set of agents, and E be
a special agent that is used to model the environment in which the agents
operate, and AP =

⋃
i∈A∪{E}AP i be a set of atomic formulae, such that

AP i1

⋂
AP i2

= ∅ for all i1, i2 ∈ A ∪ {E}.

2.3. TWISs. A timed weighted interpreted system is a tuple ({Li, Acti,Xi,

Pi,Vi, Ii, di}i∈A∪{E}, {ti}i∈A, {tE}, ι), where Li is a non-empty set of local
states of the agent i, ι ⊆ S is a non-empty set of initial states, Acti is a non-
empty set of possible actions of the agent i, Act = Act1× . . .×Actn×ActE
is the set of joint actions, Xi is a non-empty set of clocks, Pi : Li → 2Acti

is a protocol function, ti : Li × LE × C(Xi) × 2Xi × Act → Li is a (partial)
evolution function for agents, tE : LE × C(XE) × 2XE × Act → LE is a
(partial) evolution function for environment, Vi : Li → 2APi is a valuation
function assigning to each local state a set of propositional variables that are
assumed to be true at that state, Ii: Li → C(Xi) is an invariant function,
that specifies the amount of time the agent i may spend in a given local
state, and di : Acti → IN is a weight function.
We assume that if ǫi ∈ Pi(li), then ti(li, lE , ϕi,X , (a1, . . . , an, aE)) = li for

ai = ǫi, any ϕi ∈ C(X), and any X ∈ 2Xi . An element < li, lE , ϕi,X , a, l
′
i
>

represents a transition from the local state li to the local state l
′
i
of agent i

labelled with action a. The invariant condition allows the TWIS to stay at
the local state l as long only as the constraint Ii(li) is satisfied. The guard
ϕ has to be satisfied to enable the transition.

2.4. Timed Weighted Model. For a given TWIS we define a timed
weighted model (or amodel) as a tupleM = (Act, S, ι, T,V, d), where: Act =
Act1×. . .×Actn×ActE is the set of all the joint actions, S =

∏
i∈A∪{E}(Li×

INXi) is the set of all the global states, ι =
∏

i∈A∪{E}(ιi×{0}
Xi) is the set of

all the initial global states, V : S → 2AP is the valuation function defined
as V(s) =

⋃
i∈A∪{E} Vi(li(s)), T ⊆ S× (Act∪ IN)×S is a transition relation

defined by action and time transitions. For a ∈ Act and δ ∈ IN: action tran-
sition is defined as (s, a, s′) ∈ T (or s

a
−→ s′) iff for all i ∈ A∪E , there exists

a local transition ti(li(s), ϕi,X
′, a) = li(s

′) such that vi(s) |= ϕi ∧ I(li(s))
and v′

i
(s′) = vi(s)[X

′ := 0] and v′
i
(s′) |= I(li(s

′)); time transition is defined
as (s, δ, s′) ∈ T iff for all i ∈ A ∪ E , li(s) = li(s

′) and v′
i
(s′) = vi(s) + δ and

v′
i
(s′) |= I(li(s

′)). The “joint” weight function d : Act → IN is defined as
follows: d((a1, . . . , an, aE)) = d1(a1) + . . .+ dn(an) + dE(aE).
Given a TWIS, one can define for any agent i the indistinguishability

relation ∼i⊆ S × S as follows: s ∼i s
′ iff li(s

′) = li(s) and vi(s
′) ≃ vi(s).

We assume the following definitions of epistemic relations: ∼E
Γ

def
=

⋃
i∈Γ ∼i,

∼C
Γ

def
= (∼E

Γ)
+ (the transitive closure of ∼E

Γ), ∼
D
Γ

def
=

⋂
i∈Γ ∼i, where Γ ⊆ A.

A COMPARISON OF SMT-SOLVERS FOR TWIS 193

A run in M is an infinite sequence ρ = s0
δ0,a0
−→ s1

δ1,a1
−→ s2

δ2,a2
−→ . . . of

global states such that the following conditions hold for all i ∈ IN : si ∈
S, ai ∈ Act, δi ∈ IN+, and there exists s′i ∈ S such that (si, δi, s

′
i) ∈ T and

(si, ai, si+1) ∈ T . The definition of a run does not permit two consecutive
joint actions to be performed one after the other, i.e., between each two
joint actions some time must pass; such a run is called strongly monotonic.

2.5. Abstract model. The set of all the clock valuations is infinite which
means that a model has an infinite set of states. We need to abstract the
proposed model before we can apply the bounded model checking technique.
Let ci be the largest constant appearing in any enabling condition or state
invariants of agent i, and v, v′ ∈ IN|X | be two clock valuations. We say that
v ≃i v

′ iff the following condition holds for each x ∈ Xi:

v(x) > ci and v
′(x) > ci or v(x) ≤ ci and v

′(x) ≤ ci and v(x) = v′(x).

Next, we define the relation ≃ as follows: v ≃ v′ iff v ≃i v
′, for every

i ∈ A ∪ {E}. Obviously, ≃ is an equivalence relation. It is easy to see that
equivalent clock valuations satisfy the same clock constraints that occur in
TWIS. Basing on this observation one can define the abstract model for

TWIS. Namely, let IDi = {0, . . . , ci + 1}, and ID =
⋃

i∈A∪{E} ID
Xi

i
. For any

v ∈ ID let us define the successor succ(v) of v as follows: for each x ∈ X ,

succ(v)(x) =

v(x) + 1, if x ∈ Xi and v(x) ≤ ci,

v(x), if x ∈ Xi and v(x) > ci.

Now, one can define the abstract model as a tuple M̂ = (Act, Ŝ, ι̂, T̂ , V̂, d),

where ι̂ =
∏

i∈A∪E(ιi×{0}
|Xi|) is the set of all the initial global states, Ŝ =∏

i∈A∪E(Li× ID
|Xi|
i

) is the set of all the abstract global states. V̂ : Ŝ → 2AP

is the valuation function such that: p ∈ V̂(ŝ) iff p ∈
⋃

i∈A∪E V̂i(li(ŝ)) for all

p ∈ AP ; and T̂ ⊆ Ŝ × (Act ∪ τ)× Ŝ. Let a ∈ Act. Then, action transition

is defined as (ŝ, a, ŝ′) ∈ T̂ iff ∀i∈A∃φi∈C(Xi)∃X ′

i
⊆Xi

(ti(li(ŝ), φi,X
′
i
, a) = li(ŝ

′)

and vi |= φi ∧ I(li(ŝ)) and v
′
i
(ŝ′) = vi(ŝ)[X

′
i
:= 0] and v′

i
(ŝ′) |= I(li(ŝ

′)));

time transition is defined as (ŝ, τ, ŝ′) ∈ T̂ iff ∀i∈A∪E(li(ŝ) = li(ŝ
′)) and

vi(ŝ) |= I(li(ŝ)) and succ(vi(ŝ)) |= I(li(ŝ))) and ∀i∈A(v
′
i
(ŝ′) = succ(vi(ŝ

′)))
and (v′E(ŝ

′) = succ(vE(ŝ))). Given an abstract model one can define for any

agent i the indistinguishability relation ∼i⊆ Ŝ × Ŝ as follows: ŝ ∼i ŝ
′ iff

li(ŝ
′) = li(ŝ) and vi(ŝ

′) = vi(ŝ). An abstract path π̂ in an abstract model is

a sequence ŝ0
b1−→ ŝ1

b2−→ ŝ2
b3−→ . . . of transitions such that for each i > 1,

bi ∈ Act ∪ {τ} and b1 = τ and for each two consecutive transitions at least
one of them is a time transition. Next, π̂[j..m] denotes the finite sequence

194 A.M. ZBRZEZNY

ŝj
δj+1,aj+1

−→ ŝj+1
δj+2,aj+2

−→ . . . ŝm with m− j transitions and m− j +1 states,
and Dπ̂[j..m] denotes the (cumulative) weight of π̂[j..m] that is defined as
d(aj+1) + . . . + d(am) (hence 0 when j = m). The set of all the paths

starting at ŝ ∈ Ŝ is denoted by Π̂(ŝ), and the set of all the paths starting

at an initial state is denoted by Π̂ =
⋃

ŝ0∈ι̂ Π̂(ŝ
0).

2.5.1. WELTLK.. Let I be an interval in IN of the form: [a, b) or [a,∞), for
a, b ∈ IN and a 6= b. WELTLK is the existential fragment of WLTLK [11],
defined by the grammar: ϕ ::= true | false | p | ¬p | ϕ ∧ ϕ | ϕ ∨ ϕ | XIϕ |
ϕUIϕ | ϕRIϕ | Kiϕ | EΓϕ | DΓϕ | CΓϕ.
The semantics of WELTLK is the following. A WELTLK formula ϕ is true

along the abstract path π̂ in the abstract model M̂ (in symbols M̂, π̂ |= ϕ)

iff M̂, π̂0 |= ϕ, where:

• M̂, π̂m |= XIα iff Dπ̂[m..m+ 1] ∈ I andM̂, π̂m+1 |= α,

• M̂, π̂m |= αUIβ iff (∃i ≥ m)(Dπ̂[m..i] ∈ I and M̂, π̂i |= β and

(∀m ≤ j < i)M̂, π̂j |= α),

• M̂, π̂m |= αRIβ iff (∀i ≥ m)(Dπ̂[m..i] ∈ I implies M̂, π̂i |= β) or

(∃i ≥ m) (Dπ̂[m..i] ∈ I and M̂, π̂i |= α and (∀m ≤ j ≤ i)M̂, π̂j |=
β),

• M̂, π̂m |= Kiα iff (∃π̂′ ∈ Π̂)(∃i ≥ 0)(π̂′(i) ∼i π̂(m) and M̂, π̂′i 6|= α).

• M̂, π̂m |= Y Γα iff (∃π̂′ ∈ Π̂)(∃i ≥ 0)(π̂′(i) ∼Y
Γ π̂(m) and M̂, π̂′i 6|=

α), where Y ∈ {D,E,C}.

Theorem 1. Let TWIS be a timed weighted interpreted system, M be a

concrete model for TWIS, ϕ WELTLK formula, and M̂ the abstract model

for TWISϕ. Then, M |= Eϕ iff M̂ |= Eϕ.

3. Bounded Model Checking

The SMT-based Bounded Model Checking (BMC) is a popular model
checking technique for the verification of concurrent systems, real-time sys-
tems and multi-agent systems.. We have given a model M, an existen-
tial modal formula ϕ, and a non-negative bound k, the SMT-based BMC
consists in searching for a non-empty set of paths of length k that consti-
tute a witness for the checked property ϕ. In particular, the SMT-based
bounded model checking algorithms generate a quantifier-free first order
formula which is satisfiable if and only if the mentioned set of paths exist.
The quantifier-free first order formula is usually obtained as a combina-
tion of an encoding of the unfolding of the transition relation of the given
model, and an SMT- encoding of the property in question. If the generated
quantifier-free first order formula is not satisfiable, then k is incremented

A COMPARISON OF SMT-SOLVERS FOR TWIS 195

until either the problem becomes intractable due to the complexity of solv-
ing the corresponding SMT instance, or k reaches the upper bound of the
bounded model checking problem for the language under consideration.
The SMT-based BMC is based on so called bounded semantics, which are

the base of translations of specifications to the SMT-problem. In definitions
of the bounded semantics one needs to represent cycles in models in a special
way. To this aim k-paths, i.e., finite paths of length k, and loops are defined.
These definitions have evolved over the last decade, and they have had a
major impact on the effectiveness of the BMC encodings.
The SMT-based BMC method for WELTLK was introduced in [13]. In

this paper we use implementation of the SMT-based BMC for WELTLK
that was presented in [14].

4. Experimental Results

In this section we experimentally evaluate the performance of four SMT-
solvers for SMT-based BMC encoding for WELTLK over the TWIS seman-
tics. We compare our experimental results with each other. We have con-
ducted the experiments using two benchmarks: the timed weighted generic
pipeline paradigm (TWGPP) TWIS model [12] and weighted timed train
controller system (TWTCS) TWIS model [14]. We would like to point out
that both benchmarks are very useful and scalable examples.
TWGPP. The specifications we consider are as follows:

•ϕ1 = F[0,∞)(G[0,∞)(¬ConsReady)), which expresses that there exist a
computation that always Consumer is ready to ready to consuming the
data.
•ϕ2= KPG[Min,Min+1)ConsFree, which expresses that Producer knows
that always the cost of receiving by Consumer the commodity is Min.
•ϕ3= KPG

(
ProdSend → KCKPF[0,Min−dP (Produce))ConsFree

)
, which

states that Producer knows that always if she/he produces a commodity,
then Consumer knows that Producer knows that Consumer has received
the commodity and the cost is less than Min− dP (Produce).
•ϕ4= KCG

(
ProdReady → X[dP (Produce),dP (Produce)+1)ProdSend

)
, which

expresses that Consumer knows that the cost of producing of a commodity
by Producer is dP (Produce).
•ϕ5 = G

(
ProdSend → KCKP (ConsStart ∨ ConsReady)

)
, which express

that always if Producer produces the data then Consumer knows that Pro-
ducer knows that Consumer started his job or Consumer is ready to con-
suming the data.

196 A.M. ZBRZEZNY

TWTCS. The specifications we consider are as follows for w ∈ {1, 106}:

•φ1 = G[28·w,∞)

(∧n−1
j=1

∧n
j=i+1(tunneli ∨ tunnelj)

)
, which expresses that

the system satisfies mutual exclusion property.

•φ2 = G[0,15·w)

(
tunnel1 → KT1

(
G(

∧n
j=2 ¬tunnelj)

))
, which expresses that

always if the Train1 enters its critical section, then it knows that always
in the future no other train will enter its critical section.

Note, that we describe specifications as universal formulae, for which we
verify the corresponding counterexample formulae that are interpreted ex-
istentially and belong to WELTLK. Moreover, for every specification given,
the corresponding WELTLK formula holds in the model of the benchmark.

4.1. Performance evaluation. We have performed our experimental re-
sults on a computer equipped with I7-5500U processor, 12 GB of RAM, and
the operating system Ubuntu Linux with the kernel 4.4.0. Our SMT-based
algorithm is implemented as standalone program written in the program-
ming language C++. We used the state of the art SMT-solvers: Z3, Yices,
Mathsat, and CVC4.
We will not analyse experimental results for CVC4 and MathSAT. The

time and memory usage for this two SMT-solvers was really high. We
did not expect this, because according to SMT-competition this two SMT-
solvers are the best one. It was very unexpected.

4.1.1. TWGPP.. As one can see from the line charts (Fig. 1) Z3 won this
comparison. The number of the considered k-paths is equal to 1. The length
of the witness is 2(2n + 3), where n is the number of nodes. In every case
Yices2 uses less memory than Z3.
Also in this case (Fig. 2) Z3 won this comparison. The number of the

considered k-paths is equal to 2. The length of the witness is 6 for n = 1,
10 for n = 2, 12 for n = 3 and n = 4, 14 for n = 5, 16 for n = 6 and n = 7,
and 18 for n = 8 and n = 9, where n is the number of nodes.
Yices2 won a comparison for the formulae ϕ3 (Fig. 3), ϕ4 (Fig. 4) and

ϕ5 (Fig. 5). The number of the considered k-paths for the formula ϕ3 is
equal to 3. The length of the witness is 4(n+ 2), where n is the number of
nodes. The number of the considered k-paths for the formula ϕ4 is equal
to 4. The length of the witness is 6. The number of the considered k-paths
for the formula ϕ5 is equal to 2. The length of the witness is 8.

4.1.2. TWTCS.. In this case Z3 performed better than Yices2. As one can
see from the line charts (Fig. 6) Z3 won this comparison. The number of
the considered k-paths for the formula ψ1 is equal to 1. The length of the
witness is 14. The number of the considered k-paths for the formula ψ2 is
equal to 2. The length of the witness is 14.

A COMPARISON OF SMT-SOLVERS FOR TWIS 197

 0

 1000

 2000

 3000

 4000

 5000

 6000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

T
im

e
 i
n

 s
e

c
.

Number of Nodes

SMT-solver time usage for a TWGPP, t = 1, ϕ1

Z3
Yices

mathSAT
CVC4

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

T
im

e
 i
n

 s
e

c
.

Number of Nodes

SMT-solver time usage for a TWGPP, t = 1000000, ϕ1

Z3
Yices

mathSAT
CVC4

 1

 10

 100

 1000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

M
e

m
o

ry
 i
n

 M
B

Number of Nodes

SMT solver memory usage for a TWGPP, t = 1, ϕ1

Z3
Yices

mathSAT
CVC4

 1

 10

 100

 1000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

M
e

m
o

ry
 i
n

 M
B

Number of Nodes

SMT solver memory usage for a TWGPP, t = 1000000, ϕ1

Z3
Yices

mathSAT
CVC4

Figure 1. ϕ1: SMT-based BMC: TWGPP with n nodes.

198 A.M. ZBRZEZNY

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

T
im

e
 i
n

 s
e

c
.

Number of Nodes

SMT-solver time usage for a TWGPP, t = 1, ϕ2

Z3
Yices

mathSAT
CVC4

 0

 1000

 2000

 3000

 4000

 5000

 6000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

T
im

e
 i
n

 s
e

c
.

Number of Nodes

SMT-solver time usage for a TWGPP, t = 1000000, ϕ2

Z3
Yices

mathSAT
CVC4

 1

 10

 100

 1000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

M
e

m
o

ry
 i
n

 M
B

Number of Nodes

SMT solver memory usage for a TWGPP, t = 1, ϕ2

Z3
Yices
CVC4

MathSAT

 1

 10

 100

 1000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

M
e

m
o

ry
 i
n

 M
B

Number of Nodes

SMT solver memory usage for a TWGPP, t = 1000000, ϕ2

Z3
Yices
CVC4

MathSAT

Figure 2. ϕ2: SMT-based BMC: TWGPP with n nodes.

A COMPARISON OF SMT-SOLVERS FOR TWIS 199

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

T
im

e
 i
n

 s
e

c
.

Number of Nodes

SMT-solver time usage for a TWGPP, t = 1, ϕ3

Z3
Yices
CVC4

mathSAT

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

T
im

e
 i
n

 s
e

c
.

Number of Nodes

SMT-solver time usage for a TWGPP, t = 1000000, ϕ3

Z3
Yices
CVC4

mathSAT

 1

 10

 100

 1000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

M
e

m
o

ry
 i
n

 M
B

Number of Nodes

SMT solver memory usage for a TWGPP, t = 1, ϕ3

Z3
Yices
CVC4

MathSAT

 1

 10

 100

 1000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

M
e

m
o

ry
 i
n

 M
B

Number of Nodes

SMT solver memory usage for a TWGPP, t = 1000000, ϕ3

Z3
Yices
CVC4

MathSAT

Figure 3. ϕ3: SMT-based BMC: TWGPP with n nodes.

200 A.M. ZBRZEZNY

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

1 50 100 150 200 300 500 600 700 800 900

T
im

e
 i
n

 s
e

c
.

Number of Nodes

SMT-solver time usage for a TWGPP, t = 1, ϕ4

Z3
Yices
CVC4

mathSAT

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

1 50 100 150 200 300 500 600 700 800 900 1000 1200 1400

T
im

e
 i
n

 s
e

c
.

Number of Nodes

SMT-solver time usage for a TWGPP, t = 1000000, ϕ4

Z3
Yices
CVC4

mathSAT

 1

 10

 100

 1000

 10000

1 50 100 150 200 300 500 600 700 800 900

M
e

m
o

ry
 i
n

 M
B

Number of Nodes

SMT solver memory usage for a TWGPP, t = 1, ϕ4

Z3
Yices
CVC4

MathSAT

 1

 10

 100

 1000

 10000

1 50 100 150 200 300 500 600 700 800 900 1000 1200 1400

M
e

m
o

ry
 i
n

 M
B

Number of Nodes

SMT solver memory usage for a TWGPP, t = 1000000, ϕ4

Z3
Yices
CVC4

MathSAT

Figure 4. ϕ4: SMT-based BMC: TWGPP with n nodes.

A COMPARISON OF SMT-SOLVERS FOR TWIS 201

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

1 50 100 300 500 600 700 800 900 1000 1500

T
im

e
 i
n

 s
e

c
.

Number of Nodes

SMT-solver time usage for a TWGPP, t = 1, ϕ5

Z3
Yices
CVC4

mathSAT

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

1 50 100 300 500 600 700 800 1000 1200 1500

T
im

e
 i
n

 s
e

c
.

Number of Nodes

SMT-solver time usage for a TWGPP, t = 1000000, ϕ5

Z3
Yices
CVC4

mathSAT

 1

 10

 100

 1000

1 50 100 300 500 600 700 800 900 1000 1500

M
e

m
o

ry
 i
n

 M
B

Number of Nodes

SMT solver memory usage for a TWGPP, t = 1, ϕ5

Z3
Yices
CVC4

MathSAT

 1

 10

 100

 1000

1 50 100 300 500 600 700 800 1000 1200 1500

M
e

m
o

ry
 i
n

 M
B

Number of Nodes

SMT solver memory usage for a TWGPP, t = 1000000, ϕ5

Z3
Yices
CVC4

MathSAT

Figure 5. ϕ5: SMT-based BMC: TWGPP with n nodes.

202 A.M. ZBRZEZNY

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

2 5 10 20 30 40 50 60 80

T
im

e
 i
n

 s
e

c
.

Number of Trains

SMT-solver time usage for a TWTCS, t = 1, ϕ1

Z3
Yices
CVC4

mathSAT

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

2 5 10 20 30 40 50 60 70

T
im

e
 i
n

 s
e

c
.

Number of Trains

SMT-solver time usage for a TWTCS, t = 1000000, ϕ1

Z3
Yices
CVC4

mathSAT

 1

 10

 100

 1000

 10000

2 5 10 20 30 40 50 60 80

M
e

m
o

ry
 i
n

 M
B

Number of Trains

SMT solver memory usage for a TWTCS, t = 1, ϕ1

Z3
Yices
CVC4

MathSAT

 1

 10

 100

 1000

 10000

2 5 10 20 30 40 50 60 70

M
e

m
o

ry
 i
n

 M
B

Number of Trains

SMT solver memory usage for a TWTCS, t = 1000000, ϕ1

Z3
Yices
CVC4

MathSAT

Figure 6. SMT-based BMC: TWTCS with n trains.

A COMPARISON OF SMT-SOLVERS FOR TWIS 203

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

2 50 75 100 125 150 175

T
im

e
 i
n

 s
e

c
.

Number of Trains

SMT-solver time usage for a TWTCS, t = 1, ϕ2

Z3
Yices
CVC4

mathSAT

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

2 50 75 100 125 150 175 200

T
im

e
 i
n

 s
e

c
.

Number of Trains

SMT-solver time usage for a TWTCS, t = 1000000, ϕ2

Z3
Yices
CVC4

mathSAT

 1

 10

 100

 1000

 10000

2 50 75 100 125 150 175

M
e

m
o

ry
 i
n

 M
B

Number of Trains

SMT solver memory usage for a TWTCS, t = 1, ϕ2

Z3
Yices
CVC4

MathSAT

 1

 10

 100

 1000

 10000

2 50 75 100 125 150 175 200

M
e

m
o

ry
 i
n

 M
B

Number of Trains

SMT solver memory usage for a TWTCS, t = 1000000, ϕ2

Z3
Yices
CVC4

MathSAT

Figure 7. SMT-based BMC: TWTCS with n trains.

204 A.M. ZBRZEZNY

5. Conclusions

We have experimentally evaluated the SMT-based BMC approach for
WELTLK interpreted over the timed weighted interpreted systems. The
experimental results show that the Z3 SMT-solver in more cases is better
than Yices2 SMT-solver when we compare time usage, but when we compare
memory usage Yices2 is better. In general the Z3 approach appears to be
superior for the both systems, while the Yices2 approach appears to be
superior only for three formulae for the TWGPP system. This is a novel
and interesting result.
In the tables 5 and 2 we showed the winners of our comparison.

SMT-solver time usage
Yices2 Z3

formula basic weights basic weights
1 106 1 106

ϕ1 x x
ϕ2 x x
ϕ3 x x
ϕ4 x x
ϕ5 x x
φ1 x x
φ2 x x

Table 1. The winners for all the benchmarks.

SMT-solver memory usage
Yices2 Z3

formula basic weights basic weights
1 106 1 106

ϕ1 x x
ϕ2 x x
ϕ3 x x
ϕ4 x x
ϕ5 x x
φ1 x x
φ2 x x

Table 2. The winners for all the benchmarks.

A COMPARISON OF SMT-SOLVERS FOR TWIS 205

References

[1] Rajeev Alur and David L. Dill. The theory of timed automata. In Proceedings of
REX Workshop, pages 45–73, 1991.

[2] Clark Barrett, Christopher L. Conway, Morgan Deters, Liana Hadarean, Dejan Jo-
vanovic, Tim King, Andrew Reynolds, and Cesare Tinelli. CVC4. In Computer Aided
Verification - 23rd International Conference, CAV 2011, Snowbird, UT, USA, July

14-20, 2011. Proceedings, pages 171–177, 2011.
[3] Nikolaj Bjørner, Kenneth L. McMillan, and Andrey Rybalchenko. Program verifica-

tion as satisfiability modulo theories. In 10th International Workshop on Satisfiability
Modulo Theories, SMT 2012, Manchester, UK, June 30 - July 1, 2012, pages 3–11,
2012.

[4] Patricia Bouyer, Nicolas Markey, and Ocan Sankur. Robust weighted timed au-
tomata and games. In Proceedings of FORMATS 2013, pages 31–46, 2013.

[5] Alessandro Cimatti, Alberto Griggio, Bastiaan Joost Schaafsma, and Roberto Sebas-
tiani. The mathsat5 SMT solver. In Tools and Algorithms for the Construction and
Analysis of Systems - 19th International Conference, TACAS 2013, Held as Part of

the European Joint Conferences on Theory and Practice of Software, ETAPS 2013,

Rome, Italy, March 16-24, 2013. Proceedings, pages 93–107, 2013.
[6] E. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press, 1999.
[7] Bruno Dutertre. Yices 2.2. In Computer Aided Verification - 26th International Con-
ference, CAV 2014, Held as Part of the Vienna Summer of Logic, VSL 2014, Vienna,

Austria, July 18-22, 2014. Proceedings, pages 737–744, 2014.
[8] R. Fagin, J. Y. Halpern, Y. Moses, and M. Y. Vardi. Reasoning about Knowledge.

MIT Press, Cambridge, 1995.
[9] Kim G. Larsen and Radu Mardare. Complete proof systems for weighted modal

logic. Theor. Comput. Sci., 546:164–175, 2014.
[10] B. Woźna-Szcześniak and A. Zbrzezny. Checking EMTLK properties of timed inter-

preted systems via bounded model checking. Studia Logica, pages 1–38, 2015.
[11] B. Woźna-Szcześniak, A. M. Zbrzezny, and A. Zbrzezny. SAT-based bounded model

checking for weighted interpreted systems and weighted linear temporal logic. In
Proceedings of PRIMA’2013, volume 8291 of LNAI, pages 355–371. Springer-Verlag,
2013.

[12] Agnieszka M. Zbrzezny and Andrzej Zbrzezny. Checking WECTLK Properties of
Timed Real-Weighted Interpreted Systems via SMT-Based Bounded Model Check-
ing. In Proceedings of EPIA 2015, volume 9273 of LNCS, pages 638–650. Springer,
2015.

[13] Agnieszka M. Zbrzezny and Andrzej Zbrzezny. Checking WELTLK properties of
weighted interpreted systems via smt-based bounded model checking. In Proceedings
of PRIMA 2015, volume 9387 of LNCS, pages 660–669. Springer, 2015.

[14] Agnieszka M. Zbrzezny, Andrzej Zbrzezny, and Franco Raimondi. Efficient Model
Checking Timed and Weighted Interpreted Systems Using SMT and SAT Solvers,
pages 45–55. Springer International Publishing, 2016.

206 A.M. ZBRZEZNY

Received: November 2016

Agnieszka M. Zbrzezny

Jan Długosz University in Częstochowa
Institute of Mathematics and Computer Science
al. Armii Krajowej 13/15, 42-200 Częstochowa, Poland
E-mail address: agnieszka.zbrzezny@ajd.czest.pl

