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ELECTRON STRUCTURE AND PROPERTIES OF
DISORDERED METALS *

Abstract: Energy spectra and densities of electron states of disordered metals
(amorphous metals, liquid metals) have been determined using variation
principle and Green’s function methods. It was shown that taking into into
account the higher order perturbation calculation and nonlocal effects
considerably influences the density of electron states near Fermi energy.

1. Introduction

It is known that a lot of electronic properties of metals (electro-
and thermal conductivity, heat capacity, entropy etc.) are determined by density
of electron states '. Evidently, it causes the scientific interest in studying the
energy spectrum and density of states of disordered metals. Apart from the
above, these objects have some untraditional properties that are not proper for
the crystalline metals.

Due to the disordered metals theory, the appearance of pseudo-slit >
in the density of electron states is worth of careful investigation. Two different
approaches to solving this problem are considered in this work. The first
approach is based on the variation principle * using the one-parameter probe
conduction electron wave function. The second one is based on use of the
Green’s function method and the standard perturbation theory for the model
potential (MP) *°.
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2. The variation calculation of electron structure of disordered metals

The calculation of energy spectrum and states density of liquid and
amorphous metals based on variation principle * uses the following probe
function:
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Obviously, the condition for finding normalizing constant Ck is:

Here:
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The brackets mean the averaging both by the configuration and by the
main state. The variation function introduces the electron scattering on ions and
it must satisfy the minimum condition of energy.

Applying the integrating in the parts for expression of average value
of Hamiltonian for k-th state, expression for energy takes the following form:
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After calculation of energy spectrum using the probe function we
neglect all double summing members of equation and obtain:
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The minimum condition of energy is satisfied by one-parameter probe
function that takes such form:

_Sa(q) [E(k)-h’k(k+q)/ 2m]
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Here: S(q) =< PqP-q > — structure factor of the disordered metal,

S,,(q) - electron-ion structure factor:
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Here F.,(R) is the pair correlation function that describes electron-ion
interaction in system. It is remarkable, if the shape-factor of screened MP is
small, this value is equal to:
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After all these procedures we can integrate the equation for energy
spectrum and get the following:
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The expression for density of states divided to density of states in free
electron approximation is the following:
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Now, if we put 7k =1 and 4k=0, we get the result of the Rayleigh-
Schrédinger perturbation theory:
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And if we put /k =1 and Ak=0 everywhere except the logarithm,
we obtain the result of the Brillouin-Wigner perturbation theory:
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3. The Green’s function approach
Another approach to study electron structure of disordered metals is the

use of the Green’s functions and the perturbation theory **

Within this approach, energy spectrum of the conduction electrons
of disordered metal can be determined as the pole of the Green’s function

averaged by the configuration of ions. The density of electron states is done by
the imagine part of :
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The averaged Green’s function can be written as:
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Here (Z(k,E))cons is the average value of the mass operator, that in the
second term of perturbation theory takes such form:
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Transforming the sum into the integral and using the angular averaging,
we obtain the following expressions for real and imagine parts of the mass
operator:
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Significant, we can easily get the terms of higher order of perturbation
theory .
The final result for density of electron states is:
Im(2(k; E)),, k> dk
N(E)=— j 2 = (22)
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The energy spectrum is determined in a similar way:
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Here are the corrections of the standard perturbation theory introduced
by the second part of the expression (23). Its calculation gives us:
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The electron-ion interaction is described by nonlocal screened MP
in the following form:
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Here P, is the projection operator that select only the I-th partial wave
function of the full electron wave function. 4. and R, are the fitting parameters
of MP determined in ’. The sum includes only the electrons’ valent states.

The structure factor is determined by the Ashcroft-Lekner theory based
on hard-sphere approximation.

4. Results and discussion

We have done the computing of energy spectra and densities of electron
states for series of nontransition metals. Also the influence of the MP nonlocal
properties was investigated. Remarkable, the deflection of the density of states
near the Fermi state is sensitive to the nonlocal properties contribution. It can be
easily seen comparing the results obtained by the quasi-local Fermi sphere
approximation and the result received by the nonlocal angular averaging. Now
we can conclude, that contribution of both the nonlocality of MP and higher
orders of perturbation theory play a crucial role in the formation of energy
spectra and densities of electron states of the disordered metals. Data of the
Fermi energies (Ey), densities of electron states on the Fermi level (N(Ey)) and
the effective masses are shown in Tablel.
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Table 1
Comparison of the Fermi energies, densities of electron states on the Fermi
level and the efective masses

Metal Li Na K Mg Zn Cd Al In Tl

N(Ef),1/erg 10.239 10.307 [0.470 [0.278 [0.210 [0.283 |0.272]0.358]0.359
Ef 7.329 [4.991 [3.243 |11.687 [15.120 | 12.86 [18.05]|14.6914.33
Ef MFE 7.244 |4.889 [3.192 |10.693 |14.242 |11.34 [17.08]12.87|12.54
Ef exp 7.6459 15.167 11222 | — | — | —
g(Ef) 1.08 [1.016 {0.995 ]0.986 |0.997 [0.899 {0.987]0.984|0.971
m’/m —— [1.021 {1.003 | —— |1.020 [0.827 {0.982]1.014]|0.936

The comparison of the corresponding experimental and computed data

allows to make conclusion of a good correlation of these values.

*

—

Presented at VIIth International Seminar on Physics and Chemistry
of Solids, Kule nad Warta, June 2001
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Struktura elektronowa i wlasciwo$ci metali nieuporzadkowanych

Streszczenie: W pracy wyznaczono widma i gestosci stanow elektrondw
swobodnych dla metali nieuporzadkowanych (metale amorficzne, ciekle
metale) stosujac podejscie wariacyjne oraz metody funkcji Greena. Pokazano,
ze uwzglednienie  wyzszych rzedéw rachunku zaburzen oraz efektow
nielokalnych wptywa w istotny sposob na gestos¢ stanéw w poblizu energii
Fermiego.
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