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Abstract

The present paper is a continuation of research in parallel information processing

based on the tabular modular computing structures. We deal with the methodology of

using a minimal redundant modular number system for high-speed and high-precision

computation by means of modern universal multicore processors. Advantages of formal

computing mode on the base of modular arithmetic are demonstrated by the example

of implementation of digital signal processing procedures. The additive and additive-

multiplicative formal computing schemes with the obtained estimations of the cardinality

of working ranges for the realization of calculations are presented in the article.

1. Introduction

In recent years, the tabular methods of digital information processing,
both at the hardware and software levels, have been widely used to solve
the problems of performance improvement, flexible organization of adaptive
operating modes and some others in modern computer algebra and arith-
metic, as well as in their numerous applications in such fields of science and
technology as digital signal processing (DSP), image recognition and im-
age processing, various purpose identification systems, artificial intelligence
systems, information protection and similar systems [1-6].
However, within a framework of classical computer-aided algorithmic

foundations based on the arithmetic of positional number systems (PNS)
there are a number of objective factors that impede intensification of the
development and practical implementation of tabular computer structures.
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First of all, such factors include the sequential internal nature of PNS which
appears in the presence of interdigit carry propagation during the execution
of arithmetic operations that most often does not allow us to carry out an
efficient decomposition of the positional computer structures (PCS) into the
components acceptable for tabular implementation. Thus, the principles of
tabular information processing and the PNS arithmetic totally contradict
each other. Taking the above into account, the research aimed to eliminate
the indicated contradictory situation seems to be very topical.
The analysis of modern developing information technologies from the

point of view of their suitability for the organization of tabular adaptive
computing indicates that the modular technology provides the widest range
of possibilities in this respect [7-10]. This is caused by the unique property of
modular number system (MNS) to perform in a natural way the decomposi-
tion of computational processes into the independent or quasi-independent
subprocesses determined on mathematical models whose facilities have di-
mensions many times smaller (by the number of bases) in comparison with
a very large dynamic range of the applied MNS.
In modern applications of modular arithmetic (MA) the development

of high-performance parallel systems, which operate completely in the so-
called formal computing mode (FCM), occupies a highly important place
[7, 8]. This mode is characterized by the absence of rounding on the mod-
ular segments of the computational processes, i.e. on segments consisting
only of modular operations: addition, subtraction and multiplication in the
MNS without overflow check. At the same time it is assumed that the com-
putation results on each modular segment do not exceed the limits of the
used dynamic range. Since the arithmetic operations in the modular code
(MC) are carried out independently for each of the modules, then in the
framework of the FCM a high performance is achieved due to the parallel
nature of MA along with the absence of rounding.
In recent years, the modular information-processing systems (MIPS) are

mostly applied to the implementation of high-precision and absolutely ex-
act computations. First of all, this concerns the applications in the field
of DSP, pattern recognition and image processing as well as in information
protection. Currently, among the systems of the specified class the priority
positions are occupied by the MIPS which can be implemented program-
matically, i.e. without the use of special hardware. Within the framework of
existing and intensively developing computer technologies of parallel pro-
cessing the facilities to implement the FCM at the program level and to
increase its operating limits are steadily expanding.
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2. The computer-arithmetic basis of tabular technologies of

modular information processing

At present, the modular direction in computer science, digital informa-
tion processing and in many other fields of science and technology expe-
riences a stage of rapid development directly linked with the outstanding
achievements of integral technologies. During the past 15-20 years, the fun-
damental and applied researches both on the theory and the use of modular
computing structures (MCS) have been focused on the implementation of
the main advantages of MNS, first of all those which are caused by tabular
nature of MA. In so doing, the following problems have received primary
attention:
- the design of special purpose very-large-scale-integration (VLSI) chips,

which take into account the nature of MNS as much as possible;
- the optimization of non-modular MCS;
- the numerous particular applications of MA.
Varied and comprehensive electronic devices and components including

extensive classes of VLSI memories have been developed for the tabular
MCS and special processors on their basis. There are numerous publica-
tions of well-known specialists in the field of MSC with the specific examples
of modular processing units, processors and systems of tabular type. These
examples shows clearly that a family of modular VLSI architectures and
chips allows us to implement the majority of single-step computing proce-
dures such as convolution and correlation of discrete sequences, adaptive
finite impulse response (FIR) filters, mapping of discrete signals into the
spaces of orthogonal projections and similar tasks. Within the framework
of existing electronic components and circuits the ability of MNS-based de-
vices to flexible modification of their own architecture is implemented simply
by reprogramming of the used VLSI chips. At the same time, the design
and implementation of reconfigurable high-performance modular processors
and digital information-processing systems functioning entirely in the FCM
usually requires too much hardware resources, and in the case of multi-step
basic procedures it becomes impossible.
Because of the widespread distribution and rapid development of modern

computers the software-based tabular MIPS presents an attractive compet-
itive alternative to the traditional modular computing technologies oriented
to the primary use of parallel pipeline VLSI architectures.
In terms of the basic optimality criteria of high-speed MCS a minimal

redundant modular arithmetic (MRMA) is used as a computer-arithmetic
basis of parallel tabular MIPS oriented to universal multi-processor comput-
ers. It is known that the most distinctive feature of an MRMA is the more
complete and perfect computer arithmetic in comparison with the analogues
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of classical MNS [7, 8 11-17]. The software-based versions of MRMA allow
us to apply a huge dimension tables (up to 232 words or more), very large
modules (for example, from 216 to 264) and therefore the super-large oper-
ating ranges. In the computer models of information processing procedures
this circumstance makes it possible to expand significantly the FCM com-
putational limits inherent to conventional modular systems based on VLSI
architectures. In turn, this leads to the performance improvement as well
as to the considerable increase in the accuracy of the final results.
As is easily seen, the perfect compliance of the MRMA and the tabular

principles of the digital information processing appears most clearly in the
software-based MCS. First of all, it is expressed in the triviality and flexi-
bility of the programmable substitution mechanism of used operating tables
including modification (increase or decrease) and even a complete replace-
ment of the current set of the bases of minimal redundant MNS (MRMNS).
Thus, the tabular minimal redundant MCS (MRMCS) and, therefore, the
computer models of MIPS based on them have an extremely high level of
adaptability and flexibility.
The design of the basic set of computer algorithms and their software

models on the grounds of MRMA and modern computers is an inherent de-
velopment stage of the family of tabular MRMCS, which create a computing
environment with the maximum allowable limits of the FMC.

3. The basic model of the computing environment for the

technology of modular information processing

The analysis of modern principles and methods used to design efficient
algorithms for digital information processing allows us to conclude that
usually all of them are aimed at implementing the decomposition concept
of computation process organization.
Within the framework of this strategy it is expected the decomposition

of the performed computational process (for example, the different discrete
transforms, calculation of the convolution, correlation of discrete signals,
etc.) into a set of similar procedures of the dimension smaller than the
original one, and the construction of a corresponding rule for the formation
of a net result by combining all the partial results of the executable proce-
dures. Since most of the frequently used algorithms of digital information
processing actually have the same operational structure, then their com-
puter implementation fits into a framework of the common mathematical
model.
The digital information processing systems, which target functions are

described by the calculating relationships possessing the modular opera-
tional spectrum, represent the main application domain for tabular MIPS.
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First, let us consider the principles of implementation of the non-recursive
(one-step) processes in the FCM (for example, FIR filtering procedures).
In this case, the basic elementary computational procedure fits into the
framework of generalized computer model which can be described by the
following expression

Y (l) =

⌋

N−1
∑

n=0

h
(u)
l,nXl (n)

⌊

(l = 0, 1, . . . , L− 1; u = 0, 1, . . . , U − 1) , (1)

where h
(u)
l,n is a certain real constant; Xl (n) and Y (l) are the integer sam-

ples of the input {Xl (0) , Xl (1) , . . . , Xl (N − 1)} and output {Y (0),Y (1),
. . .,Y (L− 1)} digital signals, respectively; N , L and U are the natural num-
bers; ⌋x⌊ designates the nearest integer to the real number x determined by
the rule

⌋x⌊ =

{

⌊x⌋ if x < ⌊x⌋+ 0, 5;

⌈x⌉ if x ≥ ⌊x⌋+ 0, 5;

where ⌊x⌋ = max {y ∈ Z | y < x}, ⌈x⌉ = min {y ∈ Z | y ≥ x}, Z is the set
of all integers.
Since the expression (1) should be implemented using the MRMA, then

it is necessary to reduce it to the form that is consistent with the principle
of formal calculations. This can be made in two ways:

a) by the replacement of the coefficients h
(u)
l,n by the rational fractional ap-

proximations H
(u)
l,n /Q, where H

(u)
l,n =

⌋

Qh
(u)
l,n

⌊

∈ {−Q,−Q+ 1, . . . , Q− 1},

Q is the natural number which determines the accuracy of the approxima-

tion of real constants h
(u)
l,n ∈ [−1, 1] by simple fractions H

(u)
l,n /Q;

b) by the approximation of the products h
(u)
l,n Xl (n) by some fractional-

rational estimations Y
(u)
l (n) /S, where

Y
(u)
l (n) =

⌋

S h
(u)
l,n Xl (n)

⌊

, (2)

S is the selected natural scale. In the first case, the expression (1) is trans-
formed into an approximate model

Y (l) ≈

⌋

Q−1
N−1
∑

n=0

H
(u)
l,n Xl (n)

⌊

(3)

and into a model

Y (l) ≈

⌋

S−1
N−1
∑

n=0

Y
(u)
l (n)

⌊

(4)

in the second case (l = 0, 1, . . . , L− 1; u = 0, 1, . . . , U − 1).
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The implementation models (3) and (4) of the expression (1) are called
the additive-multiplicative (AM) and additive (A) models, respectively.
Thus, the generalized computer model is essentially reduced to computing
the sum value

Y (u) (l) =



























N−1
∑

n=0
H

(u)
l,n Xl (n) in the case of AM-model,

N−1
∑

n=0
Y

(u)
l (n) in the case of A-model.

(5)

The use of FCM is justified only when the computational results ob-
tained on the selected modular segments of the realizable procedure do
not exceed the working range of MRMNS. Thus, in order to implement
the expression (5) entirely in the FCM it is required that the dynamic
range D = Z

−

2M = {−M,−M + 1, . . . ,M − 1} of the default MRMNS

should include all the possible values of Y (u) (l) (here, M = m0Mk−1;
m0 is an auxiliary module satisfying the following conditions: m0 ≥ ρ and

mk ≥ 2m0 + ρ [7,8,11]; Mk−1 =
∏k−1

i=1 mi; m1,m2, . . . ,mk are the basic
modules, k ≥ 2). This circumstance exerts a decisive influence on the
choice not only of the dynamic range D, but also of the source data range
D̂ = Z

−

2P = {−P,−P + 1, . . . , P − 1} ⊂ D (P is some natural number).

It is assumed that the constant factors from the set {H
(u)
l,0 ,H

(u)
l,1 ,. . .,H

(u)
l,N−1}

(l = 0, 1, . . . , L − 1; u = 0, 1, . . . , U − 1), that appeared in (3), are repre-
sented in the minimal redundant modular code (MRMC), i.e., by the vec-

tors H
(u)
l,n =

(

∣

∣

∣
H

(u)
l,n

∣

∣

∣

m1

,
∣

∣

∣
H

(u)
l,n

∣

∣

∣

m2

, . . . ,
∣

∣

∣
H

(u)
l,n

∣

∣

∣

mk

)

, and the values Xl (n),

which in the general case are represented by λ-bits complement binary num-

bers Xl (n) =
(

x
(λ−1)
l (n) x

(λ−2)
l (n) . . . x

(0)
l (n)

)

2
(x

(j)
l (n) ∈ {0, 1} , j =

0, 1, . . . , λ−1; λ = 1+⌈log2 P ⌉), are transformed into the MRMC (|Xl (n)|m1
,

|Xl (n)|m2
, . . ., |Xl (n)|mk

) during the implementation of the model (3).

With regard to the model (4), for its implementation it is necessary to

obtain the MRMC (
∣

∣

∣
Y

(u)
l (n)

∣

∣

∣

m1

,
∣

∣

∣
Y

(u)
l (n)

∣

∣

∣

m2

, . . .,
∣

∣

∣
Y

(u)
l (n)

∣

∣

∣

mk

) of numbers

Y
(u)
l (n) representing the scaled values of the numbers Xl (n) (see (2)). This
can be carried out using the methodology presented in [8].

Therefore, the residues
∣

∣Y (u) (l)
∣

∣

mi

(i = 0, 1, . . . , k) of the MRMC of the

number Y (u) (l) is calculated according to the rule
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∣

∣

∣
Y (u) (l)
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∣

∣
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∣

∣
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∣

∣

mi
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∣
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∣

∣
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∣
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in the case of AM-model,

∣

∣

∣

∣

N−1
∑

n=0

∣

∣

∣
Y

(u)
l (n)

∣

∣

∣

mi

∣

∣

∣

∣

mi

in the case of A-model

(6)
for the implementation of the expression (5) in a FCM.
The tabular data

Hu =

{(

∣

∣

∣
H

(u)
l,n

∣

∣

∣

m1

,
∣

∣

∣
H

(u)
l,n

∣

∣

∣

m2

, . . . ,
∣

∣

∣
H

(u)
l,n

∣

∣

∣

mk

)}

n=0,N−1; l=0,L−1

(7)

are the constituent elements of the computer AM-models (6) of the ex-
pression (1). The possibility of programmable partial modification or com-
plete change of the set of MRMC (7) provides a simple adaptive recon-
figuration of the computation process. In principle, the number U of the
sets Hu can be an arbitrary number, and the total amount of default con-
stants for tabular information processing is VT = N · L · U words of length

λMNS =
k
∑

i=1
⌈log2mi⌉ bits.

Now let us estimate the cardinality 2M of the MRMS operating range D
which ensures the correctness of the application of the expression (6).
According to (5), when using the AM-model we have

∣

∣

∣
Y (u) (l)

∣

∣

∣
≤

N−1
∑

n=0

∣

∣

∣
H

(u)
l,n Xl (n)

∣

∣

∣
≤ P

N−1
∑

n=0

∣

∣

∣
H

(u)
l,n

∣

∣

∣

Therefore, in this case the parameter M of the range D should satisfy
the condition

M ≥ P max
l,u

{

N−1
∑

n=0

∣

∣

∣
H

(u)
l,n

∣

∣

∣

}

(8)

Without loss of generality, we can assume that
∣

∣

∣
h
(u)
l,n

∣

∣

∣
≤ 1 for all ad-

missible values of n, l and u. Then, in view of the fact that H
(u)
l,n ∈

{−Q,−Q+ 1, . . . , Q− 1} and

max
l,u

{

N−1
∑

n=0

∣

∣

∣
H

(u)
l,n

∣

∣

∣

}

= N ·Q

we have from (8)

M ≥ N · P ·Q (9)
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In the case of applying the A-model to the implementation of the expres-
sion (1), the necessary estimates for the basic parameter M of the MRMNS
range were obtained in [14]:

M >

⌈

N · S · (2P + 1)

2

⌉

.

For most modern DSP applications the quite acceptable values of P (a

parameter of the data range D̂) and N (a number of digital signal samples)
are 216 ≤ P ≤ 224 and 28 ≤ N ≤ 210, respectively. Since the calculation of
Y (u) (l) (see (5)) in the MRMNS is carried out exactly, i.e. without rounding

or truncation errors, then for approximation of the coefficients H
(u)
l,n we can

choose a natural number Q of the size, for example, between 12 and 16 bits,
which corresponds to 211 < Q < 216. Taking the preceding into account,
for the parameter M of the MRMNS operating range we obtain from (9)
the following estimate: 235 < M < 250.
It is easy to see that implementing FCM within the framework of AM-

model, an arbitrary recursive computational process (for example, the Wino-
grad Fourier transform algorithm) represents a set of typical procedures
(segments) of the form

Y (l)
r =

Nr−1
∑

n=0

Cr,n,lXr,l (n) (r = 0, 1, . . . , R− 1; l = 0, 1, . . . , Lr − 1) , (10)

where r is the specific number of process stage; R, Lr, Nr are some natural
numbers; Cr,n,l are the constants from the set {−Q,−Q+ 1, . . . , Q− 1};
{Yr (l)}l=0,Lr−1

and {Xr,l (n)}n=0,Nr−1
represent the input and output sig-

nals of the rth standard segment of computational process under consid-
eration, respectively. The input signal {Xr,l (n)}n=0,Nr−1

is formed from

the samples of the input signal {X(n)}n=0,Nr−1
(N = N0 is the signal

length) in the case r = 0, and from the samples of the output signal
{Yr−1 (l)}l=0,Lr−1−1

if 0 < r < R − 1. The signal {YR−1(l)}l=0,LR−1−1

on the last stage represents the output signal {Y (l)}l=0,L−1 (L is a natural

number) of the basic computational process. In this case, of course, the
equality LR−1 = L holds.
In the case when the modular computational process has a recursive

organization the absolute values of the samples of the output signals of
implementable basic procedures steadily increase together with an increase
of the number of iterations (see (10)). This leads to the fact that even for
a relatively small number of iterations R the cardinality |D| = 2M of the
dynamic range D of an MRMNS, which ensures the application correctness
of the principle of formal calculations, becomes a very large number as it



TABULAR MINIMAL REDUNDANT MODULAR STRUCTURES ... 137

follows from the estimate of the parameter M :

M > P ·QR ·
R−1
∏

r=0

Nr. (11)

It should be noted that if the samples of the input signal {X (n)}n=0,N−1

and the constants Cr,n,l appearing in (10) are integer complex numbers,

then the right-hand side of the inequality (11) increases with an extra 2R.
Therefore, the use of appropriate MRMNS for hardware implementation

of recursive computational processes of the type (11) is associated with
significant hardware costs and at present it is hardly advisable. At the
same time, the tabular MIPS based on the universal processors allows us
to realize in full measure the fundamental advantages of MRMA due to the
possibility to use the extremely large dynamic ranges D and to ensure the
maximum operation limits of the FCM.

4. Conclusions

With the wide distribution and rapid development of modern computing
machinery, the considered approach to creating parallel digital information
processing systems on the basis of MRMA is a very convenient and advanced
alternative in comparison with other approaches based on the primary use
of special purpose digital hardware.
Two types of computer MRMA-models of adaptive DSP procedures that

fit into the so-called additive and additive-multiplicative formal computing
schemes are presented in the article. The proposed models provide an ex-
ceptionally wide range of possibilities for flexible regulation of the working
limits of the FCM depending on the current values of the accuracy and other
parameters of the computational processes. This makes it possible to select
optimally the bases of the required MRMNS for the preset parameters: the
cardinality of the operating range, the number of bases, etc.
The possibility of using large dynamic ranges, when implementing the

fast and high precision DSP-algorithms by means of the FCM in MRMA,
allows us to remove from the general computational process the scaling
operations following the standard (elementary) procedure of A- or AM-
model. It provides:
- a significant performance increase due to a sharp reduction in the num-

ber of non-modular operations;
- the minimization of the upper threshold (and in many cases the total

absence) of the computational error;
- the possibility of using a minimal basic set of non-modular operations,

i.e. a set that includes only code transformations.
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The inclusion of the complex, quadratic and polynomial-scalar variants
of MRMA, which are oriented to extra-large dynamic ranges, into the
computer-arithmetic base of the technology of tabular MIPS will increase
significantly the computational speed (according to preliminary estimates,
approximately 4-10 times) on the sets of complex numbers and polynomi-
als. At the same time, the total amount of internal memory for storing the
calculated tables is significantly reduced (at least by 40%) in comparison
with non-redundant analogs of quadratic and polynomial-scalar MA.
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