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ABSTRACT

We consider Bose-Einstein condensation of preexisting Cooper pairs which
are confined within quasi-2D laminar structure. We show that the spectral
dimensionality a of such systems should be described within fractional-
dimensional scheme. From detailed calculations results that for a > 3 results
that one would expect enhancement of critical temperature up to the limit set
by the Cooper pair binding energy. We show that in the laterally modulated
systems there can arise a > 3 case while for the optimally doped YBCO
system there is experimental evidence that a =4.

INTRODUCTION

Accumulated experimental data  provide support for a widespread
conjecture that superconductivity in general is a Bose-Einstein condensation
of the charged Cooper pairs observed also in conventional superconductors
[1]. Usually it is assumed that singlet or triplet Cooper pairs responsible for
the formation of superconducting /SC/ phase exhibit 3D mobility. However,
there are many systems (including copper oxides) which show laminar
structure and thus restricted geometry of the system must be accounted for..
In the following we will present theoretical descriptions of Bose condensation
in a systems with laminar structure. In this contribution aim we will
reexamine the problem how the reduced dimensionality affects pair
condensation in any laminar superconductors including thin films and SC
superlattices fabricated of different materials. We must note here that to any
physical system various definitions of dimension can be proposed, thus it is
important to answer the question: which notion of dimension is relevant in
description of Bose-Einstein condensation /BEC/. For our considerations it is
important the distinction between geometrical (position) and spectral
(dynamical) dimensions. While the geometrical dimension describes the
mass/ion distribution the spectral dimension gives us the excitation statistics
of the free electron (or quasiparticle) gas. Since the BEC depends on the
low-energy excitation of the free charge carriers it is evident that only
knowledge of spectral dimension is relevant in description of this
phenomenon. Generally in the case of non translation-invariant structures it
has been proven that spectral dimension is the best generalization of the
Euclidean dimension of the system when dealing with dynamical or
thermodynamical properties. The notion of spectral dimension opens the



116 IXth INTERNATIONAL SEMINAR ON PHYSICS AND CHEMISTRY OF SOLIDS

way for research of structures which cannot be classified as a systems
having integer dimension. Since there is experimental evidence that the
copper oxides exhibit dimensional crossovers (e.g. in the YBCO system the
magnetoresistivity measurements with indicate gradual dimensional
crossover from an anisotropic 3D to quasi 2D system when the oxygen
stiochiometry is changed [2]) in the following we will treat the value of
spectral dimension as a continuous parameter. Guided by our intuition
associated with geometrical dimension it is usually believed that the value of
spectral dimension of a layered electron gas system interpolates between
2D and 3D cases. However as we will show below, there are systems for
which the value of the spectral dimension exceeds three.

FRACTIONAL SPECTRAL DIMENSION

Characteristic feature of the layered SC is that the electron gas responsible
for the pair formation , due to the boundary conditions at interfaces or
surfaces shows both anisotropy of mobility and anisotropy of concentration.
Its is evident that quasi-2D mobility of the charge carriers is essential in
formation of SC state. However, approximation of the Fermi gas in a
quantum well (i.e. in a layered system) by a purely 2D or 3D system is
seldom a reasonable choice. The purpose of the present contribution is to
formulate a simplified model of the Bose condensation in the intermediate
region, when the dynamical dimensionality of the mobile charge carriers
interpolates between 2D and 3D cases. We adopt the approach by He [3],
who has shown that the anisotropic interactions in 3D space become
isotropic ones in lower FD space, where the dimension is the Hausdorff
dimension and is determined by the degree of anisotropy. Evidently, when
the potential which causes the in-plane confinement is infinite, the system is
purely 2D. However, in the case of finite quantum-wells the envelope
functions of free electrons (holes) spread into the barrier region and partially
restore the 3D character of the motion. Consequently, the system exhibits
behavior, which is somewhere in between 2D and 3D.

The method by He [3] postulates that the electron quantum states are
homogenously distributed in the aD k-space and a surface of constant
energy is an aD spherical shell. Suppose further that the energy dispersion
is parabolic (E-E,) ~ k* we obtain the expression for the density of states in
aD k-space as [3]

n(E)dE ~(E - E))**"dE (1)

where E, is the band-gap. This means although the ionic (mass)
distribution position space of dimensionality B shows no peculiarities, the
density of free particle eigenstates shows (sometimes fractional) power law
scaling (with effective spectral dimension a # B) [3]. The effective spectral
dimensionality of laminar system can be easily determined provided that
energy spectrum of mobile particles within the layer is known. In principle it
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is enough if the density of states fulfills relation (1) in a small energy window
close to the Fermi energy. Extensive analytical discussion of how the
effective spectral dimensionality is associated with the number of the free
electron modes can be found in [4]. It is important that in many low-
dimensional systems like e.g. superlattices or overlayers the vibrational as
well the electron density of states, extracted from experimental data
correlates with those predicted for the systems of fractional dimension /FD/

13].
SUPERCONDUCTIVITY IN LAMINAR SYSTEMS

As we have assumed above the dynamical states of mobile charge carriers
in some laminar systems can be described properly with help of a k-space
having fractional dimension. This concern also the YbaCuO compounds for
which the FD (e.g. aD =2,03 [5]) has been postulated . Most of the
theoretical approaches to the superconductivity rely of the k-space pairing,
this justifies search for SC in a system of (spectral) FD. For the use of further
considerations it is not necessary to specify any peculiar mechanism of
pairing. Experiments confirm that spectral FD case arise in various laminar
systems involving polarons [6] (and thus bipolaronic SC , excitons [7],
phonons [8], or magnons [9]. This variety of quasi-particles and interactions
covers almost all mechanisms postulated for description of HTC SC
(provided that real space pairing theories are excluded). Concluding we
assume that the Hamiltonian that responsible for the Cooper pair formation

is given by
H=Y (8 -me ¢+ ZVA-,A',C;TC—NCZT,ck,.i @
ks

k Ky
where ¢/, the fermion creation operator labeled by k and spin s. The only

difference when compared to conventional approaches is that the k-states fill
the space of non-integral dimensionality. As we have mentioned above, we
assume the SC transition as the Bose-Einstein condensation of preexisting
boson pairs. It is well known fact that Bose-Einstein condensation produces
a non-zero absolute temperature T, below which a macroscopic
condensation emerges, only if D >2. The conventional theory of boson
condensation derived for systems of integral dimensionality [10] can be
easily extended onto systems, which exhibit fractional spectral dimension a.
The total number of bosons Ng(T) in the system consists of the Ngo(T) ones
that occupy the ground state €, (€, =0 in the thermodynamic limit), while the
others are distributed over higher energy levels. In view of this we have:

1
N, =N, o(T)+ g—e T (3)
where B =1/kgT and ug < 0 is the chemical potential. Similarly as in Eq. (3)
we assume that summation goes over the k -states filling the fractional aD
space. The sum over kin (3) can be converted to an integral over positive k
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, Where K fills the aD space with use of special formula of integration over
aD space (with 2 < a <3) [6], [8]. Applying it to Eq. (3) we obtain

. /2
M=1_L( i j c(a/2) (4)
N, 0(0) N, \ 27ph°

where we have accounted for the fact that at T=0 all boson pairs form the
condensate i.e. Ngo(T=0)=Ngo(0)=Ng , { - is the Riemann Zeta Z function .
In calculations the parabolic energy spectrum of the quasi-particles has
been assumed. It is important to note that occupation of the ground state
depends only on the value of spectral dimension of the free electron system.
In conventional theories the ratio V,/Ng is treated as the inverse boson pair
concentration ng”. Such interpretation is justified provided that spectral
dimension a and dimension of real space B (position space) are equal.
However, in systems of FD such interpretation is not valid. Suppose, that in
the system under consideration we have some characteristic length L, then
the volume V, ~ L% ~ (k) . Simultaneously the volume of the system, i.e.
volume filled with quasi-particles (boson pairs) can be expressed as Vg ~ LP.
In view of this, concentration ng being the real space quantity reads as ng
=Np/V;. Distinction between this different notions of dimensionality is often
missed, but as it will be shown below crucial in proper description of
dimensional effects in SC. The condensate fraction falls off when the
temperature is increased and eventually at T, the condensate vanishes i.e.
Ngo(T)/Ngo(0)=0. From this condition we can derive the formula for the
critical temperature T., as a function of the effective spectral dimension a.
Inserting relation V,~ L% into Eq. (4) we have:

- mL (g(xl2) -
O 2mk B N, '
Let us consider a FD system in two states, which exhibit FD a and o
respectively. Moreover let us assume that number of preexisting boson pairs

is constant during this dimensional crossover. In view of Eq. (5) the
hypothetical critical temperatures in both states fulfill the relation.

©)

Tc,a' _ m; é'(a/z)z;a (2/a-2'a")
T m, c(a/2)” "

ca

(6)

DISCUSSION

Let us study the variation of the critical temperature T, associated with the
continuous dimensional crossover. We assume that in (6) a = 3 i.e. take the
3D case as the reference system, First of all let us note that ratio m’y/ m’,
and {(a'/2)/ {(a/2) are factors of order of unity. The factor that shows
strongest influence on the ratio (6) of critical temperatures in different states
of the system under consideration (i.e. in states which exhibit different
values of effective spectral dimension) is the last term namely the (Ng)&%2®).



IXth INTERNATIONAL SEMINAR ON PHYSICS AND CHEMISTRY OF SOLIDS 119

In the case a= 3, a’= 2,8 and Ng = 10% this factor can be estimated as
(Ng)?®?9) =10 while for a =3, a’=2,5 it takes value (Ng)?*%* =103. This
means that when the effective dimension is decreased the critical
temperature decreases in a very rapid manner. Contrary to the previous
remark if a = 3 and a’ > 3 one would expect an elevated critical temperature.
This point is important per se independently of quantitative predictions since
it allows us to draw general conclusions concerning the role of dimension in
formation of SC phase. In connection with previous remarks there arises a
guestion why the copper oxides, which are commonly believed to be quasi
2D superconductors with parabolic dispersion, exhibit so high critical
temperatures?. The possible explanation is that the effective spectral
dimension of the copper oxide system is higher than three. At first sight
conclusion that the dimension of k-space for the boson gas confined within
layers can be higher than three appears to be counter-intuitive. However, it
has been proven that quasicrystals {11] and mobile quasiparticles within
quantum wells [12], [13] can exhibit spectral dimension a > 3 . In classical
superconductors there is no low-energy excitations, while in some
unconventional SC with a line of nodes (-i.e. with zero gap along some
directions, to this class belong e.g. spin singlet pairs with d,2,> and dy
symmetries [14]) are expected to have zero-field density of states N(E)dE =
|[E —E¢| which can be fitted to the general formula (1) by setting a =4. It is
important to note that specific heat measurements confirms this value of
spectral dimensionality in optimally doped YBCO systems. Although the
elevated spectral dimension should result in elevated critical temperature T,
there is limit up to which the T, can be increased. In our considerations we
have assumed preexistence of Cooper pairs. It is evident that pairs can exist
up to the temperatures comparable with the pair binding energy. This we can
conclude that when the spectral dimensions is increased the critical
temperature reaches its optimum set by the pair binding energy.
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