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1. Introduction
A classical trigonometric identity states that
(sinz)® + (cosz)* =1 forall z€R.

Replacing here the sine and the cosine by functions f,¢g: R — R, and
2 by a natural number k, we receive the functional equation:

(M (f@)* + (g(2))" =1

with € R, which was studied by R. Tardiff in [3], in connection with
some trigonometrical considerations. In my papers |1| and |2| I gave a
partial answer to the question of the professor Roman Ger concerning
addition formulas: f(x +y) and g(x + y) for the function f, g satisfy-
ing (I), which would correspond to the well known representations of
cos(z +y) and sin(z +y) then z,y € R in the case where k = 2. In [1]
I introduced such formulas in the case of even k, the case of odd k was
considered in [2]. Though in both cases these results have common
features, the latter case requires more sophisticated tools. The results
contained in the paper [1] yield the starting point for considerations of
the present paper. Therefore, we repeat briefly these results from [1],
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which we compare with some more general results presented in what
follows.

Let X be an arbitrary non-empty set and let k be a fixed natural
number.

Lemma 1. Two real functions f, g defined on X satisfy functional
equation (T) for z € X if and only if there exists a function ¢t : X — R
such that

cost(x)
Y/ (cost(z))F + (sint(x))k’

for x € X.

sint(x)

’\“/(cos t(z))k + (sint(z))*

fx) = g(x) =

Now, suppose that X is a non-empty subset of a group (G, +).

Theorem 1. Suppose that functions f,g : X — R satisfy func-
tional equation (I) for z € X, and let a function ¢ : X — R be such that
the relations (1) hold in X. If ¢ is an invertible function on X, then, for
every r,y € X such that r+y € X and z :=t ' (t(x +y) —t(z)) € X,
the following system of functional equations is satisfied:

(2)

x — fx)f(z) —g(x)g(2)
feew) V(@) f(2) — gl@)g(2))F + (F(x)g(2) + f(2)g(x))F
g(z+y) = f(x)g(2) + f(2)g(x)

V(@) f(2) — g(x)g(2))* + (f(2)9(2) + f(2)g(x))*

Moreover, if t is an additive and invertible function, then z = y.

In the subsequent text we assume that (X, +) is a group with a
neutral element denoted by 6, and k is a fixed even natural number.

For any functions f,g : X — R we define the function w : X? —
(0, +00) by the formula:

3)  w(z,y) = Y (f()f () — g(@)gW)* + (f(x)g(y) + f(y)g(x))*

for (z,y) € X2
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We say that the functions f, ¢ do not vanish simultaneously in
X if and only if (f(z))? + (g(x))* > 0 for all z € X. It is clear that
w(z,y) > 0 for z,y € X if f, g do not vanish simultaneously in X.
Therefore we can consider the following system of functional equations:

f(x—I—y): w(x,y)
(1)
~ f@)gly) + fy)g(x)
g(x—l—y)— w(x7y>

for z,y € X. Let us notice that system (IT) states nothing else then
system (2) with z = y.

In what follows we denote the multiplicative group of the unit
circle with the multiplication of the complex numbers by (7', e) (T =
{z € C: |z| = 1}), whereas H(X,T) stands for the family of all
homomorphisms mapping the group (X, +) into the group (7, e) (they
will be called: characters). Now, let us recall the following theorem:

Theorem 2. Functions f,g : X — R do not vanish simultane-
ously and satisfy the system (IT) for all x,y € X if and only if there
exists a character h € H(X,T) with U := Reh, V := Imh such that:

for x € X.

Moreover, if functions f, g : X — R satisfy the system (II) or the
conditions (4), then they satisfy the equation (I) on X, where f is
even, g is odd, f(#) =1, and ¢(f) = 0.

Corollary 1. If a : X — R is an additive function and f,¢g: X —
R are defined by the formulas:

(5) .
fla) = cos a(x) o) = sin a(x)

Y/ (cosa(z))* + (sina(z))* {/(cosa(x))* + (sina(z))*

for x € X, then f, g do not vanish simultaneously and satisfy the
system (II) and equation (I).
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In what follows functions f and g defined by formulas (4) will
be called the generalized cosine on X and the generalized sine on X
respectively.

In the present paper we will show that system (IT) becomes a spe-
cial case of more general functional equation. We will present this
equation and show that its solutions preserve basic properties of gen-
eralized sine and cosine functions.

2. Some generalized trigonometric maps

We continue to assume that (X, +) is a group with a neutral element
denoted by 0. Moreower, let (A, K,+,e,-) be a commutative algebra
with a unity over the field K of real or complex numbers. The mul-
tiplication of vectors will be denoted by the symbol “e”. The unity of
this algebra will be denoted by 1, and its zero-element by 0.

Remark 1. Let ¢ : X — A be a non-zero morphism of a group
(X, +) into the semigroup (A, @), which means that: p(x+y) = p(x)e
@(y) for all z,y € X. Then the following conditions are satisfied:

(i) ¢(x) #0 forall z € X;

(ii) if the algebra A has no zero-divisors, (i.e. a ¢ b = 0 if and only
ifa=0o0rb=0,fora,be A), then p(0) = 1;

(ili) p(r+y) =¢(y+ ) for all z,y € X.

In what follows we assume that n : A — (0, +00) is a non-negative
function such that:

(a) n(a) =0 if and only if a = 0,
(b) n(Aa) = An(a) for all A > 0, a € A.

Obviously, every norm in the space A satisfies the conditions (a)

and (b).

Put S:={a € A:n(a) =1} and let u : A\{0} — S be a function
defined by the formula:

(6) wa) = - forall ae A\{0}.
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Suppose that there exists a non-zero morphism ¢ : X — A from
a group (X, +) into the semigroup (A, e) such that:

(7) u(p(X)) = S.

Now we assume that F': X — A is a function satisfying the following
condition:

(8) n(F(z))=1 forall z € X;

this means that F': X — S. We will show that the function F yields
a solution of a functional equation comparable, in a sense, with the
system of equations (2).

We observe that conditions (7) and (8) imply the following condi-
tion:

(9) ViexFyex F(x) = u(p(y)).

So, condition (9) defines a function ¢ : X — X such that:

e S o) el i)
PR = ot “nle () ~ nlp@)n(pl)) & 7%
whence
o F(2)) — n(p(t(zr) +t(2))) or 1s
ME@ S FE) = L ouamlety) O TFEX
From last two equalities we deduce that
ay F@eFE) et o

n(F(z) e F(z))  n(p(t(z) +1(2)))

Moreover, from (10) we get the following result:

p(t(z +y))
n(p(t(z +y)))

(12) Flz+y) = for z,y € X.
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Let us now consider two situations which can occur:
(A) Iftis an additive function on X, then conditions (11) and (12)
imply the following equation:
F(x)e F(y)
F(z)e F(y))

10) and the additivity of the function ¢ it

(T) Flr+y) =

for x,y e X.
n

—~

Moreover, from condition
follows that

(13) F(z) = p(t()) = Ylz) for z e X,

n(p(t(z)))  n(d(z))

where 1 = pot : X — A is a new non-zero morphism from the group
(X, +) into the semigroup (A, e)

((a+y) = (t(a+y)) = o(t(x)+t(y)) = o(t(z))ep(t(y)) = P (z)e(y)

for x,y € X). (B) If there exists the inverse function t7! : X — X,

then from conditions (11) and (12) we obtain the equation

F(z)e F(z)

(aT), Fle+y) = n(F(z) e F(2))

where z = t7(t(x +y) — t(x)) for z,y € X; in fact, if z =
tHt(z+y) —t(x)), z,y € X, then t(2) = t(x+y)—t(x), t(2)+t(z) =
t(x+y). From this and from the condition (iii) of Remark 1 we obtain
the following equalities: p(t(z) +t(2)) = o(t(z) +t(x)) = p(t(z +y)).
Now, a comparison of the right hand sides of formulas (11), (12) leads
to the equation (aT).

Now we will show that the system of equations (2) yields a spe-
cial case of equation (aT), while the equation (II) is a special case of
equation (T).

Remark 2. In the real space R? we can introduce an associative
operation "e” of a multiplication of vectors in accordance with the
usual multiplication of complex numbers:

(14)
Y wyenz (u,v) ® (r,8) = <Re((u +av)(r +is)), Im((u + iv)(r + 25))) =

(r,s)ER2
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= (ur — vs,us + vr).

Then (R? R, +,e,-) is a real commutative algebra with a unity 1 =
(1,0). Moreover this is a Banach algebra with a Euclidean norm:
||lu, v]| = |u+iv| satisfying the consistency condition with the equality,
le.

(15)  Il(u,v) o (r,s)ll = [(w,0)]| - I(r, s)]| for (u,v),(r,s) € R™.

Remark 3. Let n: R? — (0,+00) be a function defined by the
formula:

(16) n(u,v) = Vuk + vk for (u,v) € R? (still k is an arbitrarily fixed

even natural number).
Then following conditions hold:
(17) m is a norm in real space R
(18) n(1,0) =1,
(19) n(u, —v) =n(u,v) for (u,v) € R

Remark 4. Suppose that n : R? — (0, +00) is defined by formula
(16) and F' = (f,g) : X — R? is a nowhere vanishing map. Then the
real coordinates f, g of the map F' satisfy the system of equations (II)
in X if and only if the map F satisfies the functional equation (T) in
X. Moreover, if F' satisfies (T) in X, then F'(6) = (1,0) and the set of
values of F is contained in a curve S symmetric with respect to (0,0)
and defined by the formula:

(20) S:{(u,v)ERQ:n(u,v): \k/uk—i-v’“:l}

Proof. To show the equivalence of the system (IT) with equation

(T) it suffices to observe that F(z)eF(y) = (f(x),g(x))e(f(y),9(y)) =

(f(@)f(y) — g9(x)g(y), f(x)g(y) + f(y)g(x)) for (v,y) € X. Therefore
n(F(z)e F(y)) = w(x,y) for z,y € X where w is defined by (3).

Fig. 1 presents curves S defined by formula (20) for £k = 2 and
k= 4.
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Fig. 1.

Arguments similar to those used in the proof of Remark 4 show
that if functions f, g and t satisfy the assumptions of Theorem 1,
F = (f,g9), and n is the function defined by (16), then the system of
equations (2) assumes the form (aT).

Now we will try to solve the equation (T) under some additional
conditions.

Theorem 3. Suppose that (X, +) is a group with a neutral el-
ement 6 and (A, K, +,e,-) is a commutative algebra with an unity 1
over the field K of real or complex numbers (the symbol “e” denotes
multiplication of vectors and 0 stands for the zero element of algebra).
Moreover, assume that n : A — (0,400) is a function satisfying the
conditions:

(a) n(a) =0 if and only if a =0,
(b) n(Aa) = An(a) for all A > 0, a € A, as well as
(c) n(1) =1.
Then a map F': X — A satisfies the functional equation

F(r)e F(y)

) Ferv) = @) o Fly)

for z,ye X
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jointly with the following conditions:

(W) n(F(z) e F(y)) = n(F(—z) e F(=y)) forall zyeX,

(2) F(0) =1

if and only if there exists a non-zero morphism ¢ : X — A from the
group (X, +) into the multiplicative semigroup (A, e) ie. p(z +y) =
o(x) e p(y) forall x,y € X such that

e(0) =1, n(p(z)) =n(e(—2x)) and F(x)= for z e X.

n(e(z))

Before the proof of Theorem 3, observe that every norm in the
space A such that n(1) = 1 satisfies the assumptions of this theorem.
Moreover, from the form of equation (T) and from assumptions on the
function n it follows that its solution F' : X — A necessarily has to
satisfy the inequality F'(x) e F\(y) # 0 for all x,y € X, as well as the
equality n(F(z)) = 1 for every x € X (to see this it suffices to put
y =0in (T)).

Proof of Theorem 3. Suppose that F': X — A is a map satisfy-
ing equation (T) jointly with conditions (W) and (Z). Then for x € X
and y = —x we obtain

F(z)e F(—x)

2y e e)

Let ¢ : X — A be a map defined by the formula:

22 )= for z € X.
(22) #(7) Vn(F(x) e F(—x) ©
Then we get

. _ Flz+y) _
e Gy e =)
F(x) e F(y)
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\/ n(F(z)eF
n(F(—x)e F

—|

for all z,y € X.
Taking into account conditions (W) and (21) and the equality n(1) = 1
we obtain the following results:

WP e Fy) | (F@eF(s) | (FG)eF(-y) _
n(F(=z)e F(=y)) — n(F(z)eF(=z)) "~ n(F(y)eF(-y))
and n(lel) = n(1) = 1. Therefore, p(z+y) = p(z)op(y) for z,y € X.

F(6)
n(F(0)eF(—0)
Additionally, the following equalities:

Moreover, ¢(0) = = 1, hence, ¢ is a non-zero morphism.

- [ Fx)eF(0) \ _n(F(z)eF(9)
n(F(z)) = n(F(z+0)) = n (n(F(x) " F(@») T n(F(z)e F(0)) !
imply that

n(o()) = n(F(z)) _ 1 (23)

for all = € X.
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From here and from (22) it follows that

F(z) = o(x) - /n(F(z) e F(—z)) = o) forall z e X.

n(p(x))
Condition (23) also implies that
1 1
WA = e @) vad@ ey )
forall z= € X.

Conversely, suppose now that ¢ : X — A is a morphism satisfying
the conditions formulated in the assertion of this theorem. Since ¢
is a non-zero morphism, by Remark 1, the inequality ¢(x) # 0 holds
for all x € X and we can define a map F' : X — A by the formula:

F(z) = nz‘;(zv))) for all x € X. We will show that such F' satisfies

functional equation (T) jointly with conditions (W) and (Z). Indeed,

F(z) e F(y) :< p(z) . »ly) ) 1 _
n(F(x)e Fy))  \nle(x))  nley)) ( p(r)  vly) )
n(p(@))  nle(y))
vl +y) 1 Pz +y)

n(p@)n(e(y))  nle(x+y)  nle(+y))
n(e())n(e(y))

for all z,y € X. Moreover,

n(p(—y —z)) —n p(—x) ° P(~y) =n(F(—x)eF(—
n(p(—a))n(p(—3)) (n(s@(—x)) n(so(—y») (Fi=a)eF (=)

for all z,y € X. Finally, note that F(0) = nso((?) =1, because p(0) =
1. This completes the proof.

Definition. Suppose that (X, +) is a group and (A, K,+,e,-)
is a commutative algebra with a unity 1 over the field K of real or
complex numbers and let n : A — (0,+00) be a function satisfying
the conditions (a), (b) and (¢). A map F': X — A will be called a
generalized trigonometric map if and only if it satisfies the functional
equation (T) jointly with the conditions (W) and (Z).
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Now, we shall show that Theorem 2 is a special case of Theorem
3. To see this, it suffices to prove the following remark.

Remark 5. Let (X, +) is a group (with a neutral element 6) and
let (A, K, +,e,-) stand for the Banach algebra (R?, R, +, e, ) with the
multiplication of vectors defined by (14) and with the Euclidean norm.
Suppose that n : R? — (,+00) is the function defined by (16) (with
an arbitrarily fixed even natural number k) and F = (f,g) : X — R?
is a nowhere vanishing map.

Then the following conditions are equivalent:

(24) Functions f, g satisfy equation (II);
(25) F satisfies equation (T) jointly with the conditions (W) and (7);

(26) There exists a character h € H(X,T) with U = Reh and V =
Im h such that

——U(I) x :—V(x) or all x ;
1) = @y T aww vy e

(27) There exists a non-zero morphism ¢ : X — IR? from a group
(X, +) into the multiplicative semigroup (IR?, ®) such that ¢ () =

(1,0),
n(p(x)) = n(p(~)) and

Fa)= 29 ol zex
n(p(z))

Proof. The equivalence of conditions (24) and (26) results from
Theorem 2, whereas conditions (25) and (27) are equivalent taking
account of Theorem 4. Thus, it suffices to show that conditions (26)
and (27) are equivalent.

Assume that condition (26) holds. Now we put ¢ = (U, V). Since
h = U + iV is a character, then U(f) = 1,V (0) = 0,U is an even
function and V' is odd. From here and from (19) (n(u, —v) = n(u,v)
for (u,v) € R?) follows condition (27).

Conversely, suppose that condition (27) is satisfied. TLet ¢ =
(p1,¢2), where @1,y are coordinates of the morphism ¢. Taking
U(x) _ p1(z)

o)l
V(z) = ”i’;(( ))“ for € X and h = U + iV we obtain:

h@)| = |U(2), V()] = \ o1(2

lp(a Hso I|H
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_ @@ el _ @l _
@I~ Te@I

for x € X. Since
(pr(z+y), p2(r+y)) = p(z+y) = w(x)0p(y) = (1(7), a(z))e(P1(y), p2(v)) =

= (Re((¢1(z)+ipa(2)) (01(y)+ip2(y))), Im((p1 (z)+iva(x)) (@1 (y)+ig2(y))))
for z,y € X and the Euclidean norm satisfies the consistency condition
(15), we have

hMr+y)=Ulx+y)+iV(r+y) = e1(x +y) +Z,g02($—}—y) B

e+l e+l
_ (o1(x) +ipa()) (pr(y) +ipa(y) _ r(x) +ia(x) @1(y) +ivaly) _
() (y)ll [o(z)l ()l

= (U(x) + iV (2))(U(y) + iV (y)) = h(z)h(y)
for x,y € X. Consequently h € H(X,T). Moreover,

p1(x)
N o)l U
0= nota) (2 ) a(U), vy TR
le@@) I llo()]
and analogously
V(x)

This completes the proof of Remark 5.

A careful inspection of the proof of Remark 5 shows that for the
proof of the equivalence of conditions (26) and (27) the form of the
function
n : R?* — (0, +00) is irrelevant, but the fact that this function satisfies
conditions (a), (b) and (19) is essential. Therefore, we conclude that
the following remark is true.

Remark 6. Suppose that (X, +) is a group (with a neutral el-
ement 0), F = (f,g) : X — R? is a nowhere vanishing map and
n:R? — (0,+00) is a function satisfying the conditions: (a), (b) and
(19). Then conditions (26) and (27) are equivalent.
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3. Examples and corollaries

Now, we shall present several examples of functions n : R? — (0, +00)
which satisfy the conditions (a), (b), (¢) and (19). Some of them are
norms, the others are not. Moreover, for every such function n we will
draw a curve S defined by the formula:

(28) S = {(u,v) € R* : n(u,v) = 1}.

Example 1. Let n: R* — (0,+00) be a function defined by the
formula:

(29) n(u,v) = |u| + [v| + /]uv| for (u,v) € R

Then n is not a norm and Fig. 2 presents the curve S.

Fig. 2.

Example 2. Let n : R? — (0, 4+00) be a function defined by the
formula:
u? + v?

(30) n(u, v) = W for — (u,v) # (0,0)

for  (u,v)=(0,0)

Then n is not a norm and Picture 3 presents the curve S.
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Fig. 3.

Example 3. Let p > 0 be an arbirarily fixed positive number and
let n : R? — (0, +00) be a function defined by the formula:

(31) n(u,v) = (|Jul? + |v|p)% for (u,v) € R

Then n is a norm if and only if p > 1. Figures 4 and 5 illustrate
the curve S in the case where p = 3 and p = %, respectively.

Fig. 4. Fig. 5.
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In the following example we shall present a certain “graphic” method
of obtaining some functions n : R? — (0, +00) satisfying conditions
(a), (b), (¢) and (19).

Example 4. Suppose that a closed curve K C R? on a plane
is given in the implicit form: ®(z,y) = 0, where ® : G — R is a
function defined on a set G C R? which is symmetric with respect
to the Oz axis. Additionally, assume that a set D is bounded by this
curve K, the point (0,0) belongs to the interior of D, (1,0) € K, K
is symmetric with respect to the Ox axis, and any ray with the origin
in (0,0) crosses this curve K exactly at one point. Clearly, the point
(0,0) can not be a point of this intersection because it do not belong
to K. Therefore the following condition is satisfied:

(32) for every point (z,y) ¢ R*\{(0,0)} there exists exactly one
number #(x,y) > 0 such that ®(t(x,y)(z,y)) = 0.

Fig. 6 illustrates this situation.

Fig. 6.
Let n : R? — R be a function defined by the formula:

(33) n(:);, y) = t(;m y) fOI (.CE, y) 7é (07 0)
0 for  (z,y) = (0,0)

Then n satisfies the conditions (a), (b).  Indeed, for every
(r,y) € RAO{(0,0)} and X > 0 we have: PN (\x, \y)(z,y)) =
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O(t(Ax, \y)(Az, Ay)) = 0. From here and from (32) it follows that
t(z,y) = At(Az, \y), and, consequently, the following equality holds:
L . In view of (33) we obtain: n(A(z,y)) = n(Az, \y) =

t(Az,\y)  t(z,y)
An(z,y).
Moreover, note that

S ={(z,y) e R* :n(x,y) =1} =
={(z,y) eR*: ®(1(z,y)) = P(x,y) =0} = K.

Since (1,0) € K, we have n(1,0) = 1 and, therefore, n satisfies the
condition (c¢). Moreover, the symmetry of K with respect to the Oz
axis implies that if ®(z,y) = 0, then ®(z,—y) = 0 for (x,y) € G.
Thus, we obtain:

0= ®(t(r,y)(r,y)) = ®(t(z,y)x, t(z,y)y) = P(t(z,y)z, —t(z,y)y) =

= O(t(z,y)(x, —y))

for all (z,y) € R? whence t(z, —y) = t(z,y) for (z,y) € R There-
fore n(x, —y) = n(z,y) for (x,y) € R?, and, consequently, n satisfies
condition (19), too.

Now, we shall show some functions n for which the equation (T)
is equivalent to the function of the conditions (W), (Z) jointly with
the equation (T). In this way we shall show, for which functions n an
analogue of Theorem 2 remains valid.

Remark 7. Let (X,4) be a group and let (A, K,+,e,-) =
(R% R, +e, ). Suppose that n : R? — (0, +00) is a function satisfying
the conditions: (a), (b), (c), and (19). If amap F = (f,g) : X — R?
satisfies equation (T), then F' satisfies the conditions (W) and (Z).

Proof. We define functions m : X — C and n: C — (0,4+00) by
the formulas:

(34) m(z) = f(z) +ig(z) for ze€ X,

(35) n(z) = n(Re(z),Im(z)) = n(u,v) for z=u+iw € C,(u,v € R).
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Clearly, a function m satisfies the following functional equation

@y
(Tc) m(z+y) = m(@m(y)) fi Y e X.

Moreover, the function n has the following properties:

(36) n(z) = if and only if z = 0;

(37) n()\z) n(z) forall A >0,z € C;

(38) n(1) =

(39) n(z) = 7]( ) for z e C.

Puting y = 0 (0 is the neutral element of (X, +)) in (Tc¢) we obtain
that

(40) n(m(x)) =1 for x € X.

Thus, m(z) # 0 for every x € X, by (36). Now, equation (Tc) implies
that

m(z +y) = or
m{@ymy) ~ nim@miy)) ~ 0 o nvEeX
Hence,
m(z +y) m(z+y)|  |m(xr+y) o0 all 2
m@)m(y) ~ |m(a m@wwmwwwﬂf o,y € X

From here it follows that

m(z+y) mx) my)
Im(z +y)| Im(z)]  |m(y)]

Now we define a function h : X — C by the formula:

(41)

for all x,y € X.

m(z)

m(z)]

for € X.

h(z) =

Condition (41) implies that
h(x +vy) = h(x)h(y) for =,y e X.

Moreover, |h(xz)] = 1 for x € X. Therefore, h is a homomorphism
from (X, +) into the multiplicative group of the unit circle (T, ).
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— m(0)] [m ()] Im(0)]
\m—%e)p by (38) and (40). From here it follows that |m(f)| = 1 and
therefore m(f) = 1. Consequently f(0) =1 and g(f) = 0. i.e. F(0) =
1; thus the condition (Z) holds true.
Now, observe that h(—z) = h(z) for z € X, whence =2 —

[m (=)

o )
m() _ for 2 € X. The last equality and conditions (39) and (40)

vertm(z)|

imply that

Since 1 = h() = 29 we have 1 = (1) =7 < m(6) ) = 1m@) _

) "(”’L(@)n(mu))n(mm)

m@] ~ @] Jm(@) ()] m(—a)]
)
m{—a) ~ m(~a)

for z € X. Thus, |m(z)| = |m(—=x)| for x € X. From here and from
the inequality:

>0 forall z,yelX,

Therefore,

m(a:)m(y)‘ _m@)fm(y)| _ |m(=a)][m(~y)]| _

m(am() = |
)

'm(—y)m(—x
m(—y —x)
for x,y € X and, consequently,
n(F(x) e F(y)) = n((f(x), 9(x)) ® (), (1)) =
n(Re(m(x)m(y)), Im(m(z)m(y))) = n(m(z)m(y)) = n(m(—z)m(-y)) =
= n(F(—z) e F(=y))
for all z,y € X; thus the condition (W) holds true.

Remarks 6 and 7 jointly with Theorem 3 imlpy the following
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Corollary 2. Let (X, +) be a group and let n : R? — (0, +00) be
a function satisfing the conditions (a), (b), (¢) and (19). Suppose that
F = (f,g): X — R?is nowhere vanishing. Then F satisfies functional
equation (T) on X if and only if there exists a character h € H(X, T)
with U = Reh and V = Im A such that

U(

x) V(z
) @ v

and g(x) = W

for all z € X.

4. Parametric equations of some curves

Let S C R? be a closed curve symmetric with respect to the Ox axis
and such that the point (0,0) belongs to the interior of a set which is
bounded by this curve. Additionally, suppose that

S = {(u,v) € R? : n(u,v) =1},

where n : R? — (0, +00) is a function satisfying the conditions (a),
(b), (c) and (19) (recall that (R? R, +,e,-) is an algebra). From (c) it
follows that (1,0) € S. Now, we may consider the functional equation

F(x)e F(y)
n(F(x) e F(y))’

where ' = (f,g) : R — R? x,y € R. By Remark 7 and by the
observation made after Theorem 3 we infer that every solution F
of equation (T) satisfies conditions (W), (7Z), and its values belong
to the curve S. Since a map ¢ : R — R? defined by the formula:
o(x) = (cosz,sinz) for x € R establishes a homomorphism be-
tween the group (R, +) and the multiplicative semigroup of the unit
circle in R?, then, by Theorem 3, the map F : -Gy such that:

F(z) = {eoszsing) o 3 R yields a solution of equation (T).

n(cos z,sin s)
Then the argument x measures the slope of the vector (0,0), F'(x) to
the axis Oz, this means that x is an argument of the complex value
m(z) of the function m = f + ig defined on R with its values on S,
provided that S is treated as a complex curve. In what follows, we
assume that any argument of a complex number z = u + v stands
for the argument of the point (u,v) € R% By the condition (b), we
observe that there exists exactly one point on the curve S with a fixed
argument z (it means that any ray with the origin in (0, 0) crosses the

(T) F(x+y) =
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curve S exactly once). Indeed, if points p; = (r cosz,r sinx) and
pe = (rocosz,rosinx) with the radiuses 1,79 > 0, respectively, and
with the same argument x belong to the curve S, then:

rin(cosx,sinx) = n(rycosx,rysinz) = 1 = n(rycosx, rosinr) =

= ron(cos z,sin z).

From here it follows that vy = ro and, consequently, p; = po. Therefore,
the point F(z) (corresponding to the number m(z), provided S is
treated as a complex curve) is a unique point with the argument x
which belongs to S. Since every real number z is an argument of the
solution F| then its values F'(x) fill up the curve S. Likewise we obtain
some parametric equations for the curve S :

(42)
cos T sin x
u=flr)=———"—— v=gat) = ——— forx eR.
n(cos x, sin x) n(cos x, sin x)

Moreover, we can show a recurrent sequence (si)ren of points be-
longing to S such that the argument of the next point differs from
that of the previous point for a constant value z.

Of course, we can try to determine this sequence by above parametric
equations (42), but finding the values of trigonometric functions not
always is simple task. We will use the functional equation

m(z)m(y)
n(m(x)m(y))

where m = f +ig and n(z) = n(Re(2),Im (z)) for z € C.

Put sy = (Remy,Immy) for k € N, where (my)ren is a sequence
of complex numbers belonging to the curve S (provided S is treated
as a complex curve), defined by the following way: we find a point
(u+iv) = my # 1, with some argument x, directly from the presented
system of parametric equations (42) or by the solution of the following

system of equations:
{ n(u,v) =1

V= au

(Tc) m(z+y) = for all z,y € R,

where, for example: v > 0, = tgax > 0. The value x is not known,
but for sufficiently small positive values «, the points obtained will lie
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densely on S. Clearly, the point m; obtained has the argument x and,
therefore, m; = m(z). From equation (Tc) we find the next point mqy
by the following way:

my = = = m(2x).

Suppose that we have found a point my for any £k € N and m; =
m(kx). Then we get the next point my,; according to the rule:

my-my m(kx)m(x)
n(my-ma)  n(m(kz)m(z))

=m((k+1)x).

Migy1 =

In this way we obtain the required sequence of the points on the curve
S. Below we present the set of the points on the curve

S:{uveR2< |u| + ):1}

Fig. 7.

5. Another example

To terminate this paper we will give another example of a solution of
the equation (T) jointly with the conditions (W) and (Z) in the case
where (A, K, +, e, ) is a function algebra.



On some special morphisms between groups and algebras 39

Example 5. Let (X,+) = (R, +) be a group and let (A, K, +,e,:) =
(C({—a,a)),R,+,e,-) be the algebra of real continuous functions de-
fined on the interval (—a,a), (a > 0) with the standard addition and
multiplication: (f + g)(t) = f(t) + g(t),(f @ g)(t) = f(t) - g(¢), for
t € (—a,a). Then A is a real commutative algebra with a unity 1,
where 1(t) = 1 for t € (—a,a). Assume that || e || : C((—a,a)) —
(0, +00) stands for the uniform convergence norm in the linear space
(O(<_ava>)vRv+v')v Le. ”f” = Sup{|f(t)| cma <t < a} for f €
C((—a,a)). Obviously, we have ||[1|| = 1. Now, let us consider the
following functional equation:

F(z)e F(y)
(Tn) Fe+y) = rye r)l

where F': R — C({—a,a)), x,y € R. Define a map ¢ : R — (0, +00)
by the formula:

Vaer Vie(-aa) ((2))(t) = e,

Then ¢ is a morphism from the group (R, +) into the multiplicative
semigroup (C'((—a,a)), ). Indeed, (p(0))(t) = €% =1 for t € (—a,a),
thus ¢(0) = 1. Moreover

(paty))(t) = =" = e = (p(2))(1)-(p(y)(t) foraz,y €R, t € (~a,a).

From here it follows that

p(z+y)=p(z)ep(y) for z,yeR.
Additionally,

Vae(—aa|l@(2)]| = sup {e”” c—a <t < a} — ¢lla,

whence [|¢(z)|| = ||¢(—2)| for x € (—a,a). By Theorem 3 we infer
that the map F': R — C((—a, a)) given by
p(z)
F(z) = for z € (—a,a),
lp()]
Le.
e zt—|x|a
vxER vte(—a,@(F(‘r))(t) = clela =e 5

satisfies functional equation (Tn) in R jointly with (W) and (Z).
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