Jan Dtlugosz University of Czestochowa

Scientific Issues, Mathematics XI, Czestochowa 2006

*

On Some Crypto-Messages Parser

Mirostaw Kurkowski, Jacek Malek,

Maciej Orzechowski

Institute of Mathematics and Computer Science
Jan Dtugosz University of Czestochowa
al. Armii Krajowej 13/15, 42-200 Czestochowa, Poland
e-mail: m.kurkowski@ajd.czest.pl
j.malek@a,jd.czest.pl
maciej@orzechowski.info

Abstract
Some methods of automatic verification of cryptographic protocols require
creating specially designed formal languages based on suitable algebra of
terms (called crypto-terms or crypto-messages). Sometimes in verification
process it is essential to check whether a given crypto-term is a subterm of
another one or in general whether some crypto-term belongs to the specified
crypto-language (a set of some crypto-terms) or not. Another problem is
creating the set of all antichains of subterms of a given term with respect
to the order introduced by a subterm relation.

The main goal of this paper is to present a tool for verification whether
a crypto-term belongs to the specified crypto-language or not. Our main
purpose is to check lexical analysis and syntax analysis. Finally, after check-
ing that a crypto-sentence is correct, we convert it into the special format,

*Extended version of a talk presented at the X Conference “Applications of
Algebra in Logic and Computer Science”, Zakopane, March 6-12, 2006. This
research is partially supported by the Ministry of Science and Information Society
Technologies under the grant number 3 T11C 011 28.

60 M. Kurkowski, J. Matek, M. Orzechowski

which can be transfomed to an atomic version of this sentence, and make an
antichain. We can introduce formulas manually or as text files. The output
may also be changed into a text file. The program is a text tool which is
started in a Linux environment.

Keywords: Cryptographic authentication protocols, verification, grammar
parsing.

1. Introduction

Cryptographic protocols are specialized tools to achieve authentica-
tion in large distributed computer network. These protocols are pre-
cisely defined sequences of actions (communication and computation
steps) which use some cryptographic mechanism such as encryption
and decryption.

In [2] a new method of verification of these protocols has been
intro-
duced!. The main idea of this method is to create a suitable mathe-
matical space of many different paralell executions of a given proto-
col. In this paper the authors proposed a specially designed algebra
of terms, which can model messages sent during executions by par-
ticipants who execute the protocol. Some constructions done in [2]
require checking whether a given crypto-term is a subterm of another
one or in general whether some crypto-term belongs to the specified
crypto-language or not. Another goal, which is necessary in verifica-
tion process, is to create the maximal set of all, in some sense inde-
pendent, antichains of subterms of a given term. These antichains are
created with respect to the order introduced by a subterm relation.

A rest of this paper is organized as follows: In Section 2 we give
some basic definitions due to paper [2], in general the definition of
investigated term’s algebra. In the next section we present some in-
formations about the tools used for checking (Bison and Flex) which
we employ in our tool. Some examples are shown at the end of Section
2 and in the Section 3. In the last section we propose some remarks
for future investigations.

! This method has been announced in [1].

On Some Crypto-Messages Parser 61

2. Syntax

In this section we introduce syntax for dealing with untimed crypto-
graphic protocols.
Let:

e 7p = {P1,Ps,...,Pn.} be a set of symbols representing the
participants of the computer network,

T = {Zp,,Zp,, ... , Ip,,} be a set of symbols representing the

identifiers of the participants,

o Tx = U5 {Kp,, IC;}} be a set of symbols representing the cryp-
tographic keys of the participants (public and private respec-
tively),

o Ty = UZ":PI{‘JI%;, ...V} ? be a set of symbols representing
nonces of participants,

o {7(7,7),7(",”)",”,”} be a set of auxiliary symbols.

Definition. By a set of crypto terms 7 we mean the smallest set
satisfying the following conditions:

1| TpU T, UTx UTy CT.
[2] Tf X € T and Y € T, then the sequence X - Y € 7.
[3] If X € T and K € T, then (X)) € 7.3

Next, we define some useful relations over the set 7.
Definition Let <7 C 7 x 7 be the smallest relation which sat-
isfies the following conditions:

1] X, Y € 7, then X <7 X -Yand Y <7X Y.
[2] f X € T and K € Tk, then X <7 (X)) and K <7(X)k.

By <7 we mean the transitive and reflexive closure of <. Next, for
any X C 7 we define a sequence of the sets (X"),en that are subsets
of 7.

2We assume that np and ny are some fixed natural numbers.
3 (X)k is a term that is interpreted as a ciphertext containing the letter term
X encrypted with the key /.

62 M. Kurkowski, J. Matek, M. Orzechowski

o X0 X X,

o X+l X yny
U{ZeT|Z=X-YVZ=(X), forsome X,Y € X", K €
X N T}

Intuitively, the set X"*! corresponds to letter terms gradually built
from X" via the operations of composition and encryption.

In what follows, for any set Z we denote a set of all the finite subsets
of Z by 2%,,. For X € 27, let h<, (X) L U,en £ be a set com-
posed of all the letter terms that can be constructed from elements of
X only.* From the algebraical ponit of view the set h<_(X) is the set
of all terms which have some subterm in h<,(X'). Additionally, let

n<,({X}) be a set of all subterms of the term X.

Definition. Let A be a set of terms and X be a term. A is said

to be a maximal antichain of subterms of X if the following properties
hold:

1] (VY € A)(Y =1 X).
2] (VY,Z € A) ~(Y =7 2).
[3] X € hz(A).

Definition. Let X € 7 be a crypto-term and G be a subset of
7. G is said to be a set of (independent) generators of X (denoted by
G + X) if the following conditions are met:

1] G € 0=, ({X}),

2] X € h<,(G),

Bl (VY € G)(Y ¢ h= (G \ {Y}),
[4] (VY € G)(X ¢ h= (G\{Y}).

Intuitively, we have G I X if all the elements of G are subterms
of X, X can be composed out of the elements of G, and G is such a
minimal set.

4Decription is not allowed here.

On Some Crypto-Messages Parser 63

Proposition. It is easy to observe that every maximal antichain
of a given crypto-term X is a set of independent generators of X.

Ezample 1. Consider the crypto-term L = (I, Na)k,. Observe
that the sets G; = {I4, Na, Kp} and Gy = {(I4, Na)k,} are sets of
independent generators of L, i.e. we have G1 - L and G - L.

3. Flex and Bison

Flex is a fast lexical analyser generator. It is a tool for generating
scanners: programs which recognizes lexical patterns in input text.
Flex is a free implementation of the well known Lex program. The
description is in the form of pairs of regular expressions and C code
called rules. The best choice is to link it with another great tool Bison.
Lexical analyser created by Lex co-operates with the syntax analyser
in the following way. After starting by the syntax analyser, the lexical
analyser begins to read in the next symbols from the input, till it finds
the longest file-prefix of input suitable for one of the models. After-
wards it does action which typically directs steering back to the syntax
analyser. In a case of reading in the white symbols or comments the
lexical analyser does not transfer any values to the syntax analyser,
but returns to finding out the next lexem. The lexical analyser, as a
result of starting, transfers a singular value, which is a lexical sym-
bol, to the syntax analyser. For transferring values of an attribute
consisting information of lexem, global variable yylval is being used.

Bison is a tool parser generator. It is a tool for converting a gram-
mar description for an LALR context-free grammar into a C program
to parse that grammar. It can specify one or more syntactic groupings
and give rules for constructing them from their parts. The input to Bi-
son is essentially machine-readable BNF (Backus-Naur Form). Parsers
generated by Bison use in their work the auxiliary stack. The state of
calculation made by parser is represented by the parser configuration.
Such configuration is an ordered pair of sequences - stack and input.
Stack element describes all symbols presented on the stack, and input
consists of input symbols still not read. The most important actions
of parser are shift and reduce with following meaning;:

e shift - moves current terminal symbol to the top of the stack of
parser,

64 M. Kurkowski, J. Matek, M. Orzechowski

e reduce - changes alfa production into A terminal

Antichain Parser tool description. The tool is combined of 3 parts.
The first task is to check the lexical correctness and return to the next
part of the recognized token. At the Flex level it is checked whether the
adequate words at the input are from the set of the specified language
or not. The second task rests with Bison, where proper grammar
rules were defined which have to check the syntax correctness of the
specified language.

At this step we build a special table which is genereted in the fol-
lowing code:

P : A NUM {sprintf(buf, "a%s", $2); $$ = strdup(buf);}

With every rule an operation, which aim is to build properly a
structure within a table and to place it in a proper place of an output
structure, is connected. With every rule an adequate action, which is
suited by the longest match base, is related.

MM : P {$$=$1;}
| NN {$$=81;}
| KK {$$=81;}
| LL {$$=81;}

3

LL : I P {sprintf(buf, "i%s", $2); $$=strdup(buf);}

The last step is the adequate writing out the structure in the
special format.

1. Input - standard input or text file (parameters given by the
user).

2. Flex - lexical analyser generating tokens from input data.

3. Bison - parser grammar checking syntax analysis based on Flex
tokens and rule.

4. C code building a tree using internal Bison stack.

5. C code generating output data.

6. Output - standard output or text file.

On Some Crypto-Messages Parser

65

The tool for verification whether a formula belongs to the speci-
fied language cooperates with the second tool written in Python which
executes C parser, puts a formula on standard input and generates all
parts of a given cryptogram. We use Python in our programming pro-
cess because Python provides us with a good environment for quickly
developing an initial prototype. This allows us to get the overall pro-
gram structure and logic right, and we can fine-tune small details in
the fast development cycle that Python provides. Once the user is
satisfied with program output, he can translate the Python code into

C-++, Fortran, Java or some other compiled language.

Ezample 2.

Consider the following step of some protocol:
< <nal_1|ia>ka?2
The output obtained with our tool is the following:

al >

exec.
exec.
exec.
exec.
exec.
exec.
exec.
exec.
exec.
exec.
exec
exec.
exec.
exec.
exec.
exec.
exec.
exec.
exec.

a2

0 n n n n n n n

k[2]=1
.gen.n[1]=1

gen.n[2]=1

Sz

SZ.

Sz

SZ.
SZ.
SZ.
SZ.

.sz[0].
sz[0] .
.sz[0].
sz[1].
sz[1].
sz[1].
k=2

co.n[1]=1
co.i[1]=1
k=2
co.n[2]=1
co.i[2]=1
k=1

4. Conclusion

<na?2_1]ia2> kal > ka2

In this paper we have presented a new tool for verification whether

a crypto-term belongs to the specified crypto-language.

Our main

66 M. Kurkowski, J. Matek, M. Orzechowski

purpose was to check lexical analysis and syntax analysis. For our
investigation Flex and Bison — the well known grammar tools — have
been used.

We believe that our tool will be usefull in research on the topic of
symbolic verification of cryptographic protocols.

References

[1] M. Kurkowski. Dedukcyjne metody weryfikacji poprawnosci pro-
tokotow uwwierzytelniania, Deduction methods of verification of
authentication protocols. PhD dissertation, Institute of Com-
puter Science of The Polish Academy of Sciences, Warsaw, Poland
2003.

[2| M. Kurkowski, W. Penczek. Verifying cryptographic protocols
modeled by networks of automata. In: Proceedings of XV CS&P
(Concurrency, Specification and Programming), Humboldt Uni-
versity Press, Berlin, pp. 292-303, 2006.

