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ASYMMETRY IN REAL FUNCTIONS THEORY

JACEK MAREK JĘDRZEJEWSKI

Abstract

Since the beginning of the XX century many authors considered characterizations of
local properties for real functions of a real variable which have been defined as global
properties. We present a short survey of local properties of the well known global ones
and consider of how small/big the set of asymmetrical behaviour of a function must be.

1. Introduction

We shall consider only real functions defined in an open interval. When
we use topological terminology, then it is applied in the sense of natural
topology in the set of real numbers (or in its subsets).

Limit numbers of a real function defined in subsets of R have been con-
sidered in many articles by many mathematicians. Starting from the classi-
cal result of W. H. Young [20] concerning asymmetry of functions through
problems of usual limit numbers, J. M. Jędrzejewski and W. Wilczyński
[12], approximate limit numbers discussed by M. Kulbacka [14], L. Belowska
[1], W. Wilczyński [18] and others, problems of qualitative limit numbers
(W. Wilczyński [19]) B-limit numbers (J. M. Jędrzejewski [7], [8], J. M.
Jędrzejewski together with W. Wilczyński [13]) one can come up to a big
monograph on local systems by B. S. Thomson [17].

The first part of our considerations deals with the asymmetry of functions
with respect to limit numbers of different kinds.

Some properties of functions (continuity, Darboux condition and others)
can be characterized globally and locally. For many of those properties we
have theorems which say that a function has this global property if and only
if it has its adequate local property. The second part of the article deals
with some of such properties.
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The last part of the paper is devoted to results obtained by T. Świątkowski
in view of general approach to limit numbers considered originally by B. S.
Thomson and me.

2. Asymmetry of Sets of Limit Numbers

2.1. Limit Numbers of a Real Function. We shall start with the clas-
sical problem called Rome’s Theorem. The theorem was probably the first
one which dealt with arbitrary function. Let us remind necessary definitions
and properties.

Definition 1. (W. H. Young [20]) Let a real function f be defined in an
open interval (a, b). Then a number g (or +∞ or −∞) is called the limit
number of f at a point x0 from (a, b) if there exists a sequence (tn)∞n=1 such
that

(1) tn 6= x0, for each positive integer n,
(2) limn→∞ tn = x0,
(3) limn→∞ f(tn) = g.

If the inequality tn 6= x0 is replaced by tn > x0, then such a limit number
is called the right limit number of f at x0.

If the inequality tn 6= x0 is replaced by tn < x0, then such a limit number
is called the left limit number of f at x0.

• By L+(f, x0) we denote the set of all right limit numbers of f at x0.
• By L−(f, x0) we denote the set of all left limit numbers of f at x0.
• By L(f, x0) we denote the set of all limit numbers of f at x0.

Let us remark that limit numbers can be equivalently defined in the
following way:

Theorem 1. Let a real function f be defined in an open interval (a, b).
Then a number g (or +∞ or −∞) is a limit number of f at a point x0 from
(a, b) if and only if the set{

x ∈ (a, b) : f−1(Ug) ∩ [(x0 − ε, x0 + ε) \ {x0}]
}

is non-empty for each positive ε and each neighbourhood Ug of the point g.

It is obvious that:

Theorem 2. The sets L−(f, x0), L+(f, x0) and L(f, x0) are non-empty and
closed, moreover

L(f, x0) = L−(f, x0) ∪ L+(f, x0)

for any function f : (a, b) −→ R and any x ∈ (a, b).

The main theorem which was announced in Rome at the congress of
mathematicians is stated as follows:
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Theorem 3. Rome’s Theorem on Asymmetry (W. H. Young, 1906) For
any function f : (a, b) −→ R the set{

x ∈ (a, b) : L−(f, x) 6= L+(f, x)
}

is at most countable.

Quite similarly one can say that:

Theorem 4. For any function f : (a, b) −→ R the set

{x ∈ (a, b) : f(x0) /∈ L(f, x)}

is at most countable.

Let us remark that for each countable set E in R there exists a function
f : R −→ R for which

E =
{
x ∈ (a, b) : L−(f, x) 6= L+(f, x)

}
.

It is quite obvious if the set E is finite; if it is infinite it is possible to
define a monotone function, which fulfils the required condition. We shall
construct such a function.

Example 1. Monotone function with infinite set of asymmetry.

Let E = (xn)∞n=1 and the sequence of positive numbers (αn)∞n=1 be such

that the series
∞∑
n=1

αn is convergent. The function

f(x) =
∑

{n :xn<x}

αn

fulfils all the required properties.

2.2. Qualitative Limit Numbers. Following the way as in Theorem 1.
one can define other kinds of limit numbers as qualitative (W. Wilczyński
[19]) or approximative limit numbers (L. Belowska [1], M. Kulbacka [14],
J. Jaskuła [5] and W. Wilczyński [18]) when we define limit numbers using
the above mentioned property.

Definition 2. A number g or +∞ or −∞ is called the qualitative limit
number of a function f at a point x0 if the set{

x ∈ (a, b) : f−1(Ug) ∩ (x0 − ε, x0 + ε)
}

is of the second category for each positive ε and arbitrary neighbourhood Ug
of the point g.
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Definition 3. If the set{
x ∈ (a, b) : f−1(U(g)) ∩ (x0 − ε, x0)

}
is of the second second category for each positive ε, then g is called the left
qualitative limit number of a function f at the point x0.

Similarly, g is called the right qualitative limit number of a function f at
a point x0 if the set{

x ∈ (a, b) : f−1(U(g)) ∩ (x0, x0 + ε)
}

is of the second category for each positive ε and each neighbourhood Ug of
the point g.

• By L+
q (f, x0) we denote the set of all right qualitative limit numbers

of f at x0.
• By L−q (f, x0) we denote the set of all left qualitative limit numbers
of f at x0.
• By Lq(f, x0) we denote the set of all qualitative limit numbers of f
at x0.

Then, similarly as for usual limit numbers one can state:

Theorem 5. For arbitrary real function f on the interval (a, b) and any
x0 from (a, b) the sets Lq(f, x0), L−q (f, x0) and L+

q (f, x0) are non-empty,
closed and

Lq(f, x0) = L−q (f, x0) ∪ L+
q (f, x0).

Considering the sets of qualitative limit numbers we can get the analogue
of Rome’s Theorem, namely:

Theorem 6. For any function f : (a, b) −→ R the set{
x ∈ (a, b) : L−q (f, x) 6= L+

q (f, x)
}

is at most countable.

We can observe that the considered sets are at most countable, it means
that they are rather small with natural topology in the set of real numbers.
The quantity of such sets will be of our main interest. Unfortunately not
always such sets must be countable.

2.3. Approximate Limit Numbers. Several mathematicians considered
approximate limit numbers but we remind basic definitions and properties.

Definition 4. A number g or +∞ or −∞ is called the approximate limit
number of a function f at a point x0 if the set{

x ∈ (a, b) : f−1(U(g)) ∩ [(x0 − ε, x0 + ε)]
}
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has positive upper exterior density at x0 for every open neighbourhood Ug
of the point g and each positive ε.
Definition 5. A number g or +∞ or −∞ is called the left approximate
limit number of a function f at a point x0 if the set{

x ∈ (a, b) : f−1(U(g)) ∩ [(x0 − ε, x0)]
}

has positive upper exterior density at x0 for every open neighbourhood Ug
of the point g and each positive ε.

And similarly, a number g (or +∞, −∞) is called the right approximate
limit number of a function f at a point x0 if the set{

x ∈ (a, b) : f−1(U(g)) ∩ [(x0, x0 + ε)]
}

has positive upper exterior density at x0 for every open neighbourhood Ug
of the point g and each positive ε.

• By L+
a (f, x0) we denote the set of all right approximate limit num-

bers of f at x0.
• By L−a (f, x0) we denote the set of all left approximate limit numbers
of f at x0.
• By La(f, x0) we denote the set of all approximate limit numbers of
f at x0.

Then, similarly as for usual limit numbers one can state:
Theorem 7. For arbitrary real function f on the interval (a, b) and any
x0 from (a, b) the sets La(f, x0), L−a (f, x0) and L+

a (f, x0) are non-empty,
closed and

La(f, x0) = L−a (f, x0) ∪ L+
a (f, x0).

Now considering the sets of approximate limit numbers we can get the
analogue of Rome’s Theorem, but:
Theorem 8. (M. Kulbacka [14]). For any function f : (a, b) −→ R the set{

x ∈ (a, b) : L−a (f, x) 6= L+
a (f, x)

}
is first category set and has measure 0.

This time the sets of the first category which have measure 0 do not char-
acterize the set of asymmetry of functions. J. Jaskuła gave some additional
properties for the set of approximate asymmetry.
Theorem 9. (J. Jaskuła [5]) For any function f : (a, b) −→ R the set{

x ∈ (a, b) : L−a (f, x) 6= L+
a (f, x)

}
is first category and has measure 0, moreover it is of type Fσδσ.1

1W.Wilczyński informed me that the results of J. Jaskuła were a big deeper, i.e. the
set approximate asymmetry is also σ-porous.
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2.4. Generalized Limit Numbers. Let us observe that the class of sets
which are of the first category at the point x0 and the class of positive upper
external density at that point have common properties. When we denote
such a class by B then this class fulfils:

(1) If B ∈ B and E ⊃ B, then E ∈ B,
(2) If B1 ∪B2 ∈ B then B1 ∈ B or B2 ∈ B,
(3) If B ∈ B and ε > 0 then B ∩ (x0 − ε, x0 + ε) ∈ B.
The class of sets which are uncountable in each (x0 − ε, x0 + ε) or have

positive outer measure in each such interval and many other classes of sets
have the previously pointed properties. The articles on this topic are as
follows: J. Jędrzejewski [7], [8], J. Jędrzejewski with W. Wilczyński [13], J.
Jędrzejewski with S. Kowalczyk [10] and [11].

Let us start now from the beginning:

Definition 6. For each x ∈ R let B+
x be a class of non-empty sets fulfilling

the following conditions:
(1) B1 ∪B2 ∈ B+

x ⇐⇒ (B1 ∈ B+
x ∨B2 ∈ B+

x ),
(2) B ∩ (x, x+ t) ∈ B+

x for each B ∈ B+
x and t > 0.

For each x ∈ R let B−x be a class of non-empty sets fulfilling the following
conditions:

(1) B1 ∪B2 ∈ B−x ⇐⇒ (B1 ∈ B−x ∨B2 ∈ B−x ),
(2) B ∩ (x, x+ t) ∈ B−x for each B ∈ B−x and t > 0.
Let Bx = B−x ∪B+

x .

Definition 7. If f defined in some (a, b) is a real function, then a number
(or +∞ or −∞) is called B-limit number of f at x0 from (a, b) if{

x ∈ (a, b) : f−1(Ug)
}
∈ Bx0

for any neighbourhood Ug of the point g.

Definition 8. If {
x ∈ (a, b) : f−1(Ug) ∈ B−x0

}
for any neighbourhood Ug of the point g, then g is called the left B-limit
number of a function f at a point x0.

Similarly we define right B-limit numbers of a function f at a point x0.
• By L+

B(f, x0) we denote the set of all right B-limit numbers of f at
x0.
• By L−B(f, x0) we denote the set of all left B-limit numbers of f at
x0.
• By LB(f, x0) we denote the set of all B-limit numbers of f at x0.

Then, as for usual limit numbers, one can state:
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Theorem 10. For arbitrary real function f on the interval (a, b) and any
x0 from (a, b) the sets LB(f, x0), L−B(f, x0) and L+

B(f, x0) are non-empty,
closed and

LB(f, x0) = L−B(f, x0) ∪ L+
B(f, x0).

Considering the sets of B-limit numbers we are not able to get the ana-
logue of Rome’s Theorem. The situation depends on the class B. But if we
add a special condition for the family B, we can get adequate analogue of
Young’s theorem.

Definition 9. We say that the class B fulfils condition M if
∞⋃
n=1

En ∈ Bx0

for any: x0 ∈ (a, b), sequence (xn)∞n=1 converging to x0 and every sequence
of sets (En)∞n=1 such that En ∈ Bxn.

This condition permits us to state:

Theorem 11. If the class B fulfils condition M , then{
x ∈ (a, b) : L−B(f, x) 6= L+

B(f, x)
}

is at most countable set for any function f : (a, b) −→ R.

3. Asymmetry for Some Classes of Functions

3.1. Differentiation of Functions. Everybody knows:

Theorem 12. The set of all those points at which left derivative of a func-
tion f : R −→ R is different from the right derivative of this function is at
most countable.

3.2. Continuity of Functions. One can get that the set of points at which
a function is continuous from exactly one side as a quite simple corollary of
Young’s Theorem.

Theorem 13. For any function f : R −→ R the set of all points at which
f is continuous from the only one side is at most countable.

3.3. Darboux Condition of Functions. As before: everybody knows
that Darboux condition has been originally defined as a global condition of
a function. It sounds like this: the function f fulfils Darboux condition if
it takes all values in between; exactly:

Definition 10. We say that a function f : (a, b) −→ R fulfils Darboux con-
dition if for any x1 and x2 such that f(x1) 6= f(x2) and any number c lying
between f(x1) and f(x2) there exists a point x lying (strictly) between x1
and x2 such that f(x) = c.
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This condition can be replaced by the one that function f transforms
connected sets onto connected sets.

But still this condition is not good enough to say about asymmetry. We
should define this condition locally, even more it must be defined separately
for both sides. Let’s start to do it, what was done by A. Bruckner and J.
Ceder in 1965. For simplicity, let us assume that all the discussed functions
are bounded.

Definition 11. (A. Bruckner, J. Ceder) [2]) A function f : (a, b) −→ R is
said to be Darboux from the left side at a point x0 ∈ (a, b) if

(1) f(x0) ∈ L−(f, x0),
(2) for each c ∈ (inf L−(f, x0), supL−(f, x0)) and for each t > 0 there

exists a point x ∈ (x0 − t, x0) such that f(x) = c.

Similarly,

Definition 12. We say that a function f : (a, b) −→ R is Darboux from the
right side at a point x0 ∈ (a, b) if

(1) f(x0) ∈ L+(f, x0),
(2) for each c ∈ (inf L+(f, x0), supL+(f, x0)) and for each t > 0 there

is a point x ∈ (x0, x0 + t) such that f(x) = c.

In the end:

Definition 13. We say that a function f : (a, b) −→ R is Darboux at a point
x0 ∈ (a, b) if it is Darboux from both sides at x0.

These definitions would not be good enough if the next theorem is false.
But luckily it is not so.

Theorem 14. A function f : (a, b) −→ R is Darboux if and only if it is
Darboux at each point x0 ∈ (a, b).

And now we can say about Darboux asymmetry.

Theorem 15. [9]. For each function f : (a, b) −→ R the set of all those
points at which f Darboux from exactly one side is at most countable.

3.4. Connectedness of Functions. Next class of functions we want to
discuss is the class of functions with connected graphs. They are called
connected functions, however they can be defined in each topological spaces
we shall consider only real functions defined in an interval. The adequate
characterization has been given by B. D. Garret, D. Nelms and K. R. Kel-
lum [3].

Definition 14. A function f : (a, b) −→ R is called connected if its graph
is a connected set on the plane.
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As before this definition is a global one, we have to find a local definition
which will be as good as to get that local and global characterizations
coincide.

As before, we assume that all discussed functions are bounded.

Definition 15. (B. D. Garret, D. Nelms, K. R. Kellum) [3]) A function
f : (a, b) −→ R is connected from the left side at a point x0 ∈ (a, b) if

(1) f(x0) ∈ L−(f, x0),
(2) for each continuum K (connected and compact set) such that

projx(K) = [x0 − t, x0] for some t > 0

and
projy(K) ⊂

(
inf L−(f, x0), supL−(f, x0)

)
the (graph) function f has common point with K.

Similarly:

Definition 16. A function f : (a, b) −→ R is connected from the right side
at a point x0 ∈ (a, b) if

(1) f(x0) ∈ L+(f, x0),
(2) for each continuum K such that

projx(K) = [x0, x0 + t] for some t > 0

and
projy(K) ⊂

(
inf L+(f, x0), supL+(f, x0)

)
the (graph) function f has common point with K.

Definition 17. We say that a function f : (a, b) −→ R is connected at
a point x0 ∈ (a, b) if it is connected from both sides at x0.

And of course:

Theorem 16. A function f : (a, b) −→ R is connected if and only if it is
connected at each point x0 ∈ (a, b).

Finally, we are able to formulate theorem on connectivity asymmetry.

Theorem 17. For each function f : (a, b) −→ R the set of all those points
at which f is connected from exactly one side is at most countable.

3.5. Almost Continuity of Functions. The last class of functions we
want to discuss is the class of almost continuous functions. The adequate
local characterization has been given by J. M. Jastrzębski, T. Natkaniec
and J. Jędrzejewski [6].
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Definition 18. A function f : (a, b) −→ R is called almost continuous if
each neighbourhood of its graph contains some continuous function defined
in (a, b).

As before this definition is a global one, we have to find a local definition
which will be as good as to get that local and global characterizations
coincide.

We assume that all discussed functions are bounded.

Definition 19. A function f : (a, b) −→ R is almost continuous from the
left side at a point x0 ∈ (a, b) if

(1) f(x0) ∈ L−(f, x0),
(2) there is a positive ε such that for each open neighbourhood of f|(x,∞)

arbitrary y ∈ (inf L−(f, x0), supL−(f, x0)), arbitrary neighbourhood
G of the point (x, y) ∈ R2 and arbitrary t ∈ (x0, x0 + ε) there is a
continuous function g : (x0, x0 + ε) −→ R such that g ⊂ U ∪G and
g(x0) = y, g(t) = f(t).

Similarly one can define almost continuity from the right side at a point
x0 ∈ (a, b).

Definition 20. We say that a function f : (a, b) −→ R is almost continuous
at a point x0 ∈ (a, b) if it is almost continuous from both sides at x0.

And of course:

Theorem 18. A function f : (a, b) −→ R is almost continuous if and only
if it is almost continuous at each point x0 ∈ (a, b).

Finally, one can state:

Theorem 19. For each function f : (a, b) −→ R the set of all those points
at which f is almost continuous from exactly one side is at most countable.

4. General Approach to Asymmetry of Functions

Some general theorems were discussed in previous parts of the article.
Let us come to Thomson’s monograph. B. S. Thomson gathered several
ideas in one theory. He defined local systems which contain B classes and
B∗ classes that have been defined in [7]. For sake of completeness let us
remind the basic notions.

4.1. Local Systems.

Definition 21. B. S. Thomson [17].
By a local system in R we mean a class S consisting of non-empty collections
S(x) for each real number x, fulfilling the following conditions:

(1) {x} /∈ S(x),
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(2) E ∈ S(x) =⇒ x ∈ E,

(3) (E ∈ S(x) ∧ F ⊃ E) =⇒ F ∈ S(x),

(4) (E ∈ S(x) ∧ δ > 0) =⇒ E ∩ (x− δ, x+ δ) ∈ S(x).

Definition 22. By a left local system in R we mean a class S consisting of
non-empty collections S(x) for each real number x, fulfilling the following
conditions:

(5) {x} /∈ S(x),

(6) E ∈ S(x) =⇒ x ∈ E,

(7) (E ∈ S(x) ∧ F ⊃ E) =⇒ F ∈ S(x),

(8) (E ∈ S(x) ∧ δ > 0) =⇒ E ∩ (x− δ, x] ∈ S(x).

Similarly we define right local systems.

A local system is called filtering at a point x if

(9) E ∩ F ∈ S(x) whenever E ∈ S(x) and F ∈ S(x).

A local system is called filtering if it is filtering at each x in R.
A local system is called bilateral if

E ∩ (x− δ, x) 6= ∅ and E ∩ (x, x+ δ) 6= ∅
for each x ∈ R, E ∈ S(x) and δ > 0.

Let us observe that those definitions are very close to Definition 6. When
B. S. Thomson assumes that dual system for S is filtering, then S fulfils all
requirements of Definition 6. The only difference lays in the belonging of
the point x to every set from the class Sx.

Definition 23. A number g is called S-limit of a function f at a point x if

f−1(g − ε, g + ε) ∪ {x} ∈ S(x)

for each positive ε.
We shall write then

g = (S) lim
t→x

f(t).

The set of all (S)-limits are denoted by ΛS(f, x).

For each local system S there is a system S∗ which is also a local system,
that is defined by:

E ∈ S∗(x) ⇐⇒
(
x ∈ E ∧

[
(R \ E) ∪ {x}

]
/∈ S(x)

)
.

This system is called dual system for S.
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A system S is called filtering if E1 ∩ E2 ∈ S(x) for every sets E1 ∈ S(x)
and E2 ∈ S(x) and each x ∈ R.

Definition 24. We say that two systems S1 and S2 satisfy a joint inter-
section condition if for any choices {Ex : x ∈ R} and {Dx : x ∈ R} such
that Ex ∈ S1(x), Dx ∈ S2(x) there exists a gauge δ on R so that if
0 < |x − y| < min{δ(x), δ(y)} then at least one of the sets Ex ∩ Dy or
Dx ∩ Ey contains points other than x and y.

By a gauge on the set R we mean a positive function defined in R.
And now we are able to formulate the asymmetry theorem given by

Thomson.

Theorem 20. Let S1, S2 be local systems such that both of them are filtering
and that the pair (S1,S2) has the joint intersection condition. Then for any
function f : R −→ R the set

{x ∈ R : ΛS1(f, x) 6= ΛS2(f, x)}
is at most countable.

Example 2.

Let S1x be the class consisting of all sets E for which E ∩ (x− ε, x+ ε) is
of the first category.

Let S2x be the class consisting of all sets D for which D ∩ (x − ε, x + ε)
has positive outer measure.

There are two sets A and B such that A ∩ B = ∅, A ∪ B = (0, 1), A is
of the first category in (0, 1), and B has measure 1.

Let f : (0, 1) −→ R be defined as follows:

f(x) =

{
0 if x ∈ A,
1 if x ∈ B.

For this function, all points from (0, 1) are points of
(
S1,S2

)
-asymmetry.

4.2. Świątkowski Approach to Asymmetry.

Definition 25. (T. Świątkowski [15]) Let T be a stronger topology in R than
the natural one. For a subset E of R the symbol E′T denote the set of all
accumulation points with respect to topology T . Let moreover Lx = (−∞, x)
and Px = (x,∞) for any real number x. Consider now the function ϕ in
the following way:

x ∈ ϕ(A) if x ∈ (A ∩ Lx)′T 4 (A ∩ Px)′T

for any subset A of R.
Each point from the set (A ∩ Lx)′T 4 (A ∩ Px)′T is called T -asymmetry

point of the set A.
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Definition 26. Let f : R −→ R be arbitrary function and x a real number.
We say that g is T -limit number of the function f at a point x if

x ∈
(
f−1(U)

)′
T

for each neighbourhood U of the point x.

Not every topology is good enough to get the adequate theorem on asym-
metry; let us call the property (W ) from the article [15].

Definition 27. [15] Let T be a stronger topology then the natural one in
the set R. We say that T fulfils condition (W ) if for every x ∈ R, sequence
(xn)∞n=1 converging to x and every sequence (En)∞n=1 such that xn ∈ (En)′T
the point x belongs to (

⋃∞
n=1En)′T .

This condition (W ) for the topology T described as above is equivalent
to the condition (W ′):
for an arbitrary x ∈ R and its T -neighbourhood U there exists a positive
number δ such that ((x− δ, x+ δ) \ U)′T = ∅.

The condition (W ′) allows to formulate one of the most general theorems
on asymmetry.

Theorem 21. If T is a stronger than the natural topology in the set R and
fulfils condition (W ), then for any function f : R −→ R the set of asymmetry
of f is at most countable.

It is now easy to observe that:

If T is a natural topology in R, Theorem 21 allows us to obtain the
classical Young’s Theorem on asymmetry. It is implied from the fact that
T fulfils condition (W ′) (see Theorem 3).

Let us remark that if T is a Hashimoto topology in R generated by sets of
the first category, Theorem 21 allows us to obtain Theorem on qualitative
asymmetry of functions. It follows from the fact that T also fulfils (W ′)
(see Theorem 6).

4.3. Comments on the Three Approaches to Asymmetry. When
we want to compare the three ideas of B. S. Thomson, of T. Świątkowski
and J. Jędrzejewski, we can observe that some local systems S-limits can
be understood as B-limits, some systems can be understood as systems B.
However, in each theorem where Thomson assumes that the dual system for
a system S is filtering, then the system fulfils all conditions for the system
B. Świątkowski’s condition and mine called W or M are equivalent, so
Thomson’s theorems are almost the same as Świątkowski’s and mine ones.
The only difference lays on different approaches to the problem.
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