ON $F(p, n)$-FIBONACCI BICOMPLEX NUMBERS

MIROSŁAW LIANA, ANETTA SZYNAL-LIANA, AND IWONA WŁOCH

Abstract

In this paper we introduce $F(p, n)$-Fibonacci bicomplex numbers and $L(p, n)$-Lucas bicomplex numbers as a special type of bicomplex numbers. We give some their properties and describe relations between them.

1. Introduction

Let consider the set \mathbb{C} of complex numbers $a+b i$, where $a, b \in \mathbb{R}$, with the imaginary unit i. Let \mathbb{B} be the set of bicomplex numbers w of the form

$$
\begin{equation*}
w=z_{1}+z_{2} j \tag{1}
\end{equation*}
$$

where $z_{1}, z_{2} \in \mathbb{C}$. Then i and j are commuting imaginary units, i.e.

$$
\begin{equation*}
i j=j i, i^{2}=j^{2}=-1 \tag{2}
\end{equation*}
$$

Let $w_{1}=\left(a_{1}+b_{1} i\right)+\left(c_{1}+d_{1} i\right) j$ and $w_{2}=\left(a_{2}+b_{2} i\right)+\left(c_{2}+d_{2} i\right) j$ be arbitrary two bicomplex numbers. Then the equality, the addition, the substraction, the multiplication and the multiplication by scalar are defined in the following way.
Equality: $w_{1}=w_{2}$ only if $a_{1}=a_{2}, b_{1}=b_{2}, c_{1}=c_{2}, d_{1}=d_{2}$,
addition: $w_{1}+w_{2}=\left(\left(a_{1}+a_{2}\right)+\left(b_{1}+b_{2}\right) i\right)+\left(\left(c_{1}+c_{2}\right)+\left(d_{1}+d_{2}\right) i\right) j$,
substraction: $w_{1}-w_{2}=\left(\left(a_{1}-a_{2}\right)+\left(b_{1}-b_{2}\right) i\right)+\left(\left(c_{1}-c_{2}\right)+\left(d_{1}-d_{2}\right) i\right) j$,
multiplication by scalar $s \in \mathbb{R}: s w_{1}=\left(s a_{1}+s b_{1} i\right)+\left(s c_{1}+s d_{1} i\right) j$, multiplication:
$w_{1} \cdot w_{2}=\left(\left(a_{1} a_{2}-b_{1} b_{2}-c_{1} c_{2}+d_{1} d_{2}\right)+\left(a_{1} b_{2}+a_{2} b_{1}-c_{1} d_{2}-c_{2} d_{1}\right) i\right)+$ $+\left(\left(a_{1} c_{2}+a_{2} c_{1}-b_{1} d_{2}-b_{2} d_{1}\right)+\left(a_{1} d_{2}+a_{2} d_{1}+b_{1} c_{2}+b_{2} c_{1}\right) i\right) j$.

- Mirosław Liana — e-mail: mliana@prz.edu.pl

Rzeszow University of Technology.

- Anetta Szynal-Liana - e-mail: aszynal@prz.edu.pl Rzeszow University of Technology.
- Iwona Włoch - e-mail: iwloch@prz.edu.pl

Rzeszow University of Technology.

The bicomplex numbers were introduced in 1892 by Segre, see [5]. The theory of bicomplex numbers is developed, many of papers concerning this topic are published quite recently, see for example [2], [3], [4].

The Fibonacci numbers F_{n} are defined by the recurrence relation $F_{n}=$ $F_{n-1}+F_{n-2}$, for $n \geq 2$ with $F_{0}=F_{1}=1$. The nth Lucas number L_{n} is defined recursively by $L_{n}=L_{n-1}+L_{n-2}$ for $n \geq 2$ with the initial terms $L_{0}=2, L_{1}=1$.

In this paper we recall some generalizations of Fibonacci numbers and Lucas numbers and we introduce the bicomplex numbers related with these generalizations.

2. The $F(p, n)$-Fibonacci numbers

The Fibonacci sequence has been generalized in many ways but a very natural is firstly to use one-parameter generalization of the Fibonacci sequence. A generalization uses one parameter $p, p \geq 2$ was introduced and studied by Kwaśnik and I. Włoch in the context of the number of p-independent sets in graphs, see [1]. We recall this definition.

Let $p \geq 2$ be integer. Then

$$
\begin{align*}
& F(p, n)=n+1, \text { for } n=0,1, \ldots, p-1 \\
& F(p, n)=F(p, n-1)+F(p, n-p), \text { for } n \geq p \tag{3}
\end{align*}
$$

is the $F(p, n)$-Fibonacci number.
Moreover $L(p, n)$-Lucas number is a cyclic version of $F(p, n)$ defined in the following way

$$
\begin{align*}
& L(p, n)=n+1, \text { for } n=0,1, \ldots, 2 p-1 \\
& L(p, n)=L(p, n-1)+L(p, n-p), \text { for } n \geq 2 p, \tag{4}
\end{align*}
$$

where $p \geq 2, n \geq 0$.
Note that for $n \geq 0$ we have that $F(2, n)=F_{n+1}$ and for $n \geq 2 L(2, n)=$ L_{n}.

The following Tables present the initial words of the generalized Fibonacci numbers and the generalized Lucas numbers for special case of n and p.

n	0	1	2	3	4	5	6	7	8	9	10
F_{n}	1	1	2	3	5	8	13	21	34	55	89
$F(2, n)$	1	2	3	5	8	13	21	34	55	89	144
$F(3, n)$	1	2	3	4	6	9	13	19	28	41	60
$F(4, n)$	1	2	3	4	5	7	10	14	19	26	36
$F(5, n)$	1	2	3	4	5	6	8	11	15	20	26

Table 1. The values of $F(p, n)$ and F_{n}.

n	0	1	2	3	4	5	6	7	8	9	10
L_{n}	2	1	3	4	7	11	18	29	47	76	123
$L(2, n)$	1	2	3	4	7	11	18	29	47	76	123
$L(3, n)$	1	2	3	4	5	6	10	15	21	31	46
$L(4, n)$	1	2	3	4	5	6	7	8	13	19	26

Table 2. The values of $L(p, n)$ and L_{n}.
Generalized Fibonacci numbers $F(p, n)$ and generalized Lucas numbers $L(p, n)$ have been studied recently, mainly with respect to their graph and combinatorial properties, see for example [7], [8], [9], [10]. Among other some identities for $F(p, n)$ and $L(p, n)$ were given. We recall some of them.

Theorem 1 ([8]). Let $p \geq 2$ be integer. Then for $n \geq p+1$

$$
\begin{equation*}
\sum_{l=0}^{n-p} F(p, l)=F(p, n)-p \tag{5}
\end{equation*}
$$

Theorem 2 ([8]). Let $p \geq 2, n \geq p$ be integers. Then

$$
\begin{equation*}
\sum_{l=1}^{n} F(p, l p-1)+1=F(p, n p) \tag{6}
\end{equation*}
$$

Theorem 3 ([6]). Let $p \geq 2, n \geq p$ be integers. Then

$$
\begin{equation*}
\sum_{l=1}^{n} F(p, l p)=F(p, n p+1)-F(p, 1) \tag{7}
\end{equation*}
$$

$$
\begin{equation*}
\sum_{l=1}^{n} F(p, l p+1)=F(p, n p+2)-F(p, 2) \tag{8}
\end{equation*}
$$

$$
\begin{equation*}
\sum_{l=1}^{n} F(p, l p+2)=F(p, n p+3)-F(p, 3) \tag{9}
\end{equation*}
$$

Theorem 4 ([8]). Let $p \geq 2, n \geq 2 p-2$ be integers. Then

$$
\begin{equation*}
F(p, n)=\sum_{l=0}^{p-1} F(p, n-(p-1)-l) \tag{10}
\end{equation*}
$$

Theorem 5 ([8]). Let $p \geq 2, n \geq 2 p$ be integers. Then

$$
\begin{equation*}
\sum_{l=2}^{n} L(p, p l)=L(p, n p+1)-(p+2) \tag{11}
\end{equation*}
$$

Theorem 6 ([6]). Let $p \geq 2, n \geq 2 p$ be integers. Then

$$
\begin{align*}
& \sum_{l=2}^{n} L(p, p l+1)=L(p, n p+2)-L(p, p+2) . \tag{12}\\
& \sum_{l=2}^{n} L(p, p l+2)=L(p, n p+3)-L(p, p+3) . \tag{13}\\
& \sum_{l=2}^{n} L(p, p l+3)=L(p, n p+4)-L(p, p+4) . \tag{14}
\end{align*}
$$

Theorem 7 ([8]). Let $p \geq 2, n \geq 2 p$ be integers. Then

$$
\begin{equation*}
L(p, n)=p F(p, n-(2 p-1))+F(p, n-p) . \tag{15}
\end{equation*}
$$

3. The $F(p, n)$-Fibonacci bicomplex numbers

Let $n \geq 0$ be an integer. The nth $F(p, n)$-Fibonacci bicomplex number $B F_{n}^{p}$ and the nth $L(p, n)$-Lucas bicomplex number $B L_{n}^{p}$ are defined as

$$
\begin{gather*}
B F_{n}^{p}=(F(p, n)+F(p, n+1) i)+(F(p, n+2)+F(p, n+3) i) j, \tag{16}\\
B L_{n}^{p}=(L(p, n)+L(p, n+1) i)+(L(p, n+2)+L(p, n+3) i) j, \tag{17}
\end{gather*}
$$

respectively.
Using the above definitions we can write selected $F(p, n)$-Fibonacci bicomplex numbers, i.e.

$$
\begin{aligned}
& B F_{0}^{3}=(1+2 i)+(3+4 i) j, \\
& B F_{1}^{3}=(2+3 i)+(4+6 i) j, \\
& B F_{2}^{3}=(3+4 i)+(6+9 i) j, \\
& \ldots \\
& B F_{0}^{4}=(1+2 i)+(3+4 i) j, \\
& B F_{1}^{4}=(2+3 i)+(4+5 i) j, \\
& B F_{2}^{4}=(3+4 i)+(5+7 i) j, \\
& \cdots \\
& B F_{0}^{5}=(1+2 i)+(3+4 i) j, \\
& B F_{1}^{5}=(2+3 i)+(4+5 i) j, \\
& B F_{2}^{5}=(3+4 i)+(5+6 i) j,
\end{aligned}
$$

In the same way one can easily write selected $L(p, n)$-Lucas bicomplex numbers.

The addition, the subtraction and the multiplication of $F(p, n)$-Fibonacci bicomplex numbers and $L(p, n)$-Lucas bicomplex numbers are defined in the same way as for bicomplex numbers.

In the set \mathbb{C}, the complex conjugate of $x+y i$ is $\overline{x+y i}=x-y i$. In the set \mathbb{B}, for a bicomplex number $w=(a+b i)+(c+d i) j$, there are three distinct conjugations.
Let $B F_{n}^{p}$ be the nth $F(p, n)$-Fibonacci bicomplex number, i.e.
$B F_{n}^{p}=(F(p, n)+F(p, n+1) i)+(F(p, n+2)+F(p, n+3) i) j$,
The bicomplex conjugation of $B F_{n}^{p}$ with respect to i has the form

$$
\begin{aligned}
{\overline{B F_{n}^{p}}}^{i} & =\overline{(F(p, n)+F(p, n+1) i)}+\overline{(F(p, n+2)+F(p, n+3) i)} j= \\
& =(F(p, n)-F(p, n+1) i)+(F(p, n+2)-F(p, n+3) i) j .
\end{aligned}
$$

The bicomplex conjugation of $B F_{n}^{p}$ with respect to j has the form

$$
\begin{aligned}
\overline{B F_{n}^{p}} j & =(F(p, n)+F(p, n+1) i)-(F(p, n+2)+F(p, n+3) i) j= \\
& =(F(p, n)+F(p, n+1) i)+(-F(p, n+2)-F(p, n+3) i) j .
\end{aligned}
$$

The third kind of conjugation is a composition of the above two conjugations. Putting $k:=j i=i j$ we can define the bicomplex conjugation of $B F_{n}^{p}$ with respect to k as follows

$$
\begin{aligned}
{\overline{B F_{n}^{p}}}^{k} & =\overline{(F(p, n)+F(p, n+1) i)}-\overline{(F(p, n+2)+F(p, n+3) i)} j= \\
& =(F(p, n)-F(p, n+1) i)+(-F(p, n+2)+F(p, n+3) i) j .
\end{aligned}
$$

Using the bicomplex conjugation of $B F_{n}^{p}$ with respect to i, j, k respectively and (16) we can write

$$
\begin{aligned}
& B F_{n}^{p} \cdot{\overline{B F_{n}^{p}}}^{i}= \\
& =\left(|F(p, n)+F(p, n+1) i|^{2}-|F(p, n+2)+F(p, n+3) i|^{2}\right)+ \\
& +2 \Re((F(p, n)+F(p, n+1) i) \cdot \overline{(F(p, n+2)+F(p, n+3) i)}) j= \\
& =(F(p, n))^{2}+(F(p, n+1))^{2}-(F(p, n+2))^{2}-(F(p, n+3))^{2}+ \\
& +2(F(p, n) F(p, n+2)+F(p, n+1) F(p, n+3)) j . \\
& B F_{n}^{p} \cdot{\overline{B F_{n}^{p}}}^{j}= \\
& =(F(p, n)+F(p, n+1) i)^{2}+(F(p, n+2)+F(p, n+3) i)^{2}= \\
& =(F(p, n))^{2}-(F(p, n+1))^{2}+(F(p, n+2))^{2}-(F(p, n+3))^{2}+ \\
& \quad+2(F(p, n) F(p, n+1)+F(p, n+2) F(p, n+3)) i . \\
& B F_{n}^{p} \cdot{\overline{B F_{n}^{p}}}^{k}= \\
& =\left(|F(p, n)+F(p, n+1) i|^{2}+|F(p, n+2)+F(p, n+3) i|^{2}\right)+ \\
& -2 \Im((F(p, n)+F(p, n+1) i) \cdot \overline{(F(p, n+2)+F(p, n+3) i)}) k= \\
& =(F(p, n))^{2}+(F(p, n+1))^{2}+(F(p, n+2))^{2}+(F(p, n+3))^{2}+ \\
& \quad-2(F(p, n+1) F(p, n+2)-F(p, n) F(p, n+3)) k .
\end{aligned}
$$

In the set \mathbb{C}, the modulus of $x+y i$ is $|x+y i|=\sqrt{(x+y i) \cdot \overline{(x+y i)}}=$ $\sqrt{x^{2}+y^{2}}$. In the set \mathbb{B} there are four different moduli, named: real modulus
$\left|B F_{n}^{p}\right|, i-$ modulus $\left|B F_{n}^{p}\right|_{i}, j-$ modulus $\left|B F_{n}^{p}\right|_{j}$ and $k-$ modulus $\left|B F_{n}^{p}\right|_{k}$. We give the formulae of the squares of these modules:

$$
\begin{aligned}
& \quad\left|B F_{n}^{p}\right|^{2}=|F(p, n)+F(p, n+1) i|^{2}+|F(p, n+2)+F(p, n+3) i|^{2}= \\
& =(F(p, n))^{2}+(F(p, n+1))^{2}+(F(p, n+2))^{2}+\left(F(p, n+3)^{2},\right. \\
& \left|B F_{n}^{p}\right|_{i}^{2}=B F_{n}^{p} \cdot{\overline{B F_{n}^{p}}}^{i} \\
& \left|B F_{n}^{p}\right|_{j}^{2}=B F_{n}^{p} \cdot{\overline{B F_{n}^{p}}}^{j} \\
& \left|B F_{n}^{p}\right|_{k}^{2}=B F_{n}^{p} \cdot{\overline{B F_{n}^{p}}}^{k} .
\end{aligned}
$$

The different conjugations and squares of modules for $L(p, n)$-Lucas bicomplex number $B L_{n}^{p}$ are presented as follows

$$
\begin{gathered}
{\overline{B L_{n}^{p}}}^{i}=(L(p, n)-L(p, n+1) i)+(L(p, n+2)-L(p, n+3) i) j, \\
{\overline{B L_{n}^{p}}}^{j}=(L(p, n)+L(p, n+1) i)+(-L(p, n+2)-L(p, n+3) i) j, \\
{\overline{B L_{n}^{p}}}^{k}=(L(p, n)-L(p, n+1) i)+(-L(p, n+2)+L(p, n+3) i) j . \\
\left|B L_{n}^{p}\right|^{2}=(L(p, n))^{2}+(L(p, n+1))^{2}+(L(p, n+2))^{2}+\left(L(p, n+3)^{2},\right. \\
\left|B L_{n}^{p}\right|_{i}^{2}=(L(p, n))^{2}+(L(p, n+1))^{2}-(L(p, n+2))^{2}-(L(p, n+3))^{2}+ \\
+2(L(p, n) L(p, n+2)+L(p, n+1) L(p, n+3)) j \\
\left|B L_{n}^{p}\right|_{j}^{2}=(L(p, n))^{2}-(L(p, n+1))^{2}+(L(p, n+2))^{2}-(L(p, n+3))^{2}+ \\
+2(L(p, n) L(p, n+1)+L(p, n+2) L(p, n+3)) i . \\
\left|B L_{n}^{p}\right|_{k}^{2}=(L(p, n))^{2}+(L(p, n+1))^{2}+(L(p, n+2))^{2}+(L(p, n+3))^{2}+ \\
-2(L(p, n+1) L(p, n+2)-L(p, n) L(p, n+3)) k .
\end{gathered}
$$

4. Properties of $F(p, n)$-Fibonacci Bicomplex numbers

We will give some properties of $F(p, n)$-Fibonacci bicomplex numbers and $L(p, n)$-Lucas bicomplex numbers.

Theorem 8. Let $p \geq 2$ be integer. Then for $n \geq p+1$

$$
\begin{align*}
& \sum_{l=0}^{n-p} B F_{l}^{p}=B F_{n}^{p}-[p+(p+F(p, 0)) i+ \tag{18}\\
& \quad+((p+F(p, 0)+F(p, 1))+(p+F(p, 0)+F(p, 1)+F(p, 2)) i) j]
\end{align*}
$$

Proof. Using (5) and (16) we have

$$
\begin{aligned}
& \sum_{l=0}^{n-p} B F_{l}^{p}=B F_{0}^{p}+B F_{1}^{p}+\ldots+B F_{n-p}^{p}= \\
& =(F(p, 0)+F(p, 1) i)+(F(p, 2)+F(p, 3) i) j+ \\
& +(F(p, 1)+F(p, 2) i)+(F(p, 3)+F(p, 4) i) j+\ldots+ \\
& +(F(p, n-p)+F(p, n-p+1) i)+ \\
& +(F(p, n-p+2)+F(p, n-p+3) i) j= \\
& =F(p, 0)+F(p, 1)+\ldots+F(p, n-p)+ \\
& +(F(p, 1)+\ldots+F(p, n-p+1)+F(p, 0)-F(p, 0)) i+ \\
& +[F(p, 2)+\ldots+F(p, n-p+2)+F(p, 0)+F(p, 1)-F(p, 0)+ \\
& -F(p, 1)+(F(p, 3)+\ldots+F(p, n-p+3)+F(p, 0)+F(p, 1)+ \\
& +F(p, 2)-F(p, 0)-F(p, 1)-F(p, 2)) i] j= \\
& =(F(p, n)-p+(F(p, n+1)-p-F(p, 0)) i)+ \\
& +[(F(p, n+2)-p-F(p, 0)-F(p, 1))+ \\
& +(F(p, n+3)-p-F(p, 0)-F(p, 1)-F(p, 2)) i] j= \\
& =B F_{n}^{p}-(p+(p+F(p, 0)) i)-[(p+F(p, 0)+F(p, 1))+ \\
& +(p+F(p, 0)+F(p, 1)+F(p, 2)) i] j \\
& \text { which ends the proof. }
\end{aligned}
$$

Theorem 9. Let $p \geq 2, n \geq p$ be integers. Then

$$
\begin{equation*}
\sum_{l=1}^{n} B F_{l p-1}^{p}=B F_{n p}^{p}-[(F(p, 0)+F(p, 1) i)+(F(p, 2)+F(p, 3) i) j] \tag{19}
\end{equation*}
$$

Proof. Using (16) we have

$$
\begin{aligned}
& \sum_{l=1}^{n} B F_{l p-1}^{p}=B F_{p-1}^{p}+B F_{2 p-1}^{p}+\ldots+B F_{n p-1}^{p}= \\
& =(F(p, p-1)+F(p, p) i)+(F(p, p+1)+F(p, p+2) i) j+ \\
& +(F(p, 2 p-1)+F(p, 2 p) i)+(F(p, 2 p+1)+F(p, 2 p+2) i) j+\ldots+ \\
& +(F(p, n p-1)+F(p, n p) i)+(F(p, n p+1)+F(p, n p+2) i) j= \\
& =F(p, p-1)+F(p, 2 p-1)+\ldots+F(p, n p-1)+ \\
& +(F(p, p)+F(p, 2 p)+\ldots+F(p, n p)) i+ \\
& +[(F(p, p+1)+F(p, 2 p+1)+\ldots+F(p, n p+1))+ \\
& +(F(p, p+2)+F(p, 2 p+2)+\ldots+F(p, n p+2)) i] j .
\end{aligned}
$$

Writing (6) as $\sum_{l=1}^{n} F(p, l p-1)=F(p, n p)-1=F(p, n p)-F(p, 0)$ and using (7)-(9) we obtain (19).

Theorem 10. Let $p \geq 2, n \geq 2 p-2$ be integers. Then

$$
\begin{equation*}
B F_{n}^{p}=\sum_{l=0}^{p-1} B F_{n-(p-1)-l}^{p} . \tag{20}
\end{equation*}
$$

Proof. Using (10) and (16) we have

$$
\begin{aligned}
& \sum_{l=0}^{p-1} B F_{n-(p-1)-l}^{p}=B F_{n-(p-1)}^{p}+B F_{n-(p-1)-1}^{p}+\ldots+B F_{n-(p-1)-(p-1)}^{p}= \\
& =(F(p, n-(p-1))+F(p, n-(p-1)+1) i)+ \\
& +[F(p, n-(p-1)+2)+F(p, n-(p-1)+3) i] j+ \\
& +(F(p, n-(p-1)-1)+F(p, n-(p-1)) i)+ \\
& +[F(p, n-(p-1)+1)+F(p, n-(p-1)+2) i] j+\ldots+ \\
& +(F(p, n-(p-1)-(p-1))+F(p, n-(p-1)-(p-1)+1) i)+ \\
& +[F(p, n-(p-1)-(p-1)+2)+F(p, n-(p-1)-(p-1)+3) i] j= \\
& =(F(p, n)+F(p, n+1) i)+(F(p, n+2)+F(p, n+3) i) j=B F_{n}^{p},
\end{aligned}
$$

which ends the proof.
Theorem 11. Let $p \geq 2, n \geq 2 p$ be integers. Then

$$
\begin{equation*}
\sum_{l=2}^{n} B L_{p l}^{p}=B L_{n p+1}^{p}-B L_{p+1}^{p} . \tag{21}
\end{equation*}
$$

Proof. Using (17) we have

$$
\begin{aligned}
& \sum_{l=2}^{n} B L_{p l}^{p}=B L_{2 p}^{p}+B L_{3 l}^{p}+\ldots+B L_{n l}^{p}= \\
& =(L(p, 2 p)+L(p, 2 p+1) i)+(L(p, 2 p+2)+L(p, 2 p+3) i) j+ \\
& +(L(p, 3 p)+L(p, 3 p+1) i)+(L(p, 3 p+2)+L(p, 3 p+3) i) j+\ldots+ \\
& +(L(p, n p)+L(p, n p+1) i)+(L(p, n p+2)+L(p, n p+3) i) j+ \\
& =L(p, 2 p)+L(p, 3 p)+\ldots+L(p, n p)+ \\
& +(L(p, 2 p+1)+L(p, 3 p+1)+\ldots+L(p, n p+1)) i+ \\
& +[(L(p, 2 p+2)+L(p, 3 p+2)+\ldots+L(p, n p+2))+ \\
& +(L(p, 2 p+3)+L(p, 3 p+3)+\ldots+L(p, n p+3)) i] j .
\end{aligned}
$$

Writing (11) as $\sum_{l=2}^{n} L(p, p l)=L(p, n p+1)-L(p, p+1)$ and using (12)-(14) we obtain (21).
Theorem 12. Let $p \geq 2, n \geq 2 p$ be integers. Then

$$
\begin{equation*}
B L_{n}^{p}=p \cdot B F_{n-(2 p-1)}^{p}+B F_{n-p}^{p} \tag{22}
\end{equation*}
$$

Proof. Using (16) we have

$$
\begin{aligned}
& B F_{n-(2 p-1)}^{p}=(F(p, n-(2 p-1))+F(p, n-(2 p-1)+1) i)+ \\
& +(F(p, n-(2 p-1)+2)+F(p, n-(2 p-1)+3) i) j
\end{aligned}
$$

and

$$
\begin{aligned}
& B F_{n-p}^{p}=(F(p, n-p)+F(p, n-p+1) i)+ \\
& +(F(p, n-p+2)+F(p, n-p+3) i) j,
\end{aligned}
$$

consequently

$$
\begin{aligned}
& p \cdot B F_{n-(2 p-1)}^{p}+B F_{n-p}^{p}= \\
& =p \cdot F(p, n-(2 p-1))+F(p, n-p)+ \\
& +(p \cdot F(p,(n+1)-(2 p-1))+F(p,(n+1)-p)) i+ \\
& +[(p \cdot F(p,(n+2)-(2 p-1))+F(p,(n+2)-p))+ \\
& +(p \cdot F(p,(n+3)-(2 p-1))+F(p,(n+3)-p)) i] j
\end{aligned}
$$

Using (15) we have

$$
\begin{aligned}
& p \cdot B F_{n-(2 p-1)}^{p}+B F_{n-p}^{p}= \\
& =(L(p, n)+L(p, n+1) i)+(L(p, n+2)+L(p, n+3) i) j
\end{aligned}
$$

which ends the proof.
For integers $p, n, l, p \geq 2, n \geq 2,0 \leq l \leq n$ we have (see [9]) the direct formula for $F(p, n)$-Fibonacci number

$$
F(p, n)=\sum_{l \geq 0} f(p, n, l)
$$

where

$$
f(p, n, l)=\binom{n-(p-1)(l-1)}{l}
$$

Using this direct formula other forms of given earlier identities can be given.

References

[1] M. Kwaśnik, I. Włoch, The total number of generalized stable sets and kernels of graphs, Ars Combinatoria 55 (2000), 139-146.
[2] M.E. Luna-Elizarrarás, M. Shapiro, D.C. Struppa, A. Vajiac, Bicomplex Holomorphic Functions: The Algebra, Geometry and Analysis of Bicomplex Numbers, Birkhäuser (2015).
[3] M.E. Luna-Elizarrarás, M. Shapiro, D.C. Struppa, A. Vajiac, Bicomplex Numbers and their Elementary Functions, CUBO 14(2) (2012), 61-80. doi: http://dx.doi.org/10.4067/S0719-06462012000200004
[4] D. Rochon, M. Shapiro, On algebraic properties of bicomplex and hyperbolic numbers, Analele Universităţii Oradea, Fascicola Matematica 11 (2004), 71-110.
[5] C. Segre, Le Rappresentazioni Reali delle Forme Complesse a Gli Enti Iperalgebrici, Mathematische Annalen 40 (1892), 413-467. doi: https://doi.org/10.1007/BF01443559
[6] A. Szynal-Liana, I. Włoch, On $F(p, n)$-Fibonacci Quaternions, submitted.
[7] A. Włoch, On generalized Fibonacci numbers and k-distance K_{p}-matchings in graphs, Discrete Applied Mathematics 160 (2012), 1399-1405. doi: https://doi.org/10.1016/j.dam.2012.01.008
[8] A. Włoch, Some identities for the generalized Fibonacci numbers and the generalized Lucas numbers, Applied Mathematics and Computation 219 (2013), 5564-5568. doi: https://doi.org/10.1016/j.amc.2012.11.030
[9] A. Włoch, Some interpretations of the generalized Fibonacci numbers, AKCE International Journal of Graphs and Combinatorics 9(2) (2012), 123-133.
[10] I. Włoch, Generalized Fibonacci polynomial of graph, Ars Combinatoria 68 (2003), 49-55.

Received: June 2018

Mirosław Liana
Rzeszow University of Technology,
The Faculty of Management,
al. Powstańców Warszawy 10, 35-959 Rzeszów, Poland
Email address: mliana@prz.edu.pl
Anetta Szynal-Liana
Rzeszow University of Technology,
The Faculty of Mathematics and Applied Physics,
al. Powstańców Warszawy 12, 35-959 Rzeszów, Poland
Email address: aszynal@prz.edu.pl
Iwona Włoch
Rzeszow University of Technology,
The Faculty of Mathematics and Applied Physics, al. Powstańców Warszawy 12, 35-959 Rzeszów, Poland
Email address: iwloch@prz.edu.pl

