SOME REMARKS ABOUT K-CONTINUITY OF K-SUPERQUADRATIC MULTIFUNCTIONS

KATARZYNA TROCZKA-PAWELEC

Abstract

Let $X=(X,+)$ be an arbitrary topological group. The set-valued function $F: X \rightarrow$ $n(Y)$ is called K -superquadratic iff

$$
F(x+y)+F(x-y) \subset 2 F(x)+2 F(y)+K
$$

for all $x, y \in X$, where Y denotes a topological vector space and K is a cone.
In this paper the K-continuity problem of multifunctions of this kind will be considered with respect to K-boundedness. The case where $Y=\mathbb{R}^{N}$ will be considered separately.

1. Introduction

Let $X=(X,+)$ be an arbitrary topological group. A real-valued function f is called superquadratic, if it fulfils inequality

$$
\begin{equation*}
2 f(x)+2 f(y) \leq f(x+y)+f(x-y), \quad x, y \in X \tag{1}
\end{equation*}
$$

If the sign " $\leq "$ in (1) is replaced by " \geq ", then f is called subquadratic. The continuity problem of functions of this kind was considered in [2]. This problem was also considered in the class of set-valued functions. By the setvalued functions we understand functions of the type $F: X \rightarrow 2^{Y}$, where X and Y are given sets. Throughout this paper set-valued functions will be always denoted by capital letters. A set-valued function F is called superquadratic if it satisfies inclusion

$$
\begin{equation*}
2 F(x)+2 F(y) \subset F(x+y)+F(x-y), \quad x, y \in X, \tag{2}
\end{equation*}
$$

and subquadratic set-valued function, if it satisfies inclusion defined in this form

$$
\begin{equation*}
F(x+y)+F(x-y) \subset 2 F(x)+2 F(y), \quad x, y \in X . \tag{3}
\end{equation*}
$$

- Katarzyna Troczka-Pawelec - e-mail: k.troczka@ujd.edu.pl

Jan Długosz University in Czȩstochowa.

For single-valued real functions properties of subquadratic and superquadratic functions are quite analogous and, in view of the fact that if a function f is subquadratic, then the function $-f$ is superquadratic and conversely, it is not necessary to investigate functions of these two kinds individually. In the case of set-valued functions the situation is different. Even if properties of subquadratic and superquadratic set-valued functions are similar, we have to proved them separately. If the sign " $\subset "$ in the inclusions above is replaced by " $="$, then F is called quadratic set-valued function. The class of quadratic set-valued functions is an important subclass of the class of subquadratic and superquadratic set-valued functions. Quadratic setvalued functions have already extensive bibliography (see W. Smajdor [5], D. Henney [1] and K. Nikodem [4]). The continuity problem of subquadratic and superquadratic set-valued functions was considered in [6] and [7].

Adding a cone K in the space of values of a set-valued function F lets us consider a K-superquadratic set-valued function, that is solution of the inclusion

$$
\begin{equation*}
F(x+y)+F(x-y) \subset 2 F(x)+2 F(y)+K, \quad x, y \in X \tag{4}
\end{equation*}
$$

The concept of K-superquadraticity is related to real-valued superquadratic functions. Note, in the case when F is a single-valued real function and $K=[0, \infty)$, we obtain the standard definition of superquadratic functionals (1). Similarly, if a set-valued function F satisfies the following inclusion

$$
\begin{equation*}
2 F(x)+2 F(y) \subset F(x+y)+F(x-y)+K, \quad x, y \in X \tag{5}
\end{equation*}
$$

then it is called K-subquadratic. The K-continuity problem of multifunction of this kind was considered in [9]. In this paper we will consider the K continuity problem for K-superquadratic set-valued functions. Likewise as in functional analysis we can look for connections between K-boundedness and K-semicontinuity of set-valued functions of this kind.

Assuming $K=\{0\}$ in (4) and (5) we obtain the inclusions (2) and (3).
Let us start with the notations used in this paper. Let Y be a topological vector space. We consider the family $n(Y)$ of all non-empty subsets of as a topological space with the Hausdorff topology. In this topology the set

$$
N_{W}(A):=\{B \in n(Y): A \subset B+W, B \subset A+W\}
$$

where W runs the base of neighbourhoods of zero in Y, form a base of neighbourhoods of a set $A \in n(Y)$. By $c c(Y)$ we denote the family of all compact and convex members of $n(Y)$. The term set-valued function will be abbreviated to the form s.v.f.

Now we present here some definitions for the sake of completeness. Recall that a set $K \subset Y$ is called a cone iff $K+K \subset K$ and $s K \subset K$ for all $s \in(0, \infty)$.

Definition 1. (cf. [3]) A cone K in a topological vector space Y is said to be a normal cone iff there exists a base \mathfrak{W} of zero in Y such that

$$
W=(W+K) \cap(W-K)
$$

for all $W \in \mathfrak{W}$.
Definition 2. (cf. [3]) An s.v.f. $F: X \rightarrow n(Y)$ is said to be K-upper semicontinuous (abbreviated K-u.s.c.) at $x_{0} \in X$ iff for every neighbourhood V of zero in Y there exists a neighbourhood U of zero in X such that

$$
F(x) \subset F\left(x_{0}\right)+V+K
$$

for every $x \in x_{0}+U$.
Definition 3. (cf. [3]) An s.v.f. $F: X \rightarrow n(Y)$ is said to be K-lower semicontinuous (abbreviated $K-l . s . c$.) at $x_{0} \in X$ iff for every neighbourhood V of zero in Y there exists a neighbourhood U of zero in X such that

$$
F\left(x_{0}\right) \subset F(x)+V+K
$$

for every $x \in x_{0}+U$.
Definition 4. (cf. [3]) An s.v.f. $F: X \rightarrow n(Y)$ is said to be K-continuous at $x_{0} \in X$ iff it is both $K-u . s . c$. and $K-l . s . c$. at x_{0}. It is said to be K-continuous iff it is K-continuous at each point of X.

Note that in the case where $K=\{0\}$ the K-continuity of F means its continuity with respect to the Hausdorff topology on $n(Y)$.

In the proof of the main theorems we will use some known lemmas (see Lemma 1.1, Lemma 1.3, Lemma 1.6 and Lemma 1.9 in [3]). The first lemma says that for a convex subset A of an arbitrary real vector space Y the equality $(s+t) A=s A+t A$ holds for every $s, t \geq 0$ or ($\mathrm{s}, \mathrm{t}<0$). The second lemma says that in a real vector space Y for two convex subsets A, B the set $A+B$ is also convex. The next lemma says that if $A \subset Y$ is a closed set and $B \subset Y$ is a compact set, where Y denotes a real topological vector space, then the set $A+B$ is closed. For any sets $A, B \subset Y$, where Y denotes the same space as above, the inclusion $\bar{A}+\bar{B} \subset \overline{A+B}$ holds and equality holds if and only if the set $\bar{A}+\bar{B}$ is closed.

Let us adopt the following three definitions which are natural extension of the concept of the boundedness for real-valued functions.

Definition 5. An s.v. f. $F: X \rightarrow n(Y)$ is said to be K-lower bounded on a set $A \subset X$ iff there exists a bounded set $B \subset Y$ such that $F(x) \subset B+K$ for all $x \in A$. An s.v. f. $F: X \rightarrow n(Y)$ is said to be K-lower bounded at a point $x \in X$ iff there exists a neighbourhood U_{x} of zero in X such that F is K-lower bounded on a set $x+U_{x}$

Definition 6. An s.v. f. $F: X \rightarrow n(Y)$ is said to be K-upper bounded on a set $A \subset X$ iff there exists a bounded set $B \subset Y$ such that $F(x) \subset B-K$ for all $x \in A$. An s.v. f. $F: X \rightarrow n(Y)$ is said to be K-upper bounded at a point $x \in X$ iff there exists a neighbourhood U_{x} of zero in X such that F is K-upper bounded on a set $x+U_{x}$

Definition 7. An s.v. function $F: X \rightarrow n(Y)$ is said to be locally K-lower (upper) bounded in X if for every $x \in X$ there exists a neighbourhood U_{x} of zero in X such that F is K-lower (upper) bounded on a set $x+U_{x}$. It is said to be locally K-bounded in X if it is both locally K-lower and locally K-upper bounded in X.

Definition 8. We say that 2-divisible topological group X has the property $\left(\frac{1}{2}\right)$ iff for every neighbourhood V of zero there exists a neighbourhood W of zero such that $\frac{1}{2} W \subset W \subset V$.

For the K-superquadratic set-valued functions the following two theorems hold.

Theorem 1. (cf. [8]) Let X be a 2-divisible topological group with property $\left(\frac{1}{2}\right), Y$ locally convex topological real vector space and $K \subset Y$ a closed normal cone. If a K-superquadratic s.v.f. $F: X \rightarrow c c(Y)$ is K-u.s.c. at zero, $F(0)=\{0\}$ and locally K - bounded in X, then it is K-u.s.c. in X.

Theorem 2. (cf. [10]) Let X be a 2-divisible topological group, Y locally convex topological real vector space and $K \subset Y$ a closed normal cone. If a K-superquadratic s.v.f. $F: X \rightarrow c c(Y)$ is K-u.s.c. at zero, $F(0)=\{0\}$ and locally K - bounded in X then it is K-l.s.c. in X.

Let us note, that Theorem 1 and Theorem 2, by Definition 4, yield directly the following main theorem for K-superquadratic multifunctions.

Theorem 3. Let X be a 2-divisible topological group with property $\left(\frac{1}{2}\right)$, Y locally convex topological real vector space and $K \subset Y$ a closed normal cone. If a K-superquadratic s.v.f. $F: X \rightarrow c c(Y)$ is K-u.s.c. at zero, $F(0)=\{0\}$ and locally K-bounded in X, then it is K-continuous in X.

Let us introduce the following definitions.
Definition 9. An s.v. f. $F: X \rightarrow n(Y)$ is said to be weakly K-lower bounded on a set $A \subset X$ iff there exists a bounded set $B \subset Y$ such that $F(x) \bigcap(B+K) \neq \emptyset$ for all $x \in A$.

Definition 10. An s.v. f. $F: X \rightarrow n(Y)$ is said to be weakly K-upper bounded on a set $A \subset X$ iff there exists a bounded set $B \subset Y$ such that $F(x) \bigcap(B-K) \neq \emptyset$ for all $x \in A$.

Definition 11. An s.v. f. $F: X \rightarrow n(Y)$ is said to be locally weakly K-upper bounded in X iff for every $x \in X$ there exists a neighbourhood U_{x} of zero in X such that F is K-upper bounded on a set $x+U_{x}$.

Definition 12. An s.v. f. $F: X \rightarrow n(Y)$ is said to be locally weakly K-lower bounded in X iff for every $x \in X$ there exists a neighbourhood U_{x} of zero in X such that F is K-lower bounded on a set $x+U_{x}$.

Definition 13. An s.v. f. $F: X \rightarrow n(Y)$ is said to be locally weakly $K-$ bounded in X iff for every $x \in X$ there exists a neighbourhood U_{x} of zero in X such that F is weakly K-lower and weakly K-upper bounded on a set $x+U_{x}$.

Clearly, if F is K-upper (K-lower) bounded on a set A, then it is weakly K-upper (K-lower) bounded on a set A. In the case of singlevalued functions these definitions coincide.

For the K-superquadratic set-valued functions the following lemma holds.
Lemma 1. Let X be a 2-divisible topological group satisfying condition $\left(\frac{1}{2}\right), Y$ topological vector space and $K \subset Y$ a cone. Let $F: X \rightarrow B(Y)$ be a K-superquadratic s.v.f., such that $F(0)=\{0\}$ and $G: X \rightarrow n(Y)$ be an s.v.f. with

$$
\begin{equation*}
G(x) \subset F(x)+K \tag{6}
\end{equation*}
$$

for all $x \in X$.
If F is K-lower bounded at zero and G is locally weakly K-upper bounded in X, then F is locally K-lower bounded in X.

Proof. Let $x \in X$. There exist a bounded set $B_{1} \subset Y$ and a symmetric neighbourhood U_{1} of zero in X such that

$$
G(x-t) \cap\left(B_{1}-K\right) \neq \emptyset, \quad t \in U_{1}
$$

which implies that that for all $t \in U_{1}$ there exists $a \in G(x-t)$ and $a \in$ $\left(B_{1}-K\right)$. Consequently, we get

$$
\begin{equation*}
0=a-a \in G(x-t)-B_{1}+K \tag{7}
\end{equation*}
$$

for all $t \in U_{1}$. Since F is K-lower bounded at zero, there exist a symmetric neighbourhood U_{2} of zero in X and a bounded set $B_{2} \subset Y$ such that

$$
\begin{equation*}
F(t) \subset B_{2}+K, \quad t \in U_{2} \tag{8}
\end{equation*}
$$

Let \widetilde{U} be a symmetric neighbourhood of zero in X with $\frac{1}{2} \widetilde{U} \subset \widetilde{U} \subset U_{1} \cap U_{2}$. Let $t \in \frac{1}{2} \widetilde{U}$. Using (6), (7) i (8), we obtain
$F(x+t)+0 \subset F(x+t)+G(x-t)-B_{1}+K \subset F(x+t)+F(x-t)-B_{1}+K \subset$

$$
\subset 2 F(x)+2 F(t)-B_{1}+K \subset 2 F(x)+2 B_{2}-B_{1}+K
$$

Define $\widetilde{B}:=2 F(x)+2 B_{2}-B_{1}$. Since $F(x)$ is a bounded set, then the set \widetilde{B} is also bounded as the sum of bounded sets. Therefore

$$
F(x+t) \subset \widetilde{B}+K, \quad t \in \frac{1}{2} \widetilde{U},
$$

which means that F is locally K-lower bounded in X.
In the case of K-superquadratic multifunctions we require Y space to be locally bounded topological vector space. Then the following theorem holds.

Theorem 4. Let X be a 2-divisible topological group with property $\left(\frac{1}{2}\right), Y$ locally convex topological vector space and $K \subset Y$ a closed normal cone. If a K-superquadratic s.v.f. $F: X \rightarrow c c(Y)$ is K-u.s.c. at zero, $F(0)=\{0\}$ and locally K - upper bounded in X, then it is K-continous in X.

Proof. Let W be a bounded neighbourhood of zero in Y. Since F is K-u.s.c. at zero and $F(0)=\{0\}$, then there exists a neighbourhood U of zero in X such that

$$
F(t) \subset V+K
$$

for all $t \in U$, which means that F is K-lower bounded at zero. The condition of locally K-upper boundedness in X implies F is locally K-weakly upper bounded in X. By Lemma $1(G=F) F$ is locally K-lower bounded in X. Consequently by Theorem $3 F$ is K-continuous at each point of X.

2. The case $n\left(\mathbb{R}^{N}\right)$

Now we consider the case where the space of values is $n\left(\mathbb{R}^{N}\right)$. In our next proof, we will use known following lemma.
Lemma 2. (cf. [9]) Let Y be a topological vector space and K be a cone in Y. Let A, B, C be non-empty subsets of Y such that $A+C \subset B+C+K$. If B is convex and C is bounded then $A \subset \overline{B+K}$.

For the K-superquadratic set-valued functions the following lemma holds.
Lemma 3. Let X be a topological group and K a closed cone in \mathbb{R}^{N}. Let $F: X \rightarrow c c\left(\mathbb{R}^{N}\right)$ be a K-superquadratic s.v.f. with $F(0)=\{0\}$. If F is K-l.s.c. at some point $x_{0} \in X$, then it is K-l.s.c. at zero.

Proof. Let W be a neighbourhood of zero in Y.There exists a convex neighbourhood V of zero in Y such that the set \bar{V} is compact with $3 \bar{V} \subset W$. Since F is K-l.s.c. at $x_{0} \in X$ then there exists a symmetric neighbourhood U of zero in X such that

$$
\begin{equation*}
F\left(x_{0}\right) \subset F\left(x_{0}+t\right)+V+K \tag{9}
\end{equation*}
$$

$$
\begin{equation*}
F\left(x_{0}\right) \subset F\left(x_{0}-t\right)+V+K \tag{10}
\end{equation*}
$$

for all $t \in U$.
Let $t \in U$. By convexity of the set $F\left(x_{0}\right)$ and by (9) i (10), we obtain

$$
2 F\left(x_{0}\right) \subset F\left(x_{0}+t\right)+F\left(x_{0}-t\right)+2 V+K \subset 2 F\left(x_{0}\right)+2 F(t)+2 V+K .
$$

Then

$$
\begin{equation*}
F\left(x_{0}\right)+\{0\} \subset F\left(x_{o}\right)+F(t)+\bar{V}+K \quad t \in U . \tag{11}
\end{equation*}
$$

Since $F\left(x_{0}\right)$ is a bounded set and $F(t)+\bar{V}$ is a convex set, then by Lemma 2 , we have

$$
\{0\} \subset \overline{\bar{V}+F(t)+K}
$$

for all $t \in U$. Note that the set $\bar{V}+F(t)+K$ is closed as a sum of compact and closed set. Consequently, by condition $F(0)=\{0\}$, we obtain

$$
F(0) \subset \bar{V}+F(t)+K \subset F(t)+W+K
$$

for all $t \in U$, which means F is K-l.s.c. at zero.
This article is the introduction to the discussion on the K-continuity problem for K-superquadratic set-valued functions. In the theory of Ksubquadratic and K-superquadratic set-valued functions an important role is played by theorems giving possibly weak conditions under which such multifunctions are K-continuous.

References

[1] Henney D., Quadratic set-valued functions. Ark. Mat. 4, 1962
[2] Kominek Z.,Troczka-Pawelec K., Continuity of real valued subquadratic functions. Commentationes Mathematicae, Vol. 51, No. 1 (2011), 71-75
[3] Nikodem K., K-convex and K-concave set-valued functions. Publ. Math. Debrecen 30, 1983
[4] Nikodem K., On quadratic set-valued functions. Zeszyty Naukowe Politechniki Łódzkiej, nr 559, Łódź 1989
[5] Smajdor W., Subadditive and subquadratic set-valued functions. Prace Naukowe Uniwersytetu Slaskiego w Katowicach, nr 889, Katowice 1987
[6] Troczka-Pawelec K. Continuity of superquadrqtic set-valued functions. Scientific Issues Jan Długosz University in Czȩstochowa, Mathematics XVII, 2012
[7] Troczka-Pawelec K. Continuity of subquadrqtic set-valued functions. Demonstratio Mathematica, vol. XLV, no 4, 2012, 939-946
[8] Troczka-Pawelec K. K-continuity problem of K-superquadratic set-valued functions.Scientific Issues Jan Długosz University in Czȩstochowa, Mathematics XIX, 2014
[9] Troczka-Pawelec K. K-continuity of K-subquadratic set-valued functions.Scientific Issues Jan Długosz University in Czȩstochowa, Mathematics XIX, 2014
[10] Troczka-Pawelec K. On K-superquadratic set-valued functions.Journal of Applied Mathematics and Computational Mechanics, Volume 14, Issue 1, 2015

Received: November 2018

[^0]
[^0]: Katarzyna Troczka-Pawelec
 Jan DŁugosz University in Czȩstochowa, Institute of Mathematics and Computer Science, al. Armii Krajowej $13 / 15,42-200$ Czȩstochowa, Poland
 Email address: k.troczka@ujd.edu.pl

