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AUTOMATIC SEARCH OF RATIONAL
SELF-EQUIVALENCES
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Abstract

Two Witt rings that are not strongly isomorphic (i.e., two Witt rings over two fields
that are not Witt equivalent) have different groups of strong automorphisms. Therefore,
the description of a group of strong automorphisms is different for almost every Witt
ring, which requires the use various tools in proofs. It is natural idea to use computers
to generate strong automorphisms of the Witt rings, which is especially effective in the
case of the finitely generated Witt rings, where a complete list of strong automorphisms
can be created. In this paper we present the algorithm that was used to generate strong
automorphisms from the infinite group of strong automorphisms of the Witt ring of ra-
tional numbers W (Q).
Keywords: algebra, rational self-equivalences, Witt ring, strong automorphism, algo-
rithm, automatic search

1. Introduction

One of fundamental notions in algebraic number theory of quadratic
forms is introduced in [11] ring called nowadays Witt ring. This ring car-
ries information about the behaviour of all quadratic forms over fixed field,
hence the structure of Witt ring depends strongly on the field. Two fields are
said to be Witt equivalent if their Witt rings are isomorphic and considerd
isomorpism preserves dimension of quadratic forms (strong isomorphism).
We consider strong automorphisms of Witt rings and from above inndicate
that two non-isomorphic Witt rings have different groups of strong auto-
morphisms. Therefore the investigation of strong automorphisms of Witt
rings is a difficult task because of variety of structure of Witt rings. It is a
little easier to determine the groups of strong automorphisms of the Witt
rings, which are generated by the finite groups of squares classes. In simple
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cases one can list all strong automorphisms by hand. In rings with more
complex structures, the natural idea is to use a computer to generate all
strong automorphisms. Previous attempts have shown the effectiveness of
algorithmic methods in linear algebra (see for example [3]). In literature
there are descriptions of groups of strong automorphisms for many wide
classes of Witt rings: [4], [5], [7], [8]. Some of the results were verified using
computer programs [9].

The search for strong automorphisms is more difficult in the case of Witt
rings, which are not finitely generated. The first step in this field may be the
result from [1], where it has been shown that the group of strong automor-
phisms of global fields is uncountable. In this article, we deal with strong
automorphisms of the Witt ring W (Q) of the field of rational numbers as a
special case of Witt ring of a global field. We present the algorithms used
in the computer program that was used in [6] to generate strong automor-
phisms of the Witt ring W (Q).

2. Algebraic background

In [2] authors showed that two global fields are Witt equivalent (and
their Witt ring are strong isomorphic) if and only if they are Hilbert-symbol
equivalennt. A Hilbert-symbol equivalence of two global fields K and L is
a pair (T, t), where T : Ω(K) → Ω(L) is a bijection between the sets of
primes of these fields and t : K∗/K∗2 → L∗/L∗2 is an isomorphism of their
square class groups which preserves Hilbert symbols with respect to the
corresponding primes, i.e.

(a, b)p = (t(a), t(b))T (p) for all a, b ∈ K∗/K∗2, p ∈ Ω(K).

The Hilbert symbol equivalence, where K = L is called Hilbert-symbol self-
equivalence of K.

We conscider the case K = L = Q. Using results from [2] we con-
clude that for every pair (T, t), which is a Hilbert-symbol self equivalence
of the field Q (called rational self-equivalence), the map 〈a1, . . . , an〉 →
〈t(a1), . . . , t(an)〉 induces a strong automoorphism of Witt ring W (Q) of
the field of rational numbers. Conversely, every strong automorphism of
W (Q) determines uniquely a rational self-equivalence (T, t).

In this case we can deal with prime numbers instead of prime ideals and
Hilbert symbols depends only on Legendre symbols ([6], Lemma 2.1). The
construction of rational self-equivalences presented in [6] bases on the notion
of small equivalence introduced in [2]. To make the reading of the next part
easier, we will cite some notions and several facts proved in [6].

Let P denotes the set of prime numbers together with the symbol∞. For
every prime number there is defined a completion Qp of the field Q with



AUTOMATIC SEARCH OF RATIONAL SELF-EQUIVALENCES 69

the help of valuation vp called p-adic number field. Moreover we agree, that
Q∞ = R is a completion of the field Q at the usual absolute value.

A finite, nonempty set S ⊂ P containing 2 and ∞ is called sufficiently
large. Let S be sufficiently large set of prime numbers S = {p1 . . . , pn} and
assume that p1 = ∞, p2 = 2. The set of S-singular elements is defined as
follows:

ES = {x ∈ Q∗ : vp(x) ≡ 0 (mod 2) for all p /∈ S}.
Notice that ES is a subgroup of the multiplicative group of the field Q
containing all squares of rational numbers. Therefore the quotient group
ES/Q∗2 is a subgroup of the group Q∗/Q∗2. By the definition of the set ES

every element x ∈ Q has the factorization

x = (−1)e122k2+e2p2k3+e3
3 · · · p2kn3+en

n q2l11 · · · q
2lm
m ,

where q1, q2, . . . , qm /∈ S are prime numbers, ki, li ∈ Z and ei ∈ {0, 1}. Then
xQ∗2 = (−1)e12e2pe33 · · · p

en
n Q∗2.

It follows that the elements of the group ES/Q∗2 are represented by the
integers of the form (−1)e12e2pe33 · · · penn in the unique way.

For every p ∈ P the natural imbedding of the field Q in the field Qp in-
duces the group homomorphism ip : Q∗/Q∗2 → Q∗p/Q∗2p , which is surjective.
For the finite set S = {p1, . . . , pn} ⊂ P we get the dual homomorphism
diagS : Q∗/Q∗2 →

∏
p∈S Q∗p/Q∗2p defined by

diagS(a) = [ip1(a), . . . , ipn(a)] = [aQ∗2p1 , . . . , aQ
∗2
pn ].

Definition 1. Let S be sufficiently large set of prime numbers defined as
above. A small S-equivalence is a pair R = ((tp)p∈S , T ), where
1) T : S → T (S) is a bijection,
2) there exists the isomorphism of the group of square classes tS : ES/Q∗2 →
ET (S)/Q∗2,
3) (tp)p∈S is a family of local isomorphisms tp : Q∗p/Q∗2p → Q∗T (p)/Q

∗2
T (p)

preserving Hilbert symbols, i.e.

(a, b)p = (tp(a), tp(b))T (p) for all a, b ∈ Q∗p/Q∗2p ,

4) the following diagram commutes

ES/Q∗2
iS−→

∏
p∈S

Q∗p/Q∗2p

↓ tS ↓∏
tp

ET (S)/Q∗2
iT (S)−→

∏
p∈S

Q∗T (p)/Q
∗2
T (p)
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It was shown in [6] that any small Sk-equivalence RSk
= ((tp)p∈Sk

, T ),
where Sk = {∞, 2, p3, p4, . . . , pk} is sufficiently large set of prime numbers
can be extended to some small S′k+1-equivalence, where S

′
k+1 : = S′k∪{qk+1}

and there is infinitely many prime numbers, which can be choosen as qk+1

provided they fulfill the following two (sufficent) condoitions:
1) pk+1 ≡ qk+1 (mod 8),
2)
(

pi
pk+1

)
=
(

qi
qk+1

)
for all 3 ≤ i ≤ k

and the last Hilbert symbols depend only on Legendre symbols. Above con-
ditions ensure comutativity of suitable diagrams (cf. [6]). In conclusion any
small equivalence can be extended to some rational self-equivalence, which
induces strong automorphism of Witt ring W (Q) of the field of rational
numbers.

3. Algorithm for building of sufficiently large sets

The computer program that performs the search of rational self-equiva-
len-ces consists of several stages and must be stopped at some point (because
it is not possible to generate prime numbers infinitely).

We start from the sufficiently large sets S′ = SP ′ = {∞, 2}. Let us first
remark that the definition of small equivalence imposes some restrictions
on the mapping of T . Namely T (∞) = ∞ and T (2) = 2. Then we take
the smallest prime number p3 /∈ S′, i.e. p3 = 3 and now we get expanded
set S′ = {∞, 2, 3}. Then we search for prime number q3 which is outside of
SP ′ and fulfills p3 ≡ q3 (mod 8). It turns out to be prime number 11. Let
us denote this step of construction in the following way:
1) p3 = 3→ 11 = q3.
(Notice, that we have to assume that p3 6= q3. If we take p3 = q3 and
continue in this way, we get identity).

Next we take the smallest prime number q4, which was not used in the
sequence SP ′ = {qi}∞i=1. It is number 3. We search for q4 = 3 the smallest
prime number p4, which has required properties:
i) q4 ≡ p4 (mod 8) and
ii)
(
q3
q4

)
=
(
p3
p4

)
.

It is the number 19. Hence we denote the second step of the construction:
2) p4 = 19← 3 = q4.
Further steps of construction lead to the following sequences of prime num-
bers
S : 3, 19, 5, 13, 7, 1103, 11, 6329, 17, 347, 23, 77551, 29, 138581, 31,
SP : 11, 3, 13, 5, 223, 7, 283, 17, 2689, 19, 31159, 23, 109229, 29, 1010903,
what gives the following sufficiently large sets:
S′ = {∞, 2, 3, 19, 5, 13, 7, 1103, 11, 6329, 17, 347, 23, 77551, 29, 138581, 31},
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SP ′ = {∞, 2, 3, 11, 3, 13, 5, 223, 7, 283, 17, 2689, 19, 31159, 23, 109229, 29, 1010903}
and the map T :
T (∞) =∞,
T (2) = 2,
T (3) = 11,
T (19) = 3,
T (5) = 13,
T (13) = 5,
T (7) = 223,
T (1103) = 7,
T (11) = 283,
T (6329) = 17,
T (17) = 2689,
T (347) = 19,
T (23) = 31159,
T (77551) = 23,
T (29) = 109229,
T (138581) = 29,
T (31) = 1010903
which easily shows how the next small equivalences are constructed. The
limitation to 15 steps is due to the rapid increase of searched prime numbers.
This process, continued into infinity, gives us a rational self-equivalence.

Of course the choice of another q3 gives another sequences of prime num-
bers pk and qk and the different sequences of small equivalences (for enother
examples of rational self-equivalences searched in this way see [6]).

Now we show how we construct two sequences S and SP of prime num-
bers using Algorithm 1.

Algorithm built_ sequences() inputs the set P of prime numbers gen-
erated by sieve of Eratosthenes. It uses the function FindElement() as
defined in Algorithm 2. First we add 3 to the set S as a smallest prime
number (line 2). The variable p is initilized as 3 (line 4). (The variable p
and q are used to build the sets S and SP , respectively.) q is initialized as 0
(line 3). As long as the variable i is less than 15 the algorithm performs the
following: for odd runs it searches a smallest prime number q by using func-
tion FindElement() (line 7) and adds it to the set SP ; next finds the first
free number prime by using function FirstFree() (line 9); gets it to q and
adds it to the set SP ; for even runs the algorithm performs steps described
above for the variable p and the set S. Algorithm built_ sequences()
terminates when i is greater then 15 and returns two sets S and SP .

The function FindElement() inputs the set P of prime numbers, the
sets S and SP , the element el and the variable i. It uses the function
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Algorithm 1: function built_ sequences(P)
Variables:

S (sequence of prime numbers, initialized as ∅)
SP (sequence of prime numbers, initialized as ∅
i, q, p (integer)

Returned values:
SP, S /* two sequences of prime numbers*/

1: i← 1
2: S ← S ∪ {3}
3: q ← 0
4: p← 3
5: while i 6 15 do
6: if i mod 2 == 1 then
7: q ← FindElement(P, S, SP, p, i)
8: SP ← SP ∪ {q}
9: q ← FirstFree(P, SP )
10: SP ← SP ∪ {q}
11: else
12: p← FindElement(P, S, SP, q, i)
13: S ← S ∪ {p}
14: p← FirstFree(P, S)
15: S ← S ∪ {p}
16: end if
17: i← i + 1
18: end while
19: return S,SP

Legrende() defined as one of standard algorithm calculated of Legendre
symbol [10]. Algorithm searches for the prime number j (line 3) such that
j 6= el AND (j−el) mod 8 == 0 (line 4). Algorithm terminates and returns
j when for j and el and sets S and SP all Legrende symbols Left and Right
are equal (lines 5-17), respectively.

The algorithms were implemented in C++. The experiments were carried
out on an notebook Intel Core i5-5200U CPU 2.20 GHz, 8 GB RAM with
Linux operation system.

4. Final remarks

In this case the obtained results have shown the usefulness of the com-
puter. The value of the greatest searched prime number in the example de-
scribed in previous section shows that it would be extremely time-consuming
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Algorithm 2: function FindElement(P,S,SP,el,i)
Variables:

result (boolean variable, initialized as False)
j (integer)

Returned values:
j /* prime number*/

1: result← False
2: while NOT result do
3: if i mod 2 == 1 then
4: j ← NextPrime(P, SP )
5: else
6: j ← NextPrime(P, S)
7: end if
8: if j 6= el AND (j − el) mod 8 == 0 then
9: result← True
10: k ← 1
11: while k < i AND result do
12: if i mod 2 == 1 then
13: Left← Legendre(S[k], el)
14: Right← Legendre(SP [k], j)
15: else
16: Left← Legendre(S[k], j)
17: Right← Legendre(SP [k], el)
18: end if
19: result← Left == Right
20: k ← k + 1
21: end while
22: end if
23: end while
24: return j

or impossible at all to do the calculations without a computer. This allows
usu to think that the computer would be useful in solving similar problems
in the future.
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