AUTOMATIC SEARCH OF RATIONAL SELF-EQUIVALENCES

LIDIA STĘPIEŃ AND MARCIN RYSZARD STĘPIEŃ

Abstract

Two Witt rings that are not strongly isomorphic (i.e., two Witt rings over two fields that are not Witt equivalent) have different groups of strong automorphisms. Therefore, the description of a group of strong automorphisms is different for almost every Witt ring, which requires the use of various tools in proofs. It is natural to use computers to generate strong automorphisms of the Witt rings, which is especially effective in the case of the finitely generated Witt rings, where a complete list of strong automorphisms can be created. In this paper we present the algorithm that was used to generate strong automorphisms from the infinite group of strong automorphisms of the Witt ring of rational numbers \(W(\mathbb{Q}) \).

Keywords: algebra, rational self-equivalences, Witt ring, strong automorphism, algorithm, automatic search

1. Introduction

One of fundamental notions in algebraic number theory of quadratic forms is introduced in [11] ring called nowadays Witt ring. This ring carries information about the behaviour of all quadratic forms over fixed field, hence the structure of Witt ring depends strongly on the field. Two fields are said to be Witt equivalent if their Witt rings are isomorphic and considered isomorphism preserves dimension of quadratic forms (strong isomorphism). We consider strong automorphisms of Witt rings and from above indicate that two non-isomorphic Witt rings have different groups of strong automorphisms. Therefore the investigation of strong automorphisms of Witt rings is a difficult task because of variety of structure of Witt rings. It is a little easier to determine the groups of strong automorphisms of the Witt rings, which are generated by the finite groups of squares classes. In simple
cases one can list all strong automorphisms by hand. In rings with more complex structures, the natural idea is to use a computer to generate all strong automorphisms. Previous attempts have shown the effectiveness of algorithmic methods in linear algebra (see for example [3]). In literature there are descriptions of groups of strong automorphisms for many wide classes of Witt rings: [4], [5], [7], [8]. Some of the results were verified using computer programs [9].

The search for strong automorphisms is more difficult in the case of Witt rings, which are not finitely generated. The first step in this field may be the result from [1], where it has been shown that the group of strong automorphisms of global fields is uncountable. In this article, we deal with strong automorphisms of the Witt ring \(W(\mathbb{Q}) \) of the field of rational numbers as a special case of Witt ring of a global field. We present the algorithms used in the computer program that was used in [6] to generate strong automorphisms of the Witt ring \(W(\mathbb{Q}) \).

2. Algebraic background

In [2] authors showed that two global fields are Witt equivalent (and their Witt ring are strong isomorphic) if and only if they are Hilbert-symbol equivalent. A Hilbert-symbol equivalence of two global fields \(K \) and \(L \) is a pair \((T, t)\), where \(T: \Omega(K) \to \Omega(L) \) is a bijection between the sets of primes of these fields and \(t: K^*/K^*2 \to L^*/L^*2 \) is an isomorphism of their square class groups which preserves Hilbert symbols with respect to the corresponding primes, i.e.

\[
(a, b)_p = (t(a), t(b))_{T(p)} \quad \text{for all} \quad a, b \in K^*/K^*2, \ p \in \Omega(K).
\]

The Hilbert symbol equivalence, where \(K = L \) is called Hilbert-symbol self-equivalence of \(K \).

We consider the case \(K = L = \mathbb{Q} \). Using results from [2] we conclude that for every pair \((T, t)\), which is a Hilbert-symbol self-equivalence of the field \(\mathbb{Q} \) (called rational self-equivalence), the map \(\langle a_1, \ldots, a_n \rangle \to \langle t(a_1), \ldots, t(a_n) \rangle \) induces a strong automorphism of Witt ring \(W(\mathbb{Q}) \) of the field of rational numbers. Conversely, every strong automorphism of \(W(\mathbb{Q}) \) determines uniquely a rational self-equivalence \((T, t)\).

In this case we can deal with prime numbers instead of prime ideals and Hilbert symbols depends only on Legendre symbols ([6], Lemma 2.1). The construction of rational self-equivalences presented in [6] bases on the notion of small equivalence introduced in [2]. To make the reading of the next part easier, we will cite some notions and several facts proved in [6].

Let \(\mathbb{P} \) denotes the set of prime numbers together with the symbol \(\infty \). For every prime number there is defined a completion \(\mathbb{Q}_p \) of the field \(\mathbb{Q} \) with
the help of valuation v_p called p-adic number field. Moreover we agree, that $\mathbb{Q}_\infty = \mathbb{R}$ is a completion of the field \mathbb{Q} at the usual absolute value.

A finite, nonempty set $S \subset \mathbb{P}$ containing 2 and ∞ is called sufficiently large. Let S be sufficiently large set of prime numbers $S = \{p_1, \ldots, p_n\}$ and assume that $p_1 = \infty$, $p_2 = 2$. The set of S-singular elements is defined as follows:

$$E_S = \{x \in \mathbb{Q}^* : v_p(x) \equiv 0 \pmod{2} \text{ for all } p \notin S\}.$$

Notice that E_S is a subgroup of the multiplicative group of the field \mathbb{Q} containing all squares of rational numbers. Therefore the quotient group E_S/\mathbb{Q}^{s^2} is a subgroup of the group $\mathbb{Q}^*/\mathbb{Q}^{s^2}$. By the definition of the set E_S every element $x \in \mathbb{Q}$ has the factorization

$$x = (-1)^{e_1}2^{k_2+e_2}p_3^{2k_3+e_3} \cdots p_n^{2k_n+e_n}q_1^{2l_1} \cdots q_m^{2l_m},$$

where $q_1, q_2, \ldots, q_m \notin S$ are prime numbers, $k_i, l_i \in \mathbb{Z}$ and $e_i \in \{0, 1\}$. Then

$$x\mathbb{Q}^{s^2} = (-1)^{e_1}2^{e_2}p_3^{e_3} \cdots p_n^{e_n}\mathbb{Q}^{s^2}.$$

It follows that the elements of the group E_S/\mathbb{Q}^{s^2} are represented by the integers of the form $(-1)^{e_1}2^{e_2}p_3^{e_3} \cdots p_n^{e_n}$ in the unique way.

For every $p \in \mathbb{P}$ the natural imbedding of the field \mathbb{Q} in the field \mathbb{Q}_p induces the group homomorphism $i_p : \mathbb{Q}^*/\mathbb{Q}^{s^2} \rightarrow \mathbb{Q}_p^*/\mathbb{Q}_p^{s^2}$, which is surjective. For the finite set $S = \{p_1, \ldots, p_n\} \subset \mathbb{P}$ we get the dual homomorphism $\text{diag}_S : \mathbb{Q}^*/\mathbb{Q}^{s^2} \rightarrow \prod_{p \in S} \mathbb{Q}_p^*/\mathbb{Q}_p^{s^2}$ defined by

$$\text{diag}_S(a) = [i_{p_1}(a), \ldots, i_{p_n}(a)] = [a\mathbb{Q}_{p_1}^{s^2}, \ldots, a\mathbb{Q}_{p_n}^{s^2}].$$

Definition 1. Let S be sufficiently large set of prime numbers defined as above. A small S-equivalence is a pair $\mathcal{R} = ((t_p)_{p \in S}, T)$, where

1) $T : S \rightarrow T(S)$ is a bijection,
2) there exists the isomorphism of the group of square classes $t_S : E_S/\mathbb{Q}^{s^2} \rightarrow E_{T(S)}/\mathbb{Q}^{s^2}$,
3) $(t_p)_{p \in S}$ is a family of local isomorphisms $t_p : \mathbb{Q}_p^*/\mathbb{Q}_p^{s^2} \rightarrow \mathbb{Q}_T(p)^*/\mathbb{Q}_T(p)^{s^2}$ preserving Hilbert symbols, i.e.

$$(a, b)_p = (t_p(a), t_p(b))_{T(p)} \text{ for all } a, b \in \mathbb{Q}_p^*/\mathbb{Q}_p^{s^2},$$

4) the following diagram commutes

$$\begin{array}{ccc}
E_S/\mathbb{Q}^{s^2} & \xrightarrow{i_S} & \prod_{p \in S} \mathbb{Q}_p^*/\mathbb{Q}_p^{s^2} \\
\downarrow t_S & & \downarrow \Pi t_p \\
E_{T(S)}/\mathbb{Q}^{s^2} & \xrightarrow{i_{T(S)}} & \prod_{p \in S} \mathbb{Q}_T(p)^*/\mathbb{Q}_T(p)^{s^2}
\end{array}$$
It was shown in [6] that any small S_k-equivalence $R_{S_k} = \left((t_p)_{p \in S_k}, T \right)$, where $S_k = \{ \infty, 2, p_3, p_4, \ldots, p_k \}$ is sufficiently large set of prime numbers can be extended to some small S'_{k+1}-equivalence, where $S'_{k+1} = S_k' \cup \{ q_{k+1} \}$ and there is infinitely many prime numbers, which can be choosen as q_{k+1} provided they fulfill the following two (sufficient) condoitions:

1) $p_{k+1} \equiv q_{k+1} \pmod{8}$,
2) $\left(\frac{p_i}{p_{k+1}} \right) = \left(\frac{q_i}{q_{k+1}} \right)$ for all $3 \leq i \leq k$

and the last Hilbert symbols depend only on Legendre symbols. Above conditions ensure comutativity of suitable diagrams (cf. [6]). In conclusion any small equivalence can be extended to some rational self-equivalence, which induces strong automorphism of Witt ring $W(\mathbb{Q})$ of the field of rational numbers.

3. Algorithm for building of sufficiently large sets

The computer program that performs the search of rational self-equivalences consists of several stages and must be stopped at some point (because it is not possible to generate prime numbers infinitely).

We start from the sufficiently large sets $S' = SP' = \{ \infty, 2 \}$. Let us first remark that the definition of small equivalence imposes some restrictions on the mapping of T. Namely $T(\infty) = \infty$ and $T(2) = 2$. Then we take the smallest prime number $p_3 \notin S'$, i.e. $p_3 = 3$ and now we get expanded set $S' = \{ \infty, 2, 3 \}$. Then we search for prime number q_3 which is outside of SP' and fulfills $p_3 \equiv q_3 \pmod{8}$. It turns out to be prime number 11. Let us denote this step of construction in the following way:

1) $p_3 = 3 \rightarrow 11 = q_3$.

(Notice, that we have to assume that $p_3 \neq q_3$. If we take $p_3 = q_3$ and continue in this way, we get identity).

Next we take the smallest prime number q_4, which was not used in the sequence $SP' = \{ q_i \}_{i=1}^{\infty}$. It is number 3. We search for $q_4 = 3$ the smallest prime number p_4, which has required properties:

i) $q_4 \equiv p_4 \pmod{8}$ and
ii) $\left(\frac{q_4}{q_3} \right) = \left(\frac{p_4}{p_3} \right)$.

It is the number 19. Hence we denote the second step of the construction:

2) $p_4 = 19 \leftarrow 3 = q_4$.

Further steps of construction lead to the following sequences of prime numbers:

$S : 3, 19, 5, 13, 7, 1103, 11, 6329, 17, 347, 23, 77551, 29, 138581, 31,$

$SP : 11, 3, 13, 5, 223, 7, 283, 17, 2689, 19, 31159, 23, 109229, 29, 1010903,$

what gives the following sufficiently large sets:

$S' = \{ \infty, 2, 3, 19, 5, 13, 7, 1103, 11, 6329, 17, 347, 23, 77551, 29, 138581, 31 \}$,
SP' = \{\infty, 2, 3, 11, 3, 13, 5, 223, 7, 283, 17, 2689, 19, 31159, 23, 109229, 29, 1010903\}
and the map T:

$T(\infty) = \infty,$
$T(2) = 2,$
$T(3) = 11,$
$T(19) = 3,$
$T(5) = 13,$
$T(13) = 5,$
$T(7) = 223,$
$T(1103) = 7,$
$T(11) = 283,$
$T(6329) = 17,$
$T(17) = 2689,$
$T(347) = 19,$
$T(23) = 31159,$
$T(77551) = 23,$
$T(29) = 109229,$
$T(138581) = 29,$
$T(31) = 1010903$

which easily shows how the next small equivalences are constructed. The limitation to 15 steps is due to the rapid increase of searched prime numbers. This process, continued into infinity, gives us a rational self-equivalence.

Of course the choice of another q_3 gives another sequences of prime numbers p_k and q_k and the different sequences of small equivalences (for another examples of rational self-equivalences searched in this way see [6]).

Now we show how we construct two sequences S and SP of prime numbers using Algorithm 1.

Algorithm **built_sequences**() inputs the set P of prime numbers generated by sieve of Eratosthenes. It uses the function $FindElement()$ as defined in Algorithm 2. First we add 3 to the set S as a smallest prime number (line 2). The variable p is initilized as 3 (line 4). (The variable p and q are used to build the sets S and SP, respectively.) q is initialized as 0 (line 3). As long as the variable i is less than 15 the algorithm performs the following: for odd runs it searches a smallest prime number q by using function $FindElement()$ (line 7) and adds it to the set SP; next finds the first free number prime by using function $FirstFree()$ (line 9); gets it to q and adds it to the set SP; for even runs the algorithm performs steps described above for the variable p and the set S. Algorithm **built_sequences**() terminates when i is greater then 15 and returns two sets S and SP.

The function $FindElement()$ inputs the set P of prime numbers, the sets S and SP, the element el and the variable i. It uses the function
Algorithm 1: function \textbf{built _sequences}(P)

Variables:
\begin{itemize}
\item S \hspace{1cm} (sequence of prime numbers, initialized as \emptyset)
\item SP \hspace{1cm} (sequence of prime numbers, initialized as \emptyset
\item i, q, p \hspace{1cm} (integer)
\end{itemize}

Returned values:
\begin{itemize}
\item SP, S \hspace{1cm} /* two sequences of prime numbers*/
\end{itemize}

\begin{enumerate}
\item $i \leftarrow 1$
\item $S \leftarrow S \cup \{3\}$
\item $q \leftarrow 0$
\item $p \leftarrow 3$
\item \textbf{while} $i \leq 15$ \textbf{do}
\item \hspace{1cm} \textbf{if} $i \mod 2 == 1$ \textbf{then}
\item \hspace{2cm} $q \leftarrow \text{FindElement}(P, S, SP, p, i)$
\item \hspace{2cm} $SP \leftarrow SP \cup \{q\}$
\item \hspace{2cm} $q \leftarrow \text{FirstFree}(P, SP)$
\item \hspace{2cm} $SP \leftarrow SP \cup \{q\}$
\item \hspace{1cm} \textbf{else}
\item \hspace{2cm} $p \leftarrow \text{FindElement}(P, S, SP, q, i)$
\item \hspace{2cm} $S \leftarrow S \cup \{p\}$
\item \hspace{2cm} $p \leftarrow \text{FirstFree}(P, S)$
\item \hspace{2cm} $S \leftarrow S \cup \{p\}$
\item \hspace{1cm} \textbf{end if}
\item \hspace{1cm} $i \leftarrow i + 1$
\item \hspace{1cm} \textbf{end while}
\item \hspace{1cm} \textbf{return} S, SP
\end{enumerate}

\textit{Legrende()} defined as one of standard algorithm calculated of Legendre symbol [10]. Algorithm searches for the prime number j (line 3) such that $j \neq el$ AND $(j - el) \mod 8 == 0$ (line 4). Algorithm terminates and returns j when for j and el and sets S and SP all Legrende symbols \textit{Left} and \textit{Right} are equal (lines 5-17), respectively.

The algorithms were implemented in C++. The experiments were carried out on an notebook Intel Core i5-5200U CPU 2.20 GHz, 8 GB RAM with Linux operation system.

4. Final remarks

In this case the obtained results have shown the usefulness of the computer. The value of the greatest searched prime number in the example described in previous section shows that it would be extremely time-consuming
Algorithm 2: function FindElement(P, S, SP, el, i)

Variables:

 result (boolean variable, initialized as False)
 j (integer)

Returned values:

 j /* prime number*/

1: result ← False
2: while NOT result do
3: if i mod 2 == 1 then
4: j ← NextPrime(P, SP)
5: else
6: j ← NextPrime(P, S)
7: end if
8: if j ≠ el AND (j - el) mod 8 == 0 then
9: result ← True
10: k ← 1
11: while k < i AND result do
12: if i mod 2 == 1 then
13: Left ← Legendre(S[k], el)
14: Right ← Legendre(SP[k], j)
15: else
16: Left ← Legendre(S[k], j)
17: Right ← Legendre(SP[k], el)
18: end if
19: result ← Left == Right
20: k ← k + 1
21: end while
22: end if
23: end while
24: return j

or impossible at all to do the calculations without a computer. This allows usu to think that the computer would be useful in solving similar problems in the future.

REFERENCES

Received: December 2018

Lidia Stepień
Jan Długosz University in Częstochowa,
Institute of Mathematics and Computer Science,
Częstochowa, ul. Armii Krajowej 13/15
Email address: l.stepien@ujd.edu.pl

Marcin Ryszard Stepień
Kielce University of Technology,
Department of Mathematics and Physics,
Al. Tysiąclecia Państwa Polskiego 7
Email address: mstepien@tu.kielce.pl