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Abstract.

A non-classical single-server queueing system with non-homogeneous customers
having some random space requirement (capacity, volume) can be used as a
model of a wide class of computer and communicating systems. We assume
that the total customers capacity in the system is limited by some constant
value V' > 0 that is called the value of memory capacity of the system. Service
time of a customer generally depends on his capacity. For such systems we
determine some estimators of stationary loss characteristics and compare the
analitical results with ones obtained by simulation.

1. Introduction

In the present work we investigate single-server queueing systems with non-
homogeneous customers and limited memory capacity. This means that

1) each customer is characterized by some non-negative random space
requirement (capacity, volume) ¢;

2) the total sum o(t) of capacities of all customers present in the system
at arbitrary time moment ¢ is limited by some constant value V' (0 < V < 00)
that is called the value of memory capacity of the system;

3) the customer’s service time ¢ and his capacity ¢ are generally depen-
dent.
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Such systems have been used to model and solve various practical prob-
lems occurring in the design of computer and communicating systems. It is
clear that they differ from usual classical queueing systems. For example,
we can analyze the non-classical system M/G/1/(oc0, V') that differs from the
classical system M/G/1/oc in the sense of assumptions 1-3.

Let

F(z,t) =P{( <z, <t}

be the distribution function of the random vector (¢,&). Then
L(z)=P{¢( <z} =F(r,00), B(t)=P{£{ <t} = F(o0,t)

are the distribution functions of customer’s capacity and service time, respec-
tively. The memory space is occupied by customer’s capacity at the epoch he
arrives and is released entirely at the epoch he completes service. The process
o(t) is called the total customers capacity.

Total capacity limitation (in the case of V' < o0) leads to losses of cus-
tomers. A customer having capacity x, which arrives at the epoch 7, will be
admitted to the system if o(7 — 0) + z < V. Otherwise (o(7 —0) +z > V)
the customer will be lost.

Various single-server queueing systems with non-homogeneous (in the
sense of assumptions 1-3) customers were analyzed in [1-4].

2. Some analytical results

Suppose that customers intrance flow is Poissonian. Let a be an arrival rate
of entrance flow of customers, n(t) be a number of customers present in the
system at time instant £. We can obtain the exact analytical results only in
some particular cases of the system M/G/1/(c0,V'). Let us analyze briefly
these cases and the possibilities of analytical estimation if it is impossible to
obtain the exact results. We assume that the stationary mode exists for all
systems under consideration, i.e. the limits n(t) = 7, o(t) = o exist in the
sense of a weak convergence, where 1 and o are the number of customers and
total customers capacity in the system in stationary mode.

2.1. The case of unlimited memory space. Assume that V = oo.
Then we have the classical M/G/1/o0o system without losses of customers. For
such a system we can obtain the stationary characteristics of total customers
capacity (see e.g. [4]).

We shall use the following notation. Denote by

a(s,q)z/o /0 e STTUGE (2, 1)
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the double Laplace-Stieltjes transfom (LST) of the function F(z,t). Let
©(s) = a(s,0) and B(q) = (0, q) be the LST of the functions L(z) and B(t),
respectively. Let D(x) = P{o < x} be the distribution function of stationary
e s*dD(x) the

total customers capacity, p = a3 < 1. Denote by d(s) = fo
LST of the function D(x). Then we have (see again [4])
p(s) — als,a — ap(s))
5(s) = (1—p) |1+ . 1)
Bla —ap(s)) — ¢(s)
Denote by §; = Eo’ the ith moment of total customers capacity o,
i =1,2,.... Let ¢; = E¢, 3; = E¢" and «;; = E(¢'¢?) be the ith mo-

ments of the random variables ¢, £ and the mixed (i + j)th moment of the
random variables ¢ and &, respectively, 7,7 = 1,2,....
It follows from (1) that

2
a“Bap1
01 = ao] + ———, (2)
2(1=p)
3 2 3 2 1492, 2
a (6] a a a
09 = a(a21 + ag010é12) + 62901 11 + 62902 + 53801 529012' ( )

1—p 20=p) 3(L—-p) 201-p)
For many real computer systems (for example, for communicating centers)
the customer’s service time can be defined by the relation £ = ¢ + &1, where
¢ > 0 and the random variables ( and &; are independent. Then, if we denote

by k(q) the LST of the distribution function of the random variable &, we
have from (1) (see [3])

p(ca — cap(s)) — pls + ca — cag(s))
6(s) = (1 —p)——— — — -
p(ca — cap(s)) — o(s)/r(ca — cap(s))
Denote by k; the ith moment of the random variable &, ¢ = 1,2,.... Then

the first and second moments of the random variable ¢ can be obtained from
the relations (2), (3), where

Q11 = P1R1 + cp2, a1 = YKy + Ccps,

Q13 = P12 + 2epak1 + s, B = cpr + K,
Bo = *pg + 2cp1K1 + Ka, B3 = o3 + 3ctpakt + 3cp1ka + Ks.

If the customer’s service time is proportional to its capacity (£ = 0
¢ > 0), we have

b

o plea —cap(s)) — (s + ca — cap(s))
Y =TT e cap(s)) 99

_ _ 2 _ _ 2 _ 3
and a1y = cpa, a1 = c*p3, Bi = cp1, Po = P2, B3 = 3.
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If, in addition, the random variable ( has an exponential distribution with
parameter f,ie. L(z) =1— e /% we obtain

L—p)(s+f)°

os) = [(5+ )2+ cas](s + f — ca)’

Introduce the following notation:

b — 2+p—+/pld+p) by — 24+p+pd+p)
2 ) - 2 .

Then from the last relation we can obtain the explicit formula for D(x):

( 2,—(1—p)fz
L+ - 6172p
(1-p) 1-by b 1-by _—b ; 1
D(w) = _\;P(4jp) (1—b1ip€ e 1—b2306 2f$) ifp# 3 (4)
[ 1 de = g () s ity =1

The first and second moments of the random variable o in this case take
the form:

(51:1.@ 52:i.20(3+,03—p2—2p)'
f 1—p ’ f2 (1_,0)2

2.2. The case of limited memory space. In this case we can obtain
some exact results only if service time has an exponential distribution and does
not depend on customer’s capacity, i.e. F(z,t) = L(x)B(t), where B(t) =
1—e M u>0.

Denote by L¥(z) the kth order Stieltjes convolution of the distribution
function L(x):

L) =1,
L (2) = / LY V(@ —w)dL(u) = LYV« L(z), k=1,2,....
0

Then we obtain [4] for the loss probability of the system M/M/1/(oc0, V)
under consideration:

_1-(1-pU(V)
pU(v) 7

P

where U(V) = 3 pF LI (V).
k=0
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It is clear that the last formula is not convenient for calculations. But,
if we assume that customer’s capacity has an exponential distribution:
L(z)=1—e 7 f >0, we obtain

1—p
—— ifp#1

(1=p)fV _ ’
p={° P

(1+fV)~t  ifp=1

2.3. Analytical estimations of loss characteristics. Denote by
Dy (x) the distribution function of total customers capacity for the system
M/G/1/(c0,V) in stationary mode. Then we can define the following loss
characteristics [4]:

a) Loss probability

v
P=1 —/0 Dy (V —z)dL(x).

This characteristic shows the part of customers being lost.
b) Probability that unit of customer’s capacity will be lost

v
Q=1-"2 [ 2Dy(V - 2)dL(x).
¥1 Jo
This caracteristic shows the part of customers capacity (or customers infor-
mation) being lost.

Let Doo(z) be the distribution function of the total customers capacity for
the system M/G/1/00 (in the case V' = oo) in stationary mode (we assume
that other parameters of the systems M/G/1/(co0, V) and M/G/1/oo are the
same and the stationary mode exists for both systems).

It can be easy shown [4] that D (x) < Dy (x) for all real z. This in-
equality gives us the possibility to estimate loss characteristics for the system
M/G/1/(00, V), if the distribution function Dy (z) is known. Indeed, from
the above inequality we have

Vv 1%
P:1_/0 DV(V—:r)dL(x)gl—/o Do(V — 2)dL(z) = P*,  (5)
1% 1%

Q=1-" [ aDy(V-n)dL@) <1- > [ 2Du(V—2)dL(z) = Q". (6)
¥1Jo ¥1 Jo

Then, for very small P, @ (or for rather large V'), the values P* and Q*
differ inessentially from the appropriate values P and (@, because
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Dy (z) = Vlgnoo Dy (z). In general, the values P* and Q* may be used as

upper limits for P and Q. It follows from (6), (7) that, if we choose the
memory volume V so that

- /OV Da(V — 2)dL(z) = P* (1 - % /OV 2D (V — 2)dL(z) = Q*) ,

then we can guarantee that the loss probability (the probability that unit of
customer’s capacity will be lost) be less than P* (Q*).

Unfortunately, we can obtain the explisite formula for Dy (x) in some
particular cases only. For example, it is possible if customer’s capacity has an
exponential distribution (with parameter f) and service time is proportional
to customer’s capacity (with poroportionality coefficient ¢). Then we obtain
from the relation (4):

[ g () e wan
%(Se*fV/Z—i-ede)—l-%fVe*fV/Q ifp:%;
(L V)tV g Gl ol o
Q= § S e
L(10e= V2 — 72V - LfV e IV/2 if p= 3.

Note that the value @) is more objective loss characteristic than P, but its
calculation is more complicated.

If it is impossible to obtain the explicit form of Dy (x), we can use (see
e.g. |2, 4]) a good approximation of this function by the distribution function

N 7(p, gx)
D (x)=1—p+ p——-5,
where y(p,gz) = (qu tP~le~tdt is the incomplete gamma function,

I'(p) = v(p,00) is the gamma function. The first and second moments of
this distribution are equal to §f = pp/g, 85 = pp(p + 1)/g?, respectively. The
parameters p and ¢ should be chosen so that equalities 0] = d1, 65 = d2 hold.
So, we obtain
o1 po1
p = 2 g = 2"
pda — 01 pdy — 01
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Tables 1 and 2 show the values of the functions Dy, (z) defined by (4) and
D7 (z) for p=0.2 and p = 0.8.

For determination of the loss probability or (more precisely) the proba-
bility P*, we can also approximate the distribution function

(z) /0 " Dol — u)dL(u)

y(g,rz)

in the relation (5) by the gamma distribution function ®*(x) = OB

Table 1: Distribution functions Do (z) and D}_(z) for p = 0.2

X

Dy ()

DZ(x)

0.0
1.0
2.0
3.0
4.0
6.0
8.0
10.0
15.0
20.0

0.80000
0.84899
0.90966
0.94961
0.97263
0.99215
0.99778
0.99938
0.99997
0.99999

0.80000
0.85069
0.90866
0.94821
0.97183
0.99225
0.99798
0.99949
0.99999
0.99999

Table 2: Distribution functions Dy (z) and DZ (x) for p = 0.8

Dy ()

D% ()

T
0
2

ot

10
15
20
25
30
20
60

0.20000
0.37821
0.63390
0.85886
0.94729
0.98051
0.99282
0.99736
0.99995
0.99999

0.20000
0.38170
0.63088
0.85705
0.94708
0.98439
0.99316
0.99758
0.99996
1.00000
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The first and second moments of this distribution have the form
i =q/r, f3 = q(qg+1)/r%. The function ®(x) is the distribution function
of the sum of the independent random variables ¢ and (. Thus, the first and
second moments of the distribution function ®(z) are equal to f; = 01 + 1,
fo = 2 + o + 2011, where §; and o can be determined from the relations
(2) and (3).

The parameters ¢, r should be chosen so that equalities f{ = fi, f3 = fa
hold, whence
N _h
= - r= .

fo—H* fo—f1°

Then we obtain the approximate equality

q

P*=1-— V). (7)

3. Calculation and simulation

In spite of possibility to obtain an analytical estimators of loss characteristics,
simulation often seems necessary: 1) to obtain more precise estimations, 2) to
estimate the quality of approximate results and 3) to obtain good approximate
results when analytical approach is impossible or rather complicated.

Table 3: Probabilities P, @) and P*, Q* for p = 0.2

V] P P* 0 o
0 | 1.00000 | 1.00000 | 1.00000 | 1.00000
921 0.17106 | 0.24854 | 0.44498 | 0.49844
4] 0.04467 | 0.07076 | 0.14188 | 0.16763
6 | 0.01309 | 0.02074 | 0.04346 | 0.05174
8 | 0.00387 | 0.00590 | 0.01303 | 0.01538
10 | 0.00111 | 0.00172 | 0.00381 | 0.00447
12 1 0.00032 | 0.00048 | 0.00113 | 0.00128
14 | 0.00009 | 0.00013 | 0.00036 | 0.00036
16 | 0.00003 | 0.00004 | 0.00010 | 0.00010
18 | 0.00001 | 0.00001 | 0.00002 | 0.00003

Let us confirm this statement by some examples. We shall anlyze the case
& = c( + &, where ¢ > 0 and the random variables ¢ and &; are independent
(it is clear that in the case ¢ = 0 the service time of a customer is independent
on his capacity).
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Table 4: Probabilities P, @) and P*, Q* for p = 0.8

Vv

P

P*

Q

Q*

0

5
10
15
20
25
30
35
40
45

1.00000
0.09427
0.02678
0.00899
0.00321
0.00117
0.00043
0.00016
0.00006
0.00002

1.00000
0.44515
0.17490
0.06570
0.02434
0.00897
0.00330
0.00122
0.00045
0.00017

1.00000
0.21473
0.06241
0.02115
0.00757
0.00280
0.00103
0.00038
0.00015
0.00006

1.00000
0.53490
0.21599
0.08181
0.03038
0.01121
0.00413
0.00152
0.00056
0.00021

We can compare the values P* and * with the values P and () obtained
by simulation for the system M/M/1/(co,V) (&1 = 0), when p = 0.2 (see
table 3) and p = 0.8 (see table 4). We can see from these results that the
approximate equalities P = P* and Q =& Q* are satisfactory only if loss
characteristics are very small.

Table 5: Probabilities P and P* for p = 0.2

In more general case of the system M/G/1/(c0, V), we can obtain the

Vv

P*

P

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5

1.00000
0.54190
0.16867
0.04323
0.01004
0.00220
0.00046
0.00009
0.00002
0.00000

1.00000
0.51995
0.10250
0.03689
0.00586
0.00131
0.00021
0.00003
0.00001
0.00000

approximate value of P* using the approximate equality (7).
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Let, for example, customer’s capacity have uniform distribution on the
segment [0; 2] and service time of the customer be proportional to his capacity
with proportionality coefficient ¢ = 1 (§; = 0). The results for these systems
obtained by calculation (P*) and simulation (P) are presented in table 5
(p = 0.2) and table 6 (p = 0.8).

Table 6: Probabilities P and P* for p = 0.8

V P P
0 | 1.00000 | 1.00000
110.67623 | 0.30277
21 0.37052 | 0.10314
4
6

0.09274 | 0.01882
0.02094 | 0.00432
8 1 0.00450 | 0.00105
10 | 0.00094 | 0.00024
12 1 0.00019 | 0.00007
14 1 0.00004 | 0.00001
16 | 0.00001 | 0.00000

Table 7: Probabilities P and P* for p = 0.2

<

P P
1.00000 | 1.00000
0.22507 | 0.16866
0.05391 | 0.03801
0.01306 | 0.00911
0.00318 | 0.00229
0.00078 | 0.00054
0.00019 | 0.00014
0.00005 | 0.00003
0.00001 | 0.00001
0.00000 | 0.00000

© 00~ O U s W N~ O

In practice it is often assumed that customer’s capacity ¢ has an exponen-
tial distribution and the random variable & has an exponential distribution
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too. We can see in tables 7 (p = 0.2) and 8 (p = 0.8) the appropriate
results for such systems for the case f = 2, where f is a parameter of cus-
tomer’s capacity, 4 = 2, where u is a parameter of the random variable &,
and ¢ = 1.

Table 8: Probabilities P and P* for p = 0.8

V P P

0 | 1.00000 | 1.00000
11 0.68200 | 0.26203
21 0.43507 | 0.11892
41 0.16857 | 0.03418
8 1 0.02360 | 0.00407

121 0.00319 | 0.00053
14 | 0.00116 | 0.00019
18 | 0.00015 | 0.00002
221 0.00002 | 0.00000
241 0.00001 | 0.00000

If in the system under consideration entrance flow is not Poissonian (gen-
erally, not Markovian), we cannot obtain any exact result in the case V < oc.
However, in this case we can use simulation to obtain the loss probability or
the probability that a unit of customer’s capacity will be lost.

Let us analyze, for example, the influence of entrance flow on loss charac-
teristcs of the system under consideration. It is interesting to compare the loss
characteristics of the system with regular entrance flow and the system with
Poisson entrance flow when other parameters (including the value p) of these
systems are the same. Assume that customer’s capacity ¢ has an exponential
distribution with parameter f = 1, the random variable £; also has an expo-
nential distribution with parameter p = 1 and the proportionality coefficient
c is equal to 1.

In Fig. 1 and Fig. 3 we can see how the loss probability P depends on
the capacity volume in the case of regular entrance flow (1) and Poisson flow
(2) for p = 0.2 and p = 0.8 consequently. In Fig. 2 and Fig. 4 we show a
similar dependence for the probability @) that a unit of cusomer’s capacity will
be lost.
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Fig. 1. Probability P for regular (1) and Poisson (2) flow (p = 0.2)
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Fig. 2. Probability @ for regular (1) and Poisson (2) flow (p = 0.2)
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Fig. 3. Probability P for regular (1) and Poisson (2) flow (p = 0.8)

oo )
0.7
0E LW
a5l W\
04l \N~1
DIS ‘HL& .?'2
TR

Fig. 4. Probability @ for regular (1) and Poisson (2) flow (p = 0.8)
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4. Conclusion

In this paper we analyze the possibilities of analytical approximation of some
loss characteristics for single-server systems with limited total customers ca-
pacity. It was shown by some examples that using the upper limits P* and
Q" instead of the loss probability P and the probability @ that a unit of cus-
tomer’s capacity will be lost, we can guarantee that the appropriate choice of
the memory capacity V provides no excess.

However, we should use simulation for more precise estimation of the
memory capacity.
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