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Abstract

Let (X,4) be an Abelian group. One can show that a mapping f: X — R
satisfying the inequality

fle+y)+ flz—y) <2f(x) +2f(y) (1)

for all x,y € X also satisfies the inequalities

fQe+y) <4f(x)+ fly) + flz+y) - flz—y) (2)

and

fQRr+y)+ f(2x —y) <8f(x) +2f(y) (3)

for all z,y € X.

A question of finding sufficient conditions under which the inequalities (1),
(2) and (3) are equivalent will be considered. In this note, some properties
of the solution of (1) will be proved. We also consider another definition of a
subquadratic function given in [1].
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1. Introduction

Let X,Y be a vector spaces. It is known that a mapping f: X — Y satisfies
fRe+y)=Af(x)+ fy)+ flx+y) - flz—y), =zyelX,
or
Rz +y)+ f(2r—y) =8f(z) +2f(y), wyeX,
if and only if f satisfies a quadratic functional equation

flx+y)+ flz—y) =2f(x) +2f(y)

7

for all x,y € X. It is not longer true, if the sign “=" in these equalities will

be replaced by “<”.

2. General properties

In this note (X, +) is an Abelian group. We start with the following

Remark 1 If f: X — R satisfies the inequality (1) for all z,y € X, then f
also satisfies the inequalities (2) and (3) for all x,y € X.

Proof. Let z,y € X. Since f satisfies the inequality (1), then:

fQx+y)=flx+y+ux)<2f(x+y) +2f(x) - flx+y—x) <
<2f(x) + flz+y)+2f(x) +2f(y) — fz —y) — f(y) =

=Af(z)+ f(y) + flxz +y) — f(z —y).

It is known that if f satisfies (1), then f(nx) < n?f(z) for all z € X and for
all n € N ([3]). Hence,

fRz+y)+ f(2x —y) <2f(22) + 2f(y) < 8f(x) +2f(y). O

On the other hand, there exists a function f satisfying (2) (or (3)) which
is not a solution of (1).

Example 1 Let f: R — R be defined by

OR B

where byd > 0 and 3b < d < 5b. It is easy to see that f satisfies (2), but does
not satisfy (1).
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Example 2 Let f: R — R be defined by

={ & 7%

where byd > 0 and 3b < d < 9b. It is easy to see that f satisfies (3), but does
not satisfy (1).

One can show that a function f: X — R satisfying the inequality (3)
(or (2)) has similar properties as a function satisfying the inequality defining
a subquadratic function (1).

Lemma 1 If f: X — R satisfies (3), then the odd part of f is bounded. If,
moreover, f(0) =0, then f is even.

Proof. On account of (3),
)+ f(=y) <8f(0) +2f(y), yeX

Therefore,

fly) = f(=y)
—Af0) < T

which means that the odd part of f is an odd function; then it is bounded
bilaterally. It follows from (4) that if f(0) = 0, then f is even.

Lemma 2 If f: X — R satisfies (2), then the odd part of f is bounded. If,
moreover, f(0) =0, then f is even.

y € X, (4)

Proof. Setting z =0 in (2), we get
f(=y) = fy) <4f(0), yeX,

whence our assertion follows easy. ([l

Remark 2 Let f: X — R be a function satisfying (2). If f(0) =0, then f
satisfies the inequality (3).

Proof. Since f(0) = 0, then by Lemma 2 f is even. Setting —y instead of y in
the inequality (2), we get

fQRr—y) <4f(x)+ f(=y) + flx—y) - flx+y) =

=4f (@) + f(y) + flz —y) = flz +y). (5)
Therefore, by (5) and (2), we get the inequality (3).

The next example shows that if f satisfies the inequality (3), this does
not mean that f satisfies the inequality (2).
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Example 3 Let f: R — R be defined by

ro={ 5 570

z =0,

where b,d > 0 and 3b < 5b < d < 9b. It is easy to see that f satisfies (3), but
does not satisfy (2).

The next Lemma shows that under some additional conditions the in-
equalities (2) and (3) are equivalent.

Lemma 3 In the class of subadditive functions satisfying condition f(0) = 0,
the inequalities (2) and (3) are equivalent.

Proof. Assume that f satisfies (2). According to Remark 2, f satisfies (3).
Assume now that f satisfies (3). Since f(0) = 0, then by Lemma 2 f is even.
Every even and subadditive function satisfies the inequality (1). According to
Remark 1, f satisfies (2). O

Lemma 4 In the class of subadditive functions satisfying condition f(0) = 0
the inequalities (1), (2) and (3) are equivalent.

Proof. By Lemma 3, the inequalities (2) and (3) are equivalent. Assume that f
satisfies (1). According to Remark 1, f satisfies (3). Assume now that f satis-
fies (3). By Lemma 2, f is even. Every even and subadditive function satisfies
the inequality (1). O

In order to obtain the main result of this note, we start with some known
conditions implying subadditivity of a function f: [0,00) — R.

Lemma 5 Let f: [0,00) — R. If the function g(z) := % (x), x € (0,00), is
decreasing and f(0) > 0, then f is subadditive.

Lemma 6 Let f: [0,00) — R. If f is concave and f(0) > 0, then f is
subadditive.

Using Lemmas 5, 6 and 4 we can obtain the following two theorems.

Theorem 1 Let f: [0,00) — R. If the function g(x) :== Lf(x), z € (0,00),

Tz

is decreasing and f(0) = 0, then inequalities (1), (2) and (3) are equivalent.

Theorem 2 Let f: [0,00) — R. If f is concave and f(0) =0, then inequali-
ties (1), (2) and (3) are equivalent.
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The last result of this section shows that every superadditive function
satisfying the inequality (1) must be equal to zero for every x € X. We shall
use the following Lemma.

Lemma 7 Let f: X — R be a function satisfying (3). If f is a superadditive
function, then f =0.

Proof. By superadditivity, we get f(0) < 0. On the other hand, if f satisfies
(3), then f(0) > 0. According to Lemma (2), f is even. Therefore, since f is
superadditive, we get

f(x) + f(x) = f(@) + f(—2) < flz —2) = f(0) =0.
Thus,
f(r) <0, zeX. (6)
On the other hand, since f is superadditive and satisfies (3)
Af(z) +2f(y) <2f(2z) +2f(y) < f(2x +y) + f(22 —y) < 8f(x) +2f(y)
for all 2,y € X. Tt implies that
0< f(z), z€X. (7)
By (6) and (7), f(z) =0forallz € X. O

Lemma 8 Let f: X — R be a function satisfying (1). If f is a superadditive
function, then f = 0.

Proof. According to Remark 1, f satisfies the inequality (3). By Lemma 7,
f(z)=0forallz € X. O

3. The stability of the inequalities (2) and (3) in the
sense of Hyers and Ulam

Let (X,+) be an Abelian group. Fix an ¢ > 0 and consider a function
f: X — R fulfilling the inequality

fRr+y) <df(x)+ fy)+flz+y)—flx—y)+e z,y€X.

Putting g(x) := f(z) + § for x € X, we observe that g satisfies (2) and,
moreover,
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This means that the problem of the stability in the sense of Hyers and Ulam
of the inequality (2) has a positive answer.

Similarly, putting g(x) := f(z) + §, one can show that the problem of the
stability in the sense of Hyers and Ulam of the inequality (3) has a positive
answer.

4. Another definition of subquadratic function

According to another definition in [1], a function f: [0,00) — R is said to be
subquadratic if for all z > 0 there exists a constant ¢, € R such that

fly) = f@) <cely—2)+ fly—x]) (8)
for all y > 0.

Remark 3 If f: [0,00) — R is subquadratic in the sense of (8), then f fulfils
(1) for all x,y € [0,00) such that x > y.

Proof. Let x € [0,00). Then there exists a constant ¢, € R such that the
inequality (8) holds for every y € [0,00). Now take arbitrary y € [0, 00) such
that x > y. Setting x + y instead of y in (8), we get

flety) <cy+ fly)+ f(@) (9)
By the fact that > y, we can set x — y instead of y in (8) and then we get
flez—y) < —cxy+ fy) + fl2). (10)

Adding (9) and (10) side by side we obtain
fl@+y)+ flz—y) <2f(x) +2f(y)
for all z,y € [0,00) such that x > y. O

Remark 4 There exists a function fulfilling (1) for all x >y > 0, but it is
not subquadratic in the sense of (8).

Proof. Let

ra={y 270

It is easy to see that f satisfies (1). On the other hand, setting 3 instead of y
and 1 instead of = in (8), we get

f3) = (1) = f(2) <26
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Thus
—5 S Cq.
Setting 0 instead of y and 1 instead of  in (8), we obtain that
f0) = f(1) = f(1) < —ar.
Thus

C1 S —1.

Therefore, by (11) and (12), f can not satisfy the condition (8).

(12)

O

Fix an € > 0 and consider a function f: [0,00) — R such that for all z > 0

there exists a constant ¢, € R such that

fly)—fx) <ec(ly—2)+ f(ly—a|)+e

for all y > 0. Putting g(z) := f(x) + € for x € [0,00), we observe that g

satisfies (8) and, moreover,

| f(z) —g(2) [<e, 2 €[0,00).

This means that the problem of the stability in the sense of Hyers and Ulam

of the inequality (8) has a positive answer.
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