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Abstract

In the present paper we study solutions of the second generalized d’Alembert’s
functional equation and its stability.

1. Introduction

We shall start from solutions of the classical d’Alembert functional equa-
tion (the cosine equation):

Theorem 1 (Pl. Kannappan [5], see also [2]|) Let (G,+) be an Abelian
group. Then a function f: G — C satisfies the equation

flx+y)+ flr—y)=2f(2)f(y) foral zyeG (1)

if and only if there exists a homomorphism m : G — C, i.e. m satisfies
the exponential functional equation

m(z +y) =m(x)m(y) forall z,yed (2)

such that
f(z) = =(m(z) + m(—z)) forall zeG.
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It is known that equation (1) for complex functions defined on an Abelian
group is stable in the sense of Hyers-Ulam [4]. Generalizations of this
result appeared in various directions. It turned out that equation (1)
for complex functions defined on an Abelian group is superstable in the
sense of Ger, too. Namely, the following theorems hold true:

Theorem 2 (R. Badora, R. Ger [3]) Let (G, +) be an Abelian group and
let f:G— C and ¢ : G — R satisfy the inequality

[f(x+y)+ flz—y)=2f(2)f(y)] < p(x) forall z,y€d.

Then either [ is bounded or [ satisfies d’Alembert’s equation (1).

Theorem 3 (R. Badora, R. Ger [3]) Let (G, +) be an Abelian group and
let f:G— C and ¢ : G — R satisfy the inequality

fx+y)+ flz—y)=2f(2)f(y)| < ply) foral z,y€G.

Then either [ is bounded or f satisfies d’Alembert’s equation (1).

In monograph of J. Aczél [1| we can find a form of solutions of Wilson’s
first generalization of d’Alembert’s functional equation

flx+y)+ flz—y) =2f(r)g(y) forall =zyed, (3)

and Wilson’s second generalization of d’Alembert’s functional equation
fle+y)+gl@—y)=h(x)k(y) forall z,yed, (4)

where (G,+) is a uniquely 2-divisible Abelian group and
f,g,hk: G — C.
We deal with the special case of equation (4).

Definition 1 Let (G,+) be an Abelian group. We say that functions
f,g9: G — C satisfy the second generalization of d’Alembert’s functional
equation iff f and g satisfy the following functional equation

flx+y)+ fle—y)=29(zx)f(y) foral z,yeG. (5)

Solutions and the stability problem for equation (3) was consider in |[6].
In this paper we find a form of solutions of equation (5) and study its
stability.
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2. Main results

Instead of specification of Aczél’s Theorem about solutions of equa-
tion (4) [1, p. 175], we formulate and directly prove the following fact
concerning solutions of equation (5).

Theorem 4 Let (G,+) be an Abelian group. Then functions
f,g: G — C satisfy equation (5) if and only if

(i) f =0 and g is arbitrary,
or

(ii) f # 0 and f(z) = ag(z) for all x € G, where o € C\{0} and g

satisfies the d’Alembert functional equation, i.e.

g(r+y) +g(r —y) =29(x)g(y)

for all x,y € G.

Rroof. Assume that f # 0. Setting y = 0 in (5), we have

for all z € G. From above, we conclude that f(0) # 0. Putting « :=
f(0), we get
f(x)=ag(z) forall zedG.

So, from (5) we obtain
ag(r +y) +aglz —y) = 29(x)ag(y)
for all z,y € GG, and the theorem follows. O

Let (G,+) be an Abelian group. Take an arbitrary function ¢ : G — R
(not necessarily constant nor bounded) and let f,g: G — C . Now, we
consider the following inequality

[fx+y)+ flz—y)—29(x)f(y)| < p(z) forall z,yeG.  (6)
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Definition 2 We say that equation (5) is stable if and only if for ev-
ery pair (f,q) satisfying inequality (6) there exist f,'j : G — C and
a,f: G — R such that the pair (f,§) is a solution of equation (5)
and we get the following estimations

If=fl<a and |g—3 <8

Definition 3 We say that equation (5) is superstable if and only if for
all pairs (f,g) which are solutions of inequality (6) the following alter-
native holds: either at least one from the functions f, g is bounded or
the pair (f,g) satisfies equation (5).

Consider the following
Example 1 Let f,g: R — R have a form

f(x):e+26+1’ g(w):eze for all x €R.

Then,

|f(z+y)+fr—y)—29(x) f(y)| = [2—e"—e™"[ = @(x) forall z,yeR.

This example shows that the second generalization of d’Alembert’s equa-
tion is stable but not superstable (as the d’Alembert equation). Now we
check: is this also true for arbitrary complex function f and ¢ defined
on an Abelian group?

Theorem 5 Let (G,+) be an Abelian group and let f,g : G — C,
¢ : G — R satisfy the inequality (6). We have the following possibilities:

(i) if f =0, then g is arbitrary,
(ii) if g = 0, then |f(z)] < @ for all x € G,

(iii) of f # 0 # g and f is bounded, then |g(x)| < “D(“Tz)# forall x € G,
where M = sup{|f(z)|: x € G},
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(iv) if g # 0 and f is unbounded, then

g(r+y)+g(r—y)=29(x)g(y) foral z,yeG

and

() — g(2)f(0)] < @ forall z€G.

Proof. Ad (ii). If g = 0, then the inequality (6) has a form

flx+y)+ flx—y)| <), z,yedl.

Put y = 0, for fixed x € G, we get

()

Ad (iii). Assume that f # 0, g # 0 and f is bounded. Then
M = sup{|f(z)| : z € G} < 0.
By (6), we deduce that
12g(2)f(y)| < ¢(z) +2M forall z,y €G.

Because f # 0, we get (iii).
Ad (iv). Assume that g # 0 and f is unbounded. Thus, there exists
a sequence (t,)nen of elements of G such that

0#|f(ty)] — 00 as n — oo. (7)
Putting y = ¢,, in (6), we have for all x € G and n € N:

[f(z+tn) + flz —tn) — 29(2) f(tn)] < ().

Therefore,
flz+tn) + e —tn) p(x)
2f(tn) 2| f (tn)]
for all x € G and n € N. Passing to the limit as n — oo and taking
(7) into account, we infer that

— lim f(x"i‘tn)“'f(z_tn)

—g(x)| <

forall z € G. (8)
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Set y =y + ¢, in (6), then
[f@+y+in) + e —y—t) = 29(x)f(y +ta)| < p(x)  (9)
for all x,y € G and n € N. Replacing y by y — ¢, in (6), we get
[fle+y—tn) + fx—y+ta) = 29(2)f(y — tn)| < o(2) (10)
for all x,y € G and n € N. Now, using (9) and (10) for all z,y € G and

n € N, we obtain

fle+y+ty)+ fle+y—t,) +f(x—y+tn)+f(a:—y—tn)

27 (1) 20t,)
(1)

oY)+l —ta) | 2p(x)

29(@) Ft) S Al

Passing here to the limit as n — oo, by (8), we get

gz +y)+glx —y)—29(x)g(y) =0 forall z,yedq.

Moreover, g # 0 and, thus, g(0) = 1. Putting y = 0 in (6), we have

1)~ o)) < 2 poran weq,

which completes the proof. 0
For unbounded functions f, g : G — C we can define
f(z) :=g(x)f(0), g(z):=g(x) forall zed.

From Theorem 5, we get

\f(x)—f(xﬂﬁ%x), lg(z) —g(x)| =0 forall zed.

Moreover, fand g satisfy equation (5). This means the stability of the
second generalization of d’Alembert’s functional equation.
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For g = f from Theorem 5 we obtain the following

Corollary 1 (Theorem 2) Let (G, +) be an Abelian group and let f : G — C
and ¢: G — R satisfy the inequality

[f(@+y)+ fle—y)=2f(2)f(y)] < px) forall x,yeC.
Then either [ is bounded or f satisfies d’Alembert’s equation (1).

Because inequality (6) is not symmetrical with respect to x and y, now
we consider the following inequality

[f(x+y)+ flz—y)—29(x) f(y)] < o(y) (12)

for all z,y € G, where (G,+) is an Abelian group, ¢ : G — R (not
necessarily constant nor bounded) and f,g: G — C.

Theorem 6 Let (G,+) be an Abelian group and let f,g : G — C,
v: G — R satisfy the inequality (12). There are the following pos-
sibilities:

(i) if f =0, then g is arbitrary,
(ii) if f # 0 and g is bounded, then f is bounded, too,

(iii) if f # 0 and g is unbounded, then there erists a function h: G — C
such that

flx+y)+ flz—y)=2h(x)f(y) foral z,yeG

and

lg(x) = h(z)| < C  forall ze€G,

where C' = inf{ﬁc((z))' cr e, f(x)# 0} .
Proof. Assume that f # 0.
Ad (ii). If g is bounded, then there exists a constant M > 0 such
that
lg(x)] < M forall ze€d.
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Now, putting y = 0 in (12), we get

(0) +2M|f(0)]

5 forall =z e€d.

f@) <2

Ad (iii). If g is unbounded, then there exists a sequence (¢, )nen Of
elements from G such that

0# |g(ty)] — 00 as n — oo. (13)

Setting z = ¢, in (12) we have

f(tn+y)+f(tn—y)_f(y) < e(y)

forall ye G, neN.
29(tn)

Passing here to the limit as n — oo and using (13), we see that for
every y € GG

o) = tim T 20, (1)

On setting = t, + x in (12), we get

[f(tn +2+y) + f(tn + 2 —y) = 29(tn +2) f(y)] < 0(y) (15)

for all z,y € G and n € N. Similarly, putting x = t,, — z in (12), we
obtain

[fltn =24+ y) + f(ta =2 —y) — 29(tn — 2) f(y)] < ©(y) (16)

for all z,y € G and n € N. Now, using (15) and (16) for all z,y € G
and n € N we conclude that

f(tn+x+y)+f(tn—(x+y))+f(tn+fv—y)+f(tn—(l’—y))

29(tn) 29(tn)
gt ) + (b — ) 20(y)
SV B A T TR
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Passing to the limit as n — oo with the use of (14), we infer that there
exists the limit

— lim g(tn + ) + g(t, — )
hle) = "lﬂoo 29(tn)

for all z € G. (17)

Moreover, the function h : G — C obtained in that way has to satisfy
the eqation

fle+y)+ f(z —y)=2h(x)f(y) forall z,yeq. (18)
Putting (18) into (12), we get
2[fW)lIh(z) — g(x)] < e(y), z,y€q. (19)

From above and by the assumption that f = 0, we can define a real
constant C' as

o oly) .
O"f{mﬂwr EG““”#O}

Inequality (19) yields

|h(z) —g(x)| < C forall zedG.

We introduce definitions analogous to Definition 2 and Definition 3.

Definition 4 We say that equation (5) is stable if and only if for every
pair (f,g) which is a solution of inequality (12), there exist f,g: G — C
and a, 3 : G — R such that the pair (f,q) is a solution of equation (5)
and

f=fl<a and |g—3|<p.

Definition 5 We say that equation (5) is superstable if and only if for
all pairs (f, g) which are solutions of inequality (12), the following alter-
native holds: either at least one from functions f, g is bounded or a pair
(f,g) satisfies equation (5).
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From Theorem 6 it follows that if f and g are unbounded, then we can
define
f(x):= f(x), g(x):=h(x) forall ze€dG

and
[f(z) = f()] =0, [§(z)—g(z)|<C

for all z € G and some constant C. Functions f, § satisfy equation (5).
This means the stability of the second generalization of d’Alembert’s
functional equation.

Example 2 For all x € R we put

ex_+_efx el‘_i_e*l‘
)= gl = S

Then functions f and g satisfy
[fz+y)+f(z—y)=29(x) f(y)| = |—e'—e| = @(y) forall z,y €R.
Notice that from Theorem 6 we can get Theorem 3.

Corollary 2 Let (G, +) be an Abelian group and let f : G — C, ¢ :
G — R satisfy the inequality

flx4+y) + flz—y)=2f(x)f(y)] < ely), =,y

Then either [ is bounded or [ satisfies d’Alembert’s equation (1).

Proof. Assume that f is unbounded. Define ¢ = f in the case (iii) of
Theorem 6. Hence, there exists h : G — C such that

flx+y)+ flx —y) =2h(x)f(y) forall z,yeG

and
|h(z) — f(x)] < C forall z e,

where C' := inf {% cx €G, fy) # O}. Applying g = f in (14) and

(17) we get h = f which proves the corollary. O

From above theorems we get also
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Corollary 3 Let (G,+) be an Abelian group, € > 0 be a given number,
and let f,g: G — C satisfy the inequality

lfx+y)+ flz —y) —2g9(x)f(y)| <e forall z,yed.

Then there are the following possibilities:

(i) if f =0, then g is arbitrary,

(ii) if g = 0, then f is bounded,

(iii) if f # 0 # g and f is bounded, then g is bounded, too,

(iv) if g # 0 and f is unbounded, then g is unbounded, too. Moreover

flx+y) + flr—y) =29(x)f(y) foral z,y€G.

Proof. Ad (i). This is the case (i) of Theorem 5 (or the case (i) of
Theorem 6).
Ad (ii). If g = 0, then for p(z) = ¢ from (ii) of Theorem 5 we have

|f(x)] < forall ze€G.

<
2
Thus, f is bounded.
Ad (iii). Assume that f # 0 # g and f is bounded, then by (iii) of
Theorem 5 for p(x) = ¢ for all z € G we get
€+ 2M
2M

lg(x)| < for all z € @G.

Hence, g is bounded.
Ad (iv). If g is non-zero function and f is unbounded, then from
(iv) of Theorem 5 for all z € G we obtain

[f(x) = g(x) f(0)] <

Now, by assumption that f is unbounded, we infer that f(0) # 0 and
g is unbounded, too. From (iii) of Theorem 6, we conclude that there
exists function h : G — C such that

flx+y)+ flz—y)=2h(x)f(y) forall z,yeG

DN ™
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and
|h(z) —g(z)| < C

for all z € G, where C' := inf{M cx €G, fly) # O}. In this case

2[f()l -
¢ = ¢ and f is unbounded, thus C' = 0. Hence, for all x € G we have
h(z) = g(x)

and consequently

flz+y)+ flxr —y) =2g(x)f(y) forall z,yeqG.
O
The above corollary, in the light of Definition 3 (or Definition 5), yields

superstability of the second generalization of d’Alembert’s functional
equation in the special case ¢(x) = ¢ = const.
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