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Logical independence, its algebraic generalization 
and applications 

Summary 

We present a short history of the notion of logical independence, its counterpart and gen-
eralization in universal algebra, and their applications in different areas. 
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Logical independence can refer to sets of formulae, sentences or rules, 
however, it can be also understood as a relation between a formula and a set 
of formulae. We say that a formula 𝛼 is independent from a set 𝑆 of formulae 
if 𝛼 is not provable from 𝑆. 

The set 𝑆 of formulae is called independent if each its formula 𝛼 is inde-
pendent from the set 𝑆𝛼}. 

Sometimes instead of independent sets we can discuss countably inde-
pendent sets. The set 𝑆 of formulae is countably independent if every one of 
its countable subset is independent. 

As we see, independence in logic is always related to the notion of prova-
bility and therefore related to some logic, the notion of consequence or the 
notion of proof. What is more, in the classical case, independence is strictly 
related to the notion of consistency, since according to the definition, a for-
mula 𝛼 is independent from a set 𝑆 of formulae if and only if the set 𝑆 ∪ {¬𝛼} 
is consistent. 

In general, independence is usually expected from the set of axioms of  
a given theory, sometimes also from the set of primitive rules of a given for-
mal system. From the theoretical point of view, independence is not an es-
sential property of an axiomatization, since a dependent system of axiom is 
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correct and can serve well. However, in many cases this property is desired, 
either to reach the conclusion of a reduced set of axioms, or to be able to 
replace an independent axiom by another one in order to produce a more 
concise system. 

Logical independence was one of four pillars of Hilbert's project. It was 
meant as a formal counterpart of the intuitive notion of simplicity. The no-
tion of independence has played an important role in the methodology of 
deductive science, inspiring philosophical discussions and influencing  
a development of formal logic. Since the beginning of the last century it has 
also gained the crucial significance in the foundations of physics, in particu-
lar in the quantum physics. 

The first formal solution to the problem of independent axiomatization 
was given by Alfred Tarski (see Tarski 1930 or Tarski 1956), who proved 
that in the case of the first order classical logic, every countable set of formu-
lae is semantically equivalent to an independent set. In fact, in 1923, he 
proved something more general, namely that any countable theory of 𝐿𝜔𝜔 
has an independent axiomatization. 𝐿𝜔𝜔 denotes here the language of the 
first order classical logic which admits countable conjunctions and disjunc-
tions, and infinite (but countable) sequences of quantifiers. 

In 1965, the result was further generalized by Iegor Reznikoff to theories 
of any cardinality (Reznikoff 1965). 

In general, proving independence of a set of axioms of a given theory is 
not an easy task. 

Jan Łukasiewicz used many-valued matrices to establish independence 
of logical axioms in classical propositional logic (Łukasiewicz 1929). His sys-
tem consists of three axioms: 
1) (𝑝 → 𝑞) → ((𝑞 → 𝑟) → (𝑝 → 𝑟)) 
2) (¬𝑝 → 𝑝) → 𝑝 
3) 𝑝 → (¬𝑝 → 𝑞) 
together with the rules of modus ponens and of substitution. 

The idea of proving the independence of the system consists in finding 
for every axiom some matrices hereditary with respect to the given primi-
tive rules and such that all the axioms, except the chosen one, belong to their 
content. 

For example, let us take a three valued matrix with the distinguished va-
lue 1 and propositional connectives ¬ and → defined in the following way: 

𝑝 ¬𝑝 
0 1 
1 0 
2 2 

and 
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→ 0 1 2 
0 1 1 1 
1 0 1 0 
2 1 1 0 

It is hereditary with respect to the rules of modus ponens and of substi-
tution. Axioms 2) and 3) belong to its content, but taking a valuation asso-
ciating 2 to 𝑝, 0 to 𝑞 and 2 to 𝑟 we obtain the value 0 for the formula consti-
tuting the first axiom. 

Łukasiewicz, encouraged by his colleagues, Alfred Tarski, Adolf Linden-
baum, Jerzy Słupecki, Bolesław Sobociński and Mordechaj Wajsberg among 
them, investigated not only the full propositional calculus, with different sets 
of connectives as basic, but also many partial calculi, in particular the pure 
implicational calculus and the pure equivalential calculus in order to find not 
only their independent axiomatizations, but also the shortest and the sim-
plest possible ones (Łukasiewicz 1961). 

In particular, Łukasiewicz found a single axiom which, together with the 
rules of substitution and of detachment for equivalence, is sufficient for the 
equivalence logic. In 1925 Tarski showed that the pure implicational calcu-
lus can be based on a single axiom, the shortest possible form of which was 
discovered in 1936 by Łukasiewicz and Wajsberg, though the publication of 
the result had to wait until 1948 (Łukasiewicz 1948): 

𝐶𝐶𝐶𝑝𝑞𝑟𝐶𝐶𝑟𝑝𝐶𝑠𝑝 

It is clear that any axiomatization consisting of a single axiom is independent. 
To generalize Łukasiewicz's idea of proving independence, one can no-

tice that in order to show the independence of a formula 𝛼 from the set 𝑋 of 
formulae it is enough to find such a property that belongs to all formulae 
from 𝑋 but which is not true for 𝛼. In more advanced systems this idea is 
applied by constructing appropriate models. The good example is the inde-
pendence of the axiom of choice or the continuum hypothesis from the Zer-
melo-Fraenkel set theory. The technique used there is called forcing (see e.g. 
Bell 2011). 

Let us observe that in the both cases mentioned above, talking about in-
dependence we mean not only the impossibility of proving an axiom itself 
but also the impossibility of refuting it. In other words, we deal with a situa-
tion when a sentence is undecidable in a theory, or is absolutely independent 
from it. Intuitively, it means that an absolutely independent sentence repre-
sents entirely new information, which is not contained in the axioms. 

Therefore, we can regard the absolute independence in classical logic as 
a natural generalization of the logical independence, and we say that a set 𝑆 
of formulae (of axioms, in particular) is absolutely independent if for any 
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partition of 𝑆 into sets 𝑆1and𝑆2 the set 𝑆1 ∪ ¬𝑆2 is consistent, where ¬𝑆2 de-
notes the set of negations of all formulae from 𝑆2. 

It can be proved that in the first order classical logic every set of formulae 
for which the minimal cardinality of the set of axioms is a regular cardinal 
has an absolutely independent set of axioms. On the other hand, it is also 
possible to construct a countable set of formulae in the first order language 
with a finite number of primitive symbols without any absolute axiomatiza-
tion (Grygiel 1990). 

From the algebraic point of view, the existence of an absolute indepen-
dent axiomatization of a classical theory 𝑇 corresponds to the existence of 
an independent set of generators for the filter 𝐹 corresponding to the theory 
𝑇 in the Lindenbaum algebra. Analogically, the existence of a logical indepen-
dent axiomatization of the theory 𝑇 corresponds to the existence of a filter 
independent set of generators for the corresponding filter 𝐹. 

Both these algebraic notions are special cases of a general notion of alge-
braic independence introduced by Edward Marczewski in the late fifties 
(Marczewski 1958). 

There are many equivalent ways of defining independence in algebra. We 
can say that the set X of elements of an algebra 𝐴 is independent if the sub-
algebra generated by 𝑋 is free in the variety generated by 𝐴. This means that 
independent sets are the basis of free algebras. 

We can also formulate an equivalent definition operating on polyno-
mials. The set 𝑋 of elements of an algebra 𝐴 is independent if and only if for 
any polynomials 𝑝 and 𝑞 of the algebra 𝐴 and any system 𝑏1, … , 𝑏𝑛of ele-
ments from 𝑋 the equality 𝑝(𝑏1, … , 𝑏𝑛) = 𝑞(𝑏1, … , 𝑏𝑛) implies the equation 
𝑝(𝑎1, … , 𝑎𝑛) = 𝑞(𝑎1, … , 𝑎) for every a 𝑎1, … , 𝑎𝑛 from 𝐴. 

Many problems concerning this notion of independence were intensively 
investigated by Marczewski and his followers: Mycielski, Narkiewicz, 
Świerczkowski, Głazek and others (so called Wroclaw Mathematical School), 
which resulted in more than 50 articles on the theory of free algebras only 
in the late fifties and sixties see e.g. Marczewski 1966). There are also some 
papers of Tarski concerning this topic (e.g. Jónson, Tarski 1961). 

Marczewski's notion of independence contains, as specific cases, many 
notions of independence, considered in different areas of mathematics. 
Apart from previously mentioned filter independence corresponding to lo-
gical independence, the independence of vectors in linear spaces or the in-
dependence of subsets of boolean algebras. 

A subset 𝐴 of a boolean algebra 𝐵 is independent if and only if for any 
system 𝑎1, … , 𝑎𝑛 of different elements from 𝐴 and any function 𝜖: 𝐵 → 𝐵 such 
that 𝜖𝑎 ∈ {𝑎, −𝑎} for every 𝑎 ∈ 𝐴 we have 𝜖𝑎1 ∧ … ∧ 𝜖𝑎𝑛 ≠ 0. Independent 
subsets of boolean algebras have been intensively investigated not only in 
algebra (e.g. Sikorski 1960) but in topology as well (e.g. Koppelberg 1989). 
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The particular emphasis was given to a special question: given a boolean al-
gebra 𝐵, for which cardinals 𝜅 does 𝐵 have a free subalgebra of cardinality 
𝜅. Interesting answers to this question were provided by Shelah, Balcar and 
Franek (Shelah 1980, Balcar and Franek 1982). 

As it was mentioned before, the question concerning the existence of an 
absolutely independent set of axioms of a given classical theory has its alge-
braical counterpart in boolean algebras, but is connected not with indepen-
dent sets of generators of the whole algebra but with independent sets of 
generators of its filters.  

The notion of independence in boolean algebras is also strictly connected 
with the notion of probabilistic independence. 

It is well known that two events 𝐴 and 𝐵 are independent if the probabi-
lity of the fact that they both occur simultaneously is equal to the product of 
probabilities of their occurrences. Two random variables, 𝑋 and 𝑌, are said 
to be independent if any event defined in terms of 𝑋 is independent of any 
event defined in terms of 𝑌. Algebraically, it means that they generate two 
independent 𝜎-algebras. Two 𝜎-algebras on a set 𝑋 are independent if any 
element of one of them is independent from the set of elements of the other 
in the Boolean algebra 𝑃(𝑋). 

To the independence of events, or rather elementary situations there 
were devoted some works of Wolniewicz, who dealt with them from the phi-
losophical point of view. He tried to formalize, by applying algebraic tools, 
Wittgenstein's idea of logical atomism, assuming only two basic ontological 
properties of elementary situations - their atomicity and mutual indepen-
dence (Wolniewicz 1999). 

There is also an interesting link between quantum randomness and ab-
solute independence in classical logic (which is a logical counterpart of alge-
braic independence in boolean algebras). It was shown (Paterek, Kofler and 
others 2010) that quantum states from a certain class encode mathematical 
axioms and that corresponding measurements test the truth-values of ma-
thematical propositions. Quantum mechanics imposes an upper limit on the 
amount of information carried by a quantum state, limiting in that way the 
information content of the set of axioms. Whenever a proposition is absolu-
tely independent of the axioms encoded in the state, the measurement asso-
ciated to the proposition gives random outcomes. Otherwise, the measure-
ment outcome is definite. This shines new light on the nature of quantum 
randomness, the roots of which are still not fully known. 
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Logiczna niezależność, jej algebraiczne uogólnienie  
i zastosowania  

Streszczenie 

W pracy przedstawiamy krótką historię pojęcia logicznej niezależności, jej algebraicznego 
odpowiednika i jego uogólnienia do niezależności algebraicznej, a także podajemy przykłady 
wykorzystania niezależności w rozmaitych dziedzinach. 

Słowa kluczowe: logiczna niezależność, niezależna aksjomatyka, niezależność alge-
braiczna, algebry wolne. 

 


