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Abstract
At school, trigonometry is constructed traditionally starting from the defini-
tion of trigonometric functions in right triangle and generalizing those defi-
nitions for arbitrary angles in rectangular coordinates without using vector
tools.

The method of construction of trigonometry using the scalar product was
presented in the article [1] published in 1961 in Géttingen. This work is

brief and clear.

1. Scalar product of vectors

In linear space V over field of real numbers, the scalar product o is
defined as a function o:V x V — R which for arbitrary a,b € V and
arbitrary k,l € R fulfils the following conditions:
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(3) A#0 = dod>0.
The norm (the length) of vector @ is defined as:
(4) @l = Va-a,
whereas the distance between the vectors @ and b is described by

5)  pl@b)

The unit vector for the vector @ is enterpreted as

@ — b)

—_

S

(6) do = 7= -
|l
1

al

1

al

=1
K

The following formulae are fulfilled:

— —

Then |dy| = = -|d a =1

(7) af* =d-a,  d=ldl-do.
Traditionally, the scalar product of two vector is defined as
8)  dob=al-[b]-cos(@,b)
For teaching at school, the scalar product in rectangular coordinates on
a plane can be defined as follows:
If @ = (ag,a,), b= (bsb,), then @ob=ayb,+ ayb,.

The csalar product defined in such a manner fulfills the conditions (1)—

(3)-
In a linear space V' with the scalar product ,, o”, the following rules
assert:

the parallelogram rule:
@+ 5] + |a — | = 2(a* + [5]2);
— the Pythagorean theorem:
ifdob=0, then |d+0b>=|a>+ b

The above-mentioned rules follow immediately from (1), (2) and (4).
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Let us introduce the following notation (in rectangular coordinates
on a plane) (Fig.1):

—a is the vector opposite to the vector a;

a* is the vector perpendicular to the vector @ such that |a*| = |a|.

Let @=a@—b (Fig. 2). Then, accoding to the properties (1), (2) and
(7), we have:

—, —,

(@—b)2=(@—b)o(@—b)=a2—2(Tob)+b2=

= [d@]* - 2(@ = b) + [B]? = &% = |&,
therefore,

(9) @ob=3(la]* + B> - |e?).

For non-vanishing vectors @ and b, we get from (7)

(10) by = ———— - (| + b2 - |2) .
2la - |1

Moreover, we have
(11)  dyoby=dgoby,  (d3)* = —do.

On the basis of (10), we obtain for the unit vector:
(12) €o€=1, if =0,

(13) €oe*=0, if |d=v2.
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2. Definition and basic properties of trigonometric
functions

The number a o l;o can be interpreted as the cosine function of the angle
v between the vectors @y and by (Fig. 3), i.e.

(14) cosy = cos(dy, I;O) = Gy o by.

Fig. 3

It can be seen from (10) that
(15) cos(—7) = cos(by, @) = cos(dy, by) = cos~.
Hence, the cosine function is an even function. It is evident that
(16)  d@ob=al-[b]- (@ oby) =|al-|b| - cos.

The sine function of the angle v between the vectors dp and l;o is
defined as follows:

(17) siny = sin(@y, by) = g © bo.
From (11) we get:
@g obo = (d@3)" obg = (=do) obg = (b o),
hence (see Fig. 4), sin(b;, @) = — sin(@g, by) or

(18) sin(—y) = —sin~y.
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Therefore, the sine function is an odd function.

- >
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—»
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Fig. 4

For the unit vectors €1, €5, we have:

(19) If o = (€1, €), then {

Now, we prove that
(20) sin? ¢ + cos? o = 1.

Proof:

sin ¢ = sin(

cos p = cos(

—

Fig. 5

- =

€1 €2> = €1 ° €,

)
ok o
1,€2> = €1 °€a.
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Let by = pdy + qdg (Fig. 5). Then dg o by = @ © (pdo + qag) = p, as

60 060: 1, 50 06820;

—
*

ag o by o (pio + qdg) = q, gdyz dj edo =0, dj =@y = 1.

According to definitions (14) and (17) we obtain

sin? o + cos® p = (a@; 050)2 + (dp 050)2 =¢+p’ = |50| =1
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3. Trigonometric functions in right-angled triangle

In a right-angled triangle based on vectors @ i b (Fig. 6.), we have

Fig. 6

c=a+b, &1 = |a]® + [b]?,

aoc=g(laf + |a? — [b]*) = 5(|a]* + |a]*) = |a]®
or

aoc=(la|-do)o(|d-co)=lal-|d-(doec) = la*,
therefore

Similarly,
&= Y2+ | — [al2) = S5 + B = [
or

boc=(|b]-bo) o (|- G) = |a|-|d- (by o &) = |b] -|e] - (@5 » &) =

€]

(22) 6{; 050 - 15

€]

Taking into account formulae (21), (22) and defifnitions (14), (17), we
get
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—

al 14

(23) cosa = — sina = —

el la
The tangent and cotangent functions are defined as follows:

sin « COS «
tana = , cotana = — .
COS «v sin v

Then on the basis of (23) in a right-angled triangle we obtain

N

24 tana = u cotano = |
(

!
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Definitions (14) and (17) allow us to obtain easily the reduction for-
mulae and formulae describing trigonometric functions of the sum and

difference of angles and to ground the sine and cosine theorems.

4. Reduction formulae

Consider the unit vectors shown in Fig. 7:
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Fig. 7

From definitions (14) and (17) we have:

(T T T
sin (5 — = sin(éy, €]) = €5 o€, = €] o€y = Cos ¢,
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sin <g +<,0> = 8in(€y, €y ) = €] o€y = €1 oGy = cos ,
sin (1 — @) = sin(éy — €1) = &5 o (=€) = —(€5 0 €}) =
= —((€3)" o) = —((=€2) o €]) = & o0& =sin,
sin (7 + ) = sin(€1, =€) = €7 o (=€) = —(€] ° &) = —singp,

3
sin (iw - gp) = sin(@y, —€;) = €5 o (—€;) = — (€] 0 &) = —cos p,

3
sin (57r—|— gp) = sin(e), —€5) = €} o (—€y) = —(€] o) = —cos p,
sin (21 — @) = sin(ey, €1) = €, o€ = €] o€y = sinp,

™ o - % o% o .
cos (5 —gp) = c0os(@y, €]) =y 0] = €] 0y =singy

cos (g—kcp) = cos(€l,€3) = €1 o€y = €] o(&)" =

=€) o(—€2) = —(e] oér) = —sin g,
cos (T — ) = cos(€y, —€)) = €y 0 (—€1) = —(€} 0 €y) = — cos ¢,
cos (T + ) = cos(€], —€) = €1 o (—€) = —(€] °€y) = — cos ,

3
cos (§7r — gO) = cos(€y, —€7) = € o (—€]) = — (€] o) = —sinp,

3 = o - * — —x%
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5. The trigonometric functions of sum and difference
of angles

Let &) = pé5 4+ qe;  (Fig. 8).

> ¢
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Fig. 8
Then
63 0(?1 = P = COS (xg, é’g‘oéi:q:sinozg.
Hence,
(25) €] = €3 - Cos g + €5 - sin ay.

Multiplying the above equality scalarwise by €5, we obtain
(26) 51 o 52 = (52 o 52) COS (vg + (52 o é’ék) sin 9.
As &) 0@ = cos(as + ag), (€ o€&3) = cosay, then
Gyoly =€y o(€y) =€y o(—€3) =—(€y o€3) =—sinay
and, hence, Eq. (26) takes the form
(27) cos(a + aip) = cos - COs g — sin vy - 8in .

For the expression sin(a; + as), we obtain on the basis of (25)
Sil’l(Oél + Oég) = Sin<€2, €1> = 52* o éi = é;k o (53 - COSQig + égk - sin 062) =
= (€ o €3) - cos g + (€5 o €5) - sin a.

As é;k 053 = SiIlOél, é;k Oéﬁ; = 52 oé}) = cos a, then
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(28) sin(ag + ag) = sinay - cos ag + cos a - sin .

Using Eqs. (27) and (28) and taking into account the even property
of cosine function and odd property of sine function, we obtain

sin(ag — ) = sinfag + (—ay)] = sinay - cos(—ay) + cos ag - sin(—ay)
or
(29) sin(ag — aq) = sinay - sinay — cos ag - sin o
cos(ag—ay) = cos[ag+(—ay)] = cos ay-cos(—ay ) —sin ag-sin(—ay )
or

(30) cos(ag — ) = cos g - COS (g - COS (1 + Sin v - Sin .

6. The cosine theorem and the sine theorem

Consider the following triangle (Fig. 9)

o -
> >
b S c
¢
_» »
a
Fig. 9

Since &= b — a, then

2= =0b-a)?=0*—2Gb)+&=[b>—2(G-b) + |72
Hence, on the basis of Eq. (8), we obtain the cosine theorem
(31) @2 = [al? + |6 — 2/a] - b] - cos .

The sine theorem can be obtained as follows.

Asd=b-7¢ (Fig. 9), then we can multiply both sides of this equality
scalarly by the vector —bg:

do(=55) = (B— ) o (~b5) = —(F o Bg) + o b
Therefore, . . o
—doby =Coby, as boby =0.

Introducing the unit vectors, we get
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(32)  —lal - (d@ obg) = 1|a - (G o bg).

Since

Gooby = a5 (b)) = @5 o (~bo) = —G5 oby = —sin(do,bo) =
—sm-y,
then

50 o gg = gg o 50 = Sin<go, 50) = sin a.
Hence, on the basis of (32), we have:
—ld| - (—siny) = |c] - sina.

From this equation, the sine theorem follows:

G I

Remark.
The functions sin and cos can also be introduced using the Schwarz
theorem:

(34) |d@ ob| < |d| - |b].

Proof:
For an arbitrary number A € R we have:

0 < (MG —b)% =A@ — 2\(@ o b) + b2

or
@ A2 = 2(T o b)A + |b]> > 0.

Because this quadratic polynomial (in ) is always non-negative,
then
A =4(dob) —4|a?*- |b]* <0,

hence,

(@ob)* < laf- [b]* or y/(a-b)* < lal- o]

Finally, we get |a@ o b| < |a| - b|.
Expressing the non-vanishing vectors @ and b in terms of unit vectors,
we obtain

[(|al - @) = (18] - bo) < |l - [B],
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whence
|600b0|§1, —1S§00b0§1.

The number d; o I;O is interpreted as the cosine of the angle between the
vectors dg and by:
COS<50, b0> = ao o bo.

The Schwarz theorem for the vectors a*, b has the following form:
@ o b] < |a*| - |bl,
whence, similarly to the preceding consideration, we get
—1 < oby < 1.

The number @ o by is interpreted as the sine of the angle between the
vectors dy and by, i.e.

SiIl<C?0, go) = C_L)E)k o g().
It should be mentioned that the proposed vector approach to trigonom-

etry can be also extended on spherical trigonometry [1].
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