## $\Psi_{\mathcal{I}}$ -DENSITY TOPOLOGY

## Ewa Łazarow<sup>a</sup>, Agnieszka Vizváry<sup>b</sup>

<sup>a</sup>Institute of Mathematics
Academia Pomeraniensis in Słupsk
ul. Arciszewskiego 22b, 62-200 Słupsk, Poland
e-mail: elazarow@toya.net.pl

<sup>b</sup>Faculty of Mathematics and Computer Science
University of Łódź
ul. Banacha 22, 90-238 Łódź, Poland
e-mail: vizvary@gazeta.pl

**Abstract.** The purpose of this paper is to study the notion of a  $\Psi_{\mathcal{I}}$ -density point and  $\Psi_{\mathcal{I}}$ -density topology, generated by it analogously to the classical  $\mathcal{I}$ -density topology on the real line. The idea arises from the note by Taylor [3] and Terepeta and Wagner-Bojakowska [2].

We introduce the following notation:

- $\mathbb{N}$  the set of positive integers,
- $\mathbb{R}$  the set of real numbers,
- $\mathbb{R}_+$  the set of positive real numbers,
- $\mathcal{S}$   $\sigma$ -algebra of subsets of  $\mathbb{R}$  having the Baire property,
- $\mathcal{I}$   $\sigma$ -ideal of subsets of  $\mathbb{R}$  of the first category,
- $\mathcal{C}$  the family of all nondecreasing continuous functions  $\psi: \mathbb{R}_+ \to (0,1]$  such that  $\lim_{x\to 0^+} \psi(x) = 0$ .

We say that two sets A and B are equivalent  $(A \sim B)$  if  $A \triangle B \in \mathcal{I}$ , where  $A \triangle B$  is the symmetric difference of A and B. Additionally, if  $A \subset \mathbb{R}$ ,  $\alpha \in \mathbb{R}$  and  $x_0 \in \mathbb{R}$ , then  $-A = \{x \in \mathbb{R} : -x \in A\}$ ,  $\alpha \cdot A = \{\alpha \cdot x \in \mathbb{R} : x \in A\}$ ,  $A' = \mathbb{R} \setminus A$  and  $A - x_0 = \{x \in \mathbb{R} : x + x_0 \in A\}$ . For each  $x \in \mathbb{R}^+$ , let  $[x] = \max\{n \in \mathbb{N} \cup \{0\} : n \leq x\}$ .

**Definition 1.** [1] We say that 0 is a point of  $\mathcal{I}$ -density of a set  $A \in \mathcal{S}$  if for each increasing sequence of positive integers  $\{n_m\}_{m\in\mathbb{N}}$  there exists a subsequence  $\{n_{m_p}\}_{p\in\mathbb{N}}$  such that

$$\{x: \chi_{n_m, A\cap[-1,1]}(x) \not\longrightarrow 1\} \in \mathcal{I}.$$

A point  $x_0$  is a point of  $\mathcal{I}$ -density of a set  $A \in \mathcal{S}$  if 0 is a point of  $\mathcal{I}$ -density of the set  $A - x_0$ . A point  $x_0$  is a point of  $\mathcal{I}$ -dispersion of a set  $A \in \mathcal{I}$  if  $x_0$  is a point of  $\mathcal{I}$ -density of the set  $\mathbb{R} \setminus A$ .

Let

$$\Phi(A) = \{x \in \Re : x \text{ is } \mathcal{I}\text{-density point of } A\}$$

for  $A \in \mathcal{S}$ , and  $\mathcal{T}_{\mathcal{I}} = \{A \in \mathcal{S} : A \subset \Phi(A)\}$ . We recall the following theorems.

**Theorem 1.** [1] 0 is a point of  $\mathcal{I}$ -density of a set  $A \in \mathcal{S}$  if and only if for each sequence  $\{t_n\}_{n\in\mathbb{N}} \subset \mathbb{R}_+$  such that  $\lim_{n\to\infty} t_n = +\infty$  there exists a subsequence  $\{t_{n_k}\}_{k\in\mathbb{N}}$  such that

$$\{x \in [-1,1]: \chi_{t_{n_t}:A\cap[-1,1]}(x) \not\longrightarrow 1\} \in \mathcal{I}.$$

Theorem 2. [1] For any  $A \in \mathcal{S}$  and  $B \in \mathcal{S}$ ,

- i) if  $A \subset B$ , then  $\Phi(A) \subset \Phi(B)$ ,
- ii)  $\Phi(\emptyset) = \emptyset$ ,  $\Phi(\mathbb{R}) = \mathbb{R}$ ,
- iii) if  $A \sim B$ , then  $\Phi(A) = \Phi(B)$ ,
- iv)  $\Phi(A \cap B) = \Phi(A) \cap \Phi(B)$ .
- v)  $A \sim \Phi(A)$ .

**Theorem 3.** [1]  $\mathcal{T}_{\mathcal{I}}$  is a topology on the real line stronger than the Euclidean topology.

**Definition 2.** Let  $\psi \in \mathcal{C}$ .

- I. We say that 0 is a point of right-hand  $\psi_{\mathcal{I}}$ -dispersion of a set A from  $\mathcal{S}$  if for each sequence  $\{(h_n, m_n)\}_{n \in \mathbb{N}}$  with the following properties
  - $\{(h_n, m_n)\}_{n \in \mathbb{N}} \subset \mathbb{R}_+ \times (\mathbb{N} \cup \{0\}),$
  - the sequence  $\{h_n\}_{n\in\mathbb{N}}$  is decreasing,
  - $\lim_{n\to\infty} h_n = 0$ ,
  - for each  $n \in \mathbb{N}$ ,  $m_n \in \{0, \dots, \left[\frac{1}{\psi(h_n)}\right] 1\}$

there exists a subsequence  $\{(h_{n_k}, m_{n_k})\}_{k \in \mathbb{N}}$  such that

$$\{x \in [0,1]; \ \chi_{A_k}(x) \not\longrightarrow 0\} \in \mathcal{I},$$

where

$$A_k = \left(\frac{1}{h_{n_k}\psi(h_{n_k})} \cdot A - m_{n_k}\right) \cap [0, 1].$$

- II. We say that 0 is a point of left-hand  $\psi_{\mathcal{I}}$ -dispersion of a set  $A \in \mathcal{S}$  if 0 is a right-hand point of  $\psi_{\mathcal{I}}$ -dispersion of the set -A.
- III. We say that 0 is a point of  $\psi_{\mathcal{I}}$ -dispersion of a set  $A \in \mathcal{S}$  if 0 is a point of right-hand and left-hand  $\psi_{\mathcal{I}}$ -dispersion of the set A.
- IV. We say that  $x_0 \in \mathbb{R}$  is a point of  $\psi_{\mathcal{I}}$ -dispersion of a set  $A \in S$  if 0 is a point of  $\psi_{\mathcal{I}}$ -dispersion of the set  $A x_0$ .
- V. We say that  $x_0 \in \mathbb{R}$  is a point of  $\psi_{\mathcal{I}}$ -density of a set  $A \in S$  if  $x_0$  is a point of  $\psi_{\mathcal{I}}$ -dispersion of the set  $\mathbb{R} \setminus A$ .

**Lemma 1.** Let  $\psi \in \mathcal{C}$  and  $\{(a_n, b_n)\}_{n \in \mathcal{N}}$  be a sequence of open intervals such that  $\lim_{n \to \infty} b_n = 0$  and, for each  $n \in \mathbb{N}$ ,

- i)  $0 < a_{n+1} < b_{n+1} < a_n$ ,
- ii)  $b_{n+1} \leq b_n \psi(b_n)$ ,
- iii)  $b_n a_n < b_n \psi(b_n)$ .

Let  $G = \bigcup_{n=1}^{\infty} (a_n, b_n)$ . Then, for each sequence of positive real numbers  $\{h_n\}_{n \in \mathbb{N}}$  such that  $\lim_{n \to \infty} h_n = 0$  there exists a subsequence  $\{h_{n_k}\}_{k \in \mathbb{N}}$  satisfying the condition

$$\left\{ \ x \in [0,1] : \chi_{\frac{1}{hn_k}.G \cap [0,1]}(x) \not\longrightarrow 0 \right\} \in \mathcal{I}.$$

**Proof.** Let  $\{h_n\}_{n\in\mathbb{N}}$  be an arbitrary sequence of positive real numbers such that  $\lim_{n\to\infty}h_n=0$ . We can assume that, for each  $n\in\mathbb{N}$ , there exists  $p_n\in\mathbb{N}$  such that

$$b_{p_n+1} < h_n \le b_{p_n}.$$

We shall consider two cases.

a) There exists positive integer  $n_0$  such that, for each  $n \geq n_0$ ,

$$b_{p_n+1} \le h_n \le a_{p_n}.$$

Assume that  $n_0 = 1$ . We consider a sequence  $\left\{\frac{1}{h_n} \cdot b_{p_n+1}\right\}_{n \in \mathbb{N}}$ . Then there exist  $\alpha \in [0,1]$  and an increasing sequence of positive integers  $\{n_k\}_{k \in \mathcal{N}}$  such that

$$\lim_{k \to \infty} \frac{1}{h_{n_k}} \cdot b_{p_{n_k} + 1} = \alpha.$$

Hence

$$0 \le \lim_{k \to \infty} \frac{1}{h_{n_k}} \cdot \left( b_{p_{n_k}+1} - a_{p_{n_k}+1} \right) \le \lim_{k \to \infty} \frac{1}{h_{n_k}} \cdot b_{p_{n_k}+1} \cdot \psi(b_{p_{n_k}+1}) = 0$$

and

$$\lim_{k \to \infty} \frac{1}{h_{n_k}} \cdot a_{p_{n_k} + 1} = \alpha.$$

By the above and

$$0 \le \lim_{k \to \infty} \frac{1}{h_{n_k}} \cdot b_{p_{n_k}+2} \le \lim_{k \to \infty} \frac{1}{h_{n_k}} \cdot b_{p_{n_k}+1} \cdot \psi(b_{p_{n_k}+1}) = 0,$$

we infer that

$$\left\{ \ x \in [0,1] : \chi_{\frac{1}{h_{n_k}} \cdot G \cap [0,1]}(x) \not\longrightarrow 0 \right\} \subset \{0,\alpha,1\}.$$

b) Now we assume that, for each  $n \in \mathbb{N}$ , there exists  $k_n \in \mathbb{N}, k_n \geq n$  such that

$$a_{p_{n_k}} < h_{k_n} < b_{p_{n_k}}.$$

Then

$$1 \le \lim_{k \to \infty} \frac{1}{h_{k_n}} \cdot b_{p_{n_k}} \le \lim_{k \to \infty} \frac{1}{a_{p_{n_k}}} \cdot b_{p_{n_k}} \le \lim_{k \to \infty} \frac{1}{b_{p_{n_k}} (1 - \psi(b_{p_{n_k}}))} \cdot b_{p_{n_k}} = 1$$

and

$$\lim_{k \to \infty} \frac{1}{h_{k_n}} \cdot \left( b_{p_{n_k}} - a_{p_{n_k}} \right) \le \lim_{k \to \infty} \frac{1}{h_{k_n}} b_{p_{n_k}} \psi(b_{p_{n_k}}) = 0.$$

Hence

$$\lim_{k \to \infty} \frac{1}{h_{k_n}} \cdot a_{p_{n_k}} = 1.$$

Additionaly

$$\lim_{k\to\infty}\frac{1}{h_{k_n}}\cdot b_{p_{n_k}+1}\leq \lim_{k\to\infty}\frac{1}{h_{k_n}}\cdot b_{p_{n_k}}\psi(b_{p_{n_k}})=0,$$

therefore

$$\left\{ \ x \in [0,1] : \chi_{\frac{1}{hn_k} \cdot G \cap [0,1]}(x) \not\longrightarrow 0 \right\} \subset \{0,1\}. \qquad \qquad \Box$$

**Theorem 4.** Let  $\psi \in \mathcal{C}$ . If 0 is a point of right-hand  $\psi_{\mathcal{I}}$ -dispersion of a set  $A \in S$ , then it is a point of a right-hand  $\mathcal{I}$ -dispersion of the set A.

**Proof.** Let  $\{t_n\}_{n\in\mathbb{N}}$  be a decreasing sequence of positive real numbers such that  $\lim_{n\to\infty}t_n=0$ . We may assume that, for each  $n\in\mathbb{N}$ , there exists a positive  $h_n$  such that

$$t_n = h_n \psi(h_n).$$

Then  $\lim_{n\to\infty} h_n = 0$ . Let, for each  $n \in \mathbb{N}$ ,  $m_n = 0$ .

The sequence  $\{(h_n, m_n)\}_{n \in \mathbb{N}}$  satisfies the conditions of Definition 2, therefore there exists a sequence  $\{(h_{n_k}, m_{n_k})\}_{k \in \mathbb{N}}$  such that

$$\limsup_{k \to \infty} \left( \frac{1}{h_{n_k} \psi(h_{n_k})} \cdot A - m_{n_k} \right) \cap [0, 1] \in \mathcal{I}.$$

Ву

$$\limsup_{k \to \infty} \left( \frac{1}{h_{n_k} \psi(h_{n_k})} \cdot A - m_{n_k} \right) \cap [0, 1] = \limsup_{k \to \infty} \left( \frac{1}{t_{n_k}} \cdot A \right) \cap [0, 1],$$

the proof is complete.

**Theorem 5.** Let  $\psi \in \mathcal{C}$ . There exists an open set G such that  $\theta$  is a point of right-hand  $\mathcal{I}$ -dispersion of the set G and  $\theta$  is not a point of right-hand  $\psi_{\mathcal{I}}$ -dispersion of the set G.

**Proof.** We shall define a sequence of open intervals  $\{(a_n,b_n)\}_{n\in\mathbb{N}}$  such that

- i)  $0 < a_{n+1} < b_{n+1} < a_n$
- ii)  $b_{n+1} < \min\{\frac{1}{n}, b_n \psi(b_n)\},\$
- iii)  $b_n a_n = b_n \psi(b_n)$ ,
- iv)  $\frac{1}{\psi(b_n)} \in \mathbb{N}$

for each  $n \in \mathbb{N}$ .

Let  $b_1$  be a positive real number such that  $\psi(b_1) \in \{\frac{1}{2}, \frac{1}{3}, ...\}$ . Let  $n \in \mathbb{N}$ . Assume that we have defined positive real numbers  $b_1, ..., b_n$ . Now we shall define a positive  $b_{n+1}$  fulfilling the following properties:

$$\psi(b_{n+1}) \in \left\{ \frac{1}{2}, \frac{1}{3}, \dots \right\} \quad \text{and} \quad b_{n+1} < \min \left\{ \frac{1}{n}, b_n \psi(b_n) \right\}.$$

For each  $n \in \mathbb{N}$ , we put  $a_n = b_n - b_n \psi(b_n)$ . Then, for each  $n \in \mathbb{N}$ ,

$$a_{n-1} = b_{n-1}(1 - \psi(b_{n-1})) \ge b_{n-1} \cdot \frac{1}{2} \ge b_{n-1} \cdot \psi(b_{n-1}) > b_n.$$

Set 
$$G = \bigcup_{n=1}^{\infty} (a_n, b_n)$$
.

By Lemma 1, 0 is a point of right-hand  $\mathcal{I}$ -dispersion of the set G. Now we prove that 0 is not a point of right-hand  $\psi_{\mathcal{I}}$ -dispersion of the set G.

Let  $\{(h_n, m_n)\}_{n \in \mathbb{N}}$  be a sequence such that  $h_n = b_n$ ,  $m_n = \left[\frac{1}{\psi(h_n)}\right] - 1$  for each  $n \in \mathbb{N}$ , and let  $\{(h_{n_k}, m_{n_k})\}_{k \in \mathbb{N}}$  be an arbitrary subsequence of  $\{(h_n, m_n)\}_{n \in \mathbb{N}}$ . We shall show that

$$(0,1) \subset \limsup_{k \to \infty} \left( \frac{1}{h_{n_k} \psi(h_{n_k})} \cdot G - m_{n_k} \right).$$

Let  $k \in \mathbb{N}$ . Then

$$\frac{1}{h_{n_k}\psi(h_{n_k})} \cdot G - m_{n_k} \supset \frac{1}{h_{n_k}\psi(h_{n_k})} \cdot (a_{n_k}, b_{n_k}) - m_{n_k} =$$

$$\left(\frac{1}{b_{n_k}\psi(b_{n_k})}(b_{n_k}-b_{n_k}\psi(b_{n_k}))-\left[\frac{1}{\psi(b_{n_k})}\right]+1,\frac{1}{b_{n_k}\psi(b_{n_k})}\cdot b_{n_k}-\left[\frac{1}{\psi(b_{n_k})}\right]+1\right)=0$$

$$= \left(\frac{1}{\psi(b_{n_k})}(1 - \psi(b_{n_k})) - \frac{1}{\psi(b_{n_k})} + 1, \frac{1}{\psi(b_{n_k})} - \frac{1}{\psi(b_{n_k})} + 1\right) = (0, 1).$$

By the above, 0 is not a point of right-hand  $\psi_{\mathcal{I}}$ -dispersion of the set G.

**Theorem 6.** Let  $\psi \in \mathcal{C}$ . There exists an open set G such that  $\theta$  is an accumulation point of the set G and  $\theta$  is a point of right-hand  $\psi_{\mathcal{I}}$ -dispersion of the set G

**Proof.** We define sequences of real positive numbers  $\{a_n\}_{n\in\mathbb{N}}$  and  $\{b_n\}_{n\in\mathbb{N}}$  such that

- 1)  $b_{n+1} \leq \frac{1}{n} a_n \psi(a_n),$
- 2)  $0 < b_n a_n \le \frac{1}{n} a_n \psi(a_n),$ for each  $n \in \mathbb{N}$ , and

3) 
$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n = 0.$$

Let  $b_1$  be an arbitrary real positive number. Let  $n \in \mathbb{N}$ . Assume that we have defined numbers  $b_1, ..., b_{n-1}$  and  $a_1, ..., a_{n-1}$ . Let  $b_n$  be a real positive number such that  $b_n \leq \frac{1}{n-1}a_{n-1}\psi(a_{n-1})$ . By the continuity of a function  $g(x) = x + \frac{1}{n}x\psi(x)$  and by  $b_n < b_n + \frac{1}{n}b_n\psi(b_n)$ , there exists  $a_n$  such that  $a_n < b_n$  and  $a_n + \frac{1}{n}a_n\psi(a_n) = b_n$ .

Set  $G = \bigcup_{n=1}^{\infty} (a_n, b_n)$ . We shall show that 0 is a point of right-hand  $\psi_{\mathcal{I}}$ -dispersion of G. Let  $\{(h_n, m_n)\}_{n \in \mathbb{N}}$  be an arbitrary sequence satisfying the conditions of Definition 2. We consider the following possibilities:

a) Assume that there exists a subsequence  $\{(h_{n_k}, m_{n_k})\}_{k \in \mathbb{N}}$  such that for each  $k \in \mathbb{N}$ ,  $m_{n_k} = 0$ . Then, in view of Lemma 1, 0 is a point of a right-hand  $\mathcal{I}$ -dispersion of G. Since  $\lim_{k \to \infty} h_{n_k} \psi(h_{n_k}) = 0$ , we may choose a subsequence  $\{h_{n_{k_p}}\}_{n \in \mathbb{N}}$  such that

$$\limsup_{p\to\infty}\left(\frac{1}{h_{n_{k_p}}\psi(h_{n_{k_p}})}G-m_{n_{k_p}}\right)\cap[0,1]=\limsup_{p\to\infty}\frac{1}{h_{n_{k_p}}\psi(h_{n_{k_p}})}\cdot G\cap[0,1]\in\mathcal{I}.$$

b) Assume that there exists a subsequence  $\{(h_{n_k}, m_{n_k})\}_{k \in \mathbb{N}}$  such that

$$[m_{n_k}h_{n_k}\psi(h_{n_k}),(m_{n_k}+1)h_{n_k}\psi(h_{n_k})]\cap G=\emptyset$$

for each  $k \in \mathbb{N}$ .

Then, for each  $k \in \mathbb{N}$ ,  $\left(\frac{1}{h_{n_k}\psi(h_{n_k})} \cdot G - m_{n_k}\right) \cap [0,1] = \emptyset$ . Hence

$$\limsup_{k \to \infty} \left( \frac{1}{h_{n_k} \psi(h_{n_k})} \cdot G - m_{n_k} \right) \cap [0, 1] = \emptyset.$$

c) If none of the cases a) and b) is true, then there exists  $n_0 \in \mathbb{N}$  such that for each  $n \geq n_0, m_n \geq 1$  and

$$[m_n h_n \psi(h_n), (m_n+1)h_n \psi(h_n)] \cap G \neq \emptyset.$$

We can assume that for each  $n \in \mathbb{N}$  there exists  $r_n \in \mathbb{N}, r_n > 1$  such that

$$[m_n h_n \psi(h_n), (m_n + 1) h_n \psi(h_n)] \cap (a_{r_n}, b_{r_n}) \neq \emptyset.$$

Therefore

$$a_{r_n} \le (m_n + 1)h_n\psi(h_n) \le \left\lceil \frac{1}{\psi(h_n)} \right\rceil h_n\psi(h_n) \le h_n$$

and, by

$$b_{r_n+1} \le \frac{1}{r_n} a_{r_n} \psi(a_{r_n}) \le 1 \cdot h_n \psi(h_n) \le m_n h_n \psi(h_n),$$

we have

$$[m_n h_n \psi(h_n), (m_n + 1) h_n \psi(h_n)] \cap \bigcup_{j=r_n+1}^{\infty} (a_j, b_j) = \emptyset.$$

Additionally, by  $a_{r_n-1} > h_n$ ,

$$[m_n h_n \psi(h_n), (m_n + 1) h_n \psi(h_n)] \cap \bigcup_{j=1}^{r_n - 1} (a_j, b_j) = \emptyset.$$

Let  $n \in \mathbb{N}$  and

$$x_n \in [m_n h_n \psi(h_n), (m_n + 1) h_n \psi(h_n)] \cap (a_{r_n}, b_{r_n}).$$

Then  $\frac{1}{h_n\psi(h_n)}\cdot x_n - m_n \in [0,1]$ , for all  $n \in \mathbb{N}$ . Thus, there exists  $\alpha \in [0,1]$  and a subsequence  $\left\{\frac{1}{h_{n_k}\psi(h_{n_k})}x_{n_k} - m_{n_k}\right\}_{k\in\mathbb{N}}$  such that

$$\lim_{k \to \infty} \left( \frac{1}{h_{n_k} \psi \left( h_{n_k} \right)} x_{n_k} - m_{n_k} \right) = \alpha.$$

Ву

$$0 \leq \lim_{k \to \infty} \frac{1}{h_{n_k} \psi(h_{n_k})} \cdot (b_{r_{n_k}} - a_{r_{n_k}})$$

$$\leq \lim_{k \to \infty} \frac{1}{h_{n_k} \psi(h_{n_k})} \cdot \frac{1}{r_{n_k}} \cdot a_{r_{n_k}} \psi(a_{r_{n_k}})$$

$$\leq \lim_{k \to \infty} \frac{1}{h_{n_k} \psi(h_{n_k})} \cdot \frac{1}{r_{n_k}} \cdot h_{n_k} \psi(h_{n_k})$$

$$= \lim_{k \to \infty} \frac{1}{r_{n_k}} = 0,$$

we infer that

$$\lim_{k \to \infty} \left( \frac{1}{h_{n_k} \psi(h_{n_k})} b_{r_{n_k}} - m_{n_k} \right) = \alpha$$

and

$$\lim_{k\to\infty}\left(\frac{1}{h_{n_k}\psi(h_{n_k})}a_{r_{n_k}}-m_{n_k}\right)=\alpha.$$

Thus

$$\limsup_{k \to \infty} \left( \frac{1}{h_{n_k} \psi(h_{n_k})} \cdot G - m_{n_k} \right) \cap [0, 1] \subset \{\alpha\}.$$

**Theorem 7.** Let  $\psi_1 \in \mathcal{C}$ . There exist a function  $\psi_2 \in \mathcal{C}$  and an open set G such that 0 is a point of right-hand  $\psi_{1,\mathcal{I}}$ -dispersion of the set G, but 0 is not a point of right-hand  $\psi_{2,\mathcal{I}}$ -dispersion of the set G.

**Proof.** We define a sequence of open intevals  $\{(a_n,b_n)\}_{n\in\mathbb{N}}$  such that

- 1)  $0 < a_{n+1} < b_{n+1} < a_n$
- 2)  $b_{n+1} \leq \frac{1}{n} a_n \psi_1(a_n)$ ,
- 3)  $b_n a_n \leq \frac{1}{n} a_n \psi_1(a_n),$
- 4)  $\frac{b_n a_n}{b_n} < \frac{b_{n-1} a_{n-1}}{b_{n-1}}$ ,
- 5)  $\frac{b_n}{b_n-a_n} \in \mathbb{N}$

for each  $n \in \mathbb{N}$ , and

 $6) \lim_{n \to \infty} b_n = 0.$ 

Let  $b_1 \in (0,1)$  and  $k \in \mathbb{N} \setminus \{1\}$ . Assume that we have defined numbers  $a_1, ..., a_{k-1}$  and  $b_1, ..., b_{k-1}$ . Let  $b_k$  be an arbitrary positive number such that  $b_k \leq \frac{1}{k-1} a_{k-1} \psi_1(a_{k-1})$ .

We consider two functions:  $g(x) = x + \frac{1}{k}x\psi_1(x)$  and  $h(x) = 1 - \frac{x}{b_k}$ . Since  $g(b_k) = b_k + \frac{1}{k}b_k\psi_1(b_k) > b_k$ , therefore, by continuity of a function g, we have  $\alpha \in (0, b_k)$  such that  $g(\alpha) = b_k$  and, for each  $x \in (\alpha, b_k)$ ,  $g(x) > b_k$ . Let p be a positive integer such that

$$\frac{1}{p} < \min \left\{ \frac{b_{k-1} - a_{k-1}}{b_{k-1}}, h(\alpha) \right\}.$$

Then

$$0 = h(b_k) < \frac{1}{n} < h(\alpha)$$

and, by continuity of h, we can choose  $a_k \in (\alpha, b_k)$  such that  $h(a_k) = \frac{1}{p}$ .

Set  $G = \bigcup_{n=1}^{\infty} (a_n, b_n)$ . Let  $\psi_2 \in \mathcal{C}$  be a function such that, for each  $n \in \mathbb{N}$ ,

 $\psi_2(b_n) = \frac{b_n - a_n}{b_n}$ . In a similar way as in Theorem 6, one can prove that 0 is a point of right-hand  $\psi_{1,\mathcal{I}}$ -dispersion of the set G.

We shall show that 0 is not a point of right-hand  $\psi_{2,\mathcal{I}}$ -dispersion of the set G. Let  $h_n = b_n$  for each  $n \in \mathbb{N}$  and  $m_n = \left[\frac{1}{\psi_2(b_n)}\right] - 1$ . The sequence  $\{(h_n, m_n)\}_{n \in \mathbb{N}}$  satisfies the conditions of Definition 2. Let  $\{(h_{n_k}, m_{n_k})\}_{n \in \mathbb{N}}$  be an arbitrary subsequence of  $\{(h_n, m_n)\}_{n \in \mathbb{N}}$ . Then, for each  $k \in \mathbb{N}$ ,

$$\frac{1}{h_{n_k}\psi_2(h_{n_k})}\cdot G - m_{n_k} \supset \frac{1}{h_{n_k}\psi_2(h_{n_k})}\cdot (a_{n_k},b_{n_k}) - m_{n_k} = (0,1).$$

Thus

$$(0,1) \subset \limsup_{k \to \infty} \left( \frac{1}{h_{n_k} \psi_2(h_{n_k})} \cdot G - m_{n_k} \right) \cap [0,1].$$

**Definition 3.** Let  $\psi \in \mathcal{C}$ . For a set  $A \in \mathcal{S}$ , we define  $\Phi_{\psi}(A)$  to be the set of all points of  $\psi_{\mathcal{I}}$ -density of the set A.

**Theorem 8.** Let  $\psi \in \mathcal{C}$ . Then, for any  $A, B \in \mathcal{S}$ ,

- 1)  $\Phi_{\psi}(\emptyset) = \emptyset, \Phi_{\psi}(\mathbb{R}) = \mathbb{R},$
- 2) If  $A \subset B$ , then  $\Phi_{ib}(A) \subset \Phi_{ib}(B)$ ,
- 3) If  $A \sim B$ , then  $\Phi_{\psi}(A) = \Phi_{\psi}(B)$ ,
- 4)  $\Phi_{\psi}(A \cap B) = \Phi_{\psi}(A) \cap \Phi_{\psi}(B)$ ,
- 5)  $A \sim \Phi_{\psi}(A)$ .

**Proof.** The conditions 1) and 2) are obvious. Assume that  $A \sim B$  and  $x \in \Phi_{\psi}(A)$ . Without loss of generality, one can assume that x = 0. We only show that if 0 is a point of right-hand  $\psi_{\mathcal{I}}$ -dispersion of the set A', then 0 is a point of right-hand  $\psi_{\mathcal{I}}$ -dispersion of the set B'.

Let  $\{(h_n, m_n)\}_{n\in\mathbb{N}}$  be an arbitrary sequence which satisfies conditions of Definition 2. We observe that

$$B' = (B' \cap A') \cup (B' \setminus A'),$$

where  $B' \setminus A' = A \setminus B \in \mathcal{I}$ , and  $B' \cap A' \subset A'$ . 0 is a point of right-hand  $\psi_{\mathcal{I}}$ -dispersion of the set A', thus it is a point of right-hand  $\psi_{\mathcal{I}}$ -dispersion of

the set  $A' \cap B'$ . Therefore, there exists a subsequence  $\{(h_{n_k}, m_{n_k})\}_{k \in \mathbb{N}}$  such that

$$\limsup_{k\to\infty} \left( \frac{1}{h_{n_k} \psi(h_{n_k})} \cdot (A' \cap B') - m_{n_k} \right) \cap [0,1] \in \mathcal{I}.$$

We define the sets  $P, P_1, P_2$  in the following way:

$$P = \limsup_{k \to \infty} \left( \frac{1}{h_{n_k} \psi(h_{n_k})} \cdot B' - m_{n_k} \right) \cap [0, 1],$$

$$P_1 = \limsup_{k \to \infty} \left( \frac{1}{h_{n_k} \psi(h_{n_k})} \cdot (A' \cap B') - m_{n_k} \right) \cap [0, 1],$$

$$P_2 = \limsup_{k \to \infty} \left( \frac{1}{h_{n_k} \psi(h_{n_k})} \cdot (B' \setminus A') - m_{n_k} \right) \cap [0, 1].$$

Then  $P \subset P_1 \cup P_2$ . The set  $P_1$  is of the first category, and

$$P_2 = \bigcap_{r=1}^{\infty} \bigcup_{k=r}^{\infty} \left( \frac{1}{h_{n_k} \psi(h_{n_k})} \cdot (B' \setminus A') - m_{n_k} \right) \cap [0, 1] \in \mathcal{I}.$$

Thus  $P \in \mathcal{I}$ .

We have proved that  $\Phi_{\psi}(A) \subset \Phi_{\psi}(B)$ . In a similar way, we can prove that  $\Phi_{\psi}(B) \subset \Phi_{\psi}(A)$ .

Now we shall show condition 4). Since  $A \cap B \subset A$  and  $A \cap B \subset B$ , therefore, by condition 2), we have  $\Phi_{\psi}(A \cap B) \subset \Phi_{\psi}(A) \cap \Phi_{\psi}(B)$ .

Let  $x \in \Phi_{\psi}(A) \cap \Phi_{\psi}(B)$ . We can assume that x = 0. Let  $\{(h_n, m_n)\}_{n \in \mathbb{N}}$  be an arbitrary sequence which satisfies the conditions of Definition 2. Since 0 is a point of right-hand  $\psi_{\mathcal{I}}$ -dispersion of the set A', therefore there exists a subsequence  $\{(h_{n_k}, m_{n_k})\}_{k \in \mathbb{N}}$  such that

$$\limsup_{k \to \infty} \left( \frac{1}{h_{n_k} \psi(h_{n_k})} \cdot A' - m_{n_k} \right) \cap [0, 1] \in \mathcal{I}.$$

Additionaly, 0 is a point of right-hand  $\psi_{\mathcal{I}}$ -dispersion of the set B', thus there exists a subsequence  $\{(h_{n_{k_p}}, m_{n_{k_p}})\}_{k \in \mathbb{N}}$ , such that

$$\limsup_{k \to \infty} \left( \frac{1}{h_{n_{k_p}} \psi(h_{n_{k_p}})} \cdot B' - m_{n_{k_p}} \right) \cap [0, 1] \in \mathcal{I}.$$

Then

$$\limsup_{k\to\infty} \left( \frac{1}{h_{n_{k_p}} \psi(h_{n_{k_p}})} \cdot (A \cap B)' - m_{n_{k_p}} \right) \cap [0,1] \subset H,$$

where

$$H = \limsup_{k \to \infty} \left( \frac{1}{h_{n_{k_p}} \psi(h_{n_{k_p}})} \cdot A' - m_{n_{k_p}} \right) \cap [0, 1] \cup$$

$$\cup \limsup_{k \to \infty} \left( \frac{1}{h_{n_{k_p}} \psi(h_{n_{k_p}})} \cdot B' - m_{n_{k_p}} \right) \cap [0, 1] \in \mathcal{I}.$$

Hence, 0 is a point of right-hand  $\psi_{\mathcal{I}}$ -dispersion of the set  $(A \cap B)'$ . In a similar way, we can show that 0 is a point of left-hand  $\psi_{\mathcal{I}}$ -dispersion of the set  $(A \cap B)'$ .

Now we shall show condition 5). Let  $A \in \mathcal{S}$ . Then  $A = (G \setminus P_1) \cup P_2$ , where G is an open set,  $P_1$  i  $P_2$  are sets of the first category and  $P_1 \subset G$ ,  $P_2 \cap G = \emptyset$ . By 3), we have  $\Phi_{\psi}(A) = \Phi_{\psi}(G)$  and  $G \subset \Phi_{\psi}(G)$ . Thus

$$A \setminus \Phi_{\psi}(A) = A \setminus \Phi_{\psi}(G) \subset A \setminus G \in \mathcal{I}.$$

By Theorem 4,  $\Phi_{\psi}(A) \subset \Phi(A)$  and by Theorem 2,  $A \sim \Phi(A)$ , therefore  $\Phi_{\psi}(A) \setminus A \subset \Phi(A) \setminus A \in \mathcal{I}$ .

**Definition 4.** Let, for  $\psi \in \mathcal{C}$ 

$$\mathcal{T}_{\psi} = \left\{ A \in \mathcal{S} : A \subset \Phi_{\psi}\left(A\right) \right\}.$$

By theorems 3, 4, 5 and 8 we have the following

**Theorem 9.** Let  $\psi \in \mathcal{C}$ .  $\mathcal{T}_{\psi}$  is a topology on the real line, stronger than the Euclidean topology and weaker than the  $\mathcal{I}$ -topology.

**Lemma 2.** Assume that we have a sequences of real numbers  $\{a_n\}_{n\in\mathbb{N}}$  and  $\{b_n\}_{n\in\mathbb{N}}$  such that  $\lim_{n\to\infty} a_n = \lim_{n\to\infty} b_n = 0$  and, for each  $n\in\mathbb{N}$ ,  $0 < b_{n+1} < a_n < b_n$ . Then there exists a function  $\psi \in \mathcal{C}$  such that 0 is not a point of  $\psi_{\mathcal{I}}$ -dispersion of the set  $G = \bigcup_{n=1}^{\infty} (a_n, b_n)$ .

**Proof.** First we define values of the function  $\psi$  at points of the sequence  $\{b_n\}_{n\in\mathbb{N}}$ . Set  $\psi(b_1)=\frac{1}{\left\lfloor\frac{b_1}{b_1-a_1}\right\rfloor+1},\ a_2'=\max\{a_2,b_2(1-\psi(b_1))\}$  and  $\psi(b_2)=\frac{1}{\left\lfloor\frac{b_2}{b_2-a_2'}\right\rfloor+1}$ . Assume that for  $n\in\mathbb{N}$  we have defined the points  $a_1',\ldots,a_n'$  and the real numbers  $\psi(b_1),\ldots,\psi(b_n)$  in the following way:

• 
$$a'_{i+1} = \max \left\{ a_{i+1}, b_{i+1} \left(1 - \frac{1}{i} \psi(b_i)\right) \right\} \text{ if } i \in \{1, \dots, n-1\},$$

• 
$$\psi(b_{i+1}) = \frac{1}{\left\lceil \frac{b_{i+1}}{b_{i+1} - a'_{i+1}} \right\rceil + 1}$$
 if  $i \in \{1, \dots, n-1\}$ .

Put 
$$a'_{n+1} = \max \left\{ a_{n+1}, b_{n+1} \left( 1 - \frac{1}{n} \psi(b_n) \right) \right\}$$
 and  $\psi(b_{n+1}) = \frac{1}{\left[ \frac{b_{n+1}}{b_{n+1} - a'_{n+1}} \right] + 1}$ .

We observe that  $\psi(b_{n+1}) < \frac{1}{n}\psi(b_n)$ . Indeed

$$\frac{1}{n}\psi(b_n) \ge 1 - \frac{a'_{n+1}}{b_{n+1}} = \frac{1}{\frac{b_{n+1}}{b_{n+1} - a'_{n+1}}} > \frac{1}{\left[\frac{b_{n+1}}{b_{n+1} - a'_{n+1}}\right] + 1} = \psi(b_{n+1}).$$

Let  $\psi \in \mathcal{C}$  be a function such that, for any  $n \in \mathbb{N}$  and  $x \in [a_n, b_n]$ ,  $\psi(x) = \psi(b_n)$ . In a similar way as in Theorem 4, we can show that 0 is not a point of right-hand  $\psi_{\mathcal{I}}$ -dispersion of the set G.

**Definition 5.** We denote by  $\mathcal{H}$  the Hashimoto topology, where

$$\mathcal{H} = \{U \setminus P : U - \text{ an open set }, P \in \mathcal{I}\}.$$

Theorem 10. 
$$\bigcap_{\psi \in \mathcal{C}} \mathcal{T}_{\psi} = \mathcal{H}.$$

**Proof.** It is obvious that  $\mathcal{H} \subset \bigcap_{\psi \in \mathcal{C}} \mathcal{T}_{\psi}$ . Let  $A \in \mathcal{S}$  and  $A \notin \mathcal{H}$ . Then  $A = (G \setminus P_1) \cup P_2$ , where G is an open set,  $P_1, P_2 \in \mathcal{I}$ ,  $P_1 \subset G$  and  $P_2 \cap G = \emptyset$ . Set  $H = \operatorname{Int}(\operatorname{Cl}(G))$  and  $R = H \setminus (G \cup P_2)$ . By  $A \notin \mathcal{H}$ , we know that  $P_2$  is not a subset of H. It is easy to see that  $\operatorname{Int}(\mathbb{R} \setminus H) \neq \emptyset$  and the set  $\mathbb{R} \setminus H$  has no isolated points.

Let  $x_0 \in P_2 \cap (\mathbb{R} \setminus H)$  and  $\{(c_n, d_n)\}_{n \in \mathbb{N}}$  be a sequence of all components of the set Int  $(\mathbb{R} \setminus H)$ . We consider the following cases:

- a)  $x_0 \in \text{Int}(\mathbb{R} \setminus H)$ . Then, for an arbitrary function  $\psi \in \mathcal{C}$ ,  $x_0$  is a point of right-hand  $\psi_{\mathcal{I}}$ -dispersion of the set H. Thus,  $x_0$  is a point of right-hand  $\psi_{\mathcal{I}}$ -dispersion of the set  $G \subset H$ . Since  $\Phi_{\psi}(A) = \Phi_{\psi}(G)$ , we have  $x_0 \notin \Phi_{\psi}(A)$ . Therefore,  $A \not\subset \Phi_{\psi}(A)$ , and  $A \notin \mathcal{T}_{\psi}$ .
- b) There exists  $n_0 \in \mathbb{N}$  such that  $x_0 = c_{n_0}$  or  $x_0 = d_{n_0}$ . Then  $x_0$  is a point of right-hand or left-hand  $\psi_{\mathcal{I}}$ -density of the set  $\mathbb{R} \setminus H$  for arbitrary function  $\psi \in \mathcal{C}$ , respectively, and, as above,  $x_0 \in A \setminus \Phi_{\psi}(A)$ .
- c) There exists a sequence  $\{c_{n_k}\}_{k\in\mathbb{N}}$  which converges to  $x_0$  from the right or there exists a sequence  $\{d_{n_k}\}_{k\in\mathbb{N}}$  which converges to  $x_0$  from the left. Then, by Lemma 2, there exists a function  $\psi \in \mathcal{C}$  such that  $x_0$  is not a point of

 $\psi_{\mathcal{I}}$ -dispersion of the set  $\bigcup_{k=1}^{\infty} (c_{n_k}, d_{n_k})$ . Thus,  $x_0 \notin \Phi_{\psi}(A)$  and  $A \notin \mathcal{T}_{\psi}$ . There-

fore, 
$$A \notin \bigcap_{\psi \in \mathcal{C}} \mathcal{T}_{\psi}$$
.

## References

- [1] W. Poreda, E. Wagner-Bojakowska, W. Wilczyński. A category analogue of the density topology. *Fund. Math.*, CXXV, 167–173, 1985.
- [2] M. Terepeta, E. Wagner-Bojakowska.  $\psi$ -density topologies. Rend. Circ. Mat. Palermo, Ser. II, XLVIII, 451–476, 1999.
- [3] S.J. Taylor. On strenghtening the Lebesgue density theorem. Fund. Math., XLVI, 305–315, 1959.