TWISTED GROUP ALGEBRAS OF SUR-TYPE OF FINITE GROUPS OVER AN INTEGRAL DOMAIN OF CHARACTERISTIC p

DARIUSZ KLEIN

Abstract

Let S be an integral domain of positive characteristic p, which is not a field, S^{*} the unit group of S, G a finite group, and $S^{\lambda} G$ the twisted group algebra of the group G over S with a 2-cocycle $\lambda \in Z^{2}\left(G, S^{*}\right)$. Denote by $\operatorname{Ind}_{m}\left(S^{\lambda} G\right)$ the set of isomorphism classes of indecomposable $S^{\lambda} G$ modules of S-rank m. We exhibit algebras $S^{\lambda} G$ of SUR-type, in the sense that there exists a function $f_{\lambda}: \mathbb{N} \rightarrow \mathbb{N}$ such that $f_{\lambda}(n) \geq n$ and $\operatorname{Ind}_{f_{\lambda}(n)}\left(S^{\lambda} G\right)$ is an infinite set for every integer $n>1$.

1. Introduction

Let $p \geq 2$ be a prime. Gudyvok [4] and Janusz [8], [9] showed that if K is an infinite field of characteristic p and G is a non-cyclic p-group for which $\left|G / G^{\prime}\right| \neq 4$, then $\operatorname{Ind}_{n}(K G)$ is an infinite set for every integer $n>1$. Let G be a finite p-group of order $|G|>2, K$ a commutative local ring of characteristic p^{n}, and $\operatorname{rad} K \neq 0$. Gudyvok and Chukhray [5], [6] proved that if $\bar{K}:=K / \operatorname{rad} K$ is an infinite field or K is an integral domain, then $\operatorname{Ind}_{n}(K G)$ is infinite for every integer $n>1$. In paper [7], jointly with Sygetij, they obtained a similar result in the case where G is a non-cyclic p-group, $p \neq 2$ and K is an infinite ring of characteristic p or \bar{K} is an infinite field. The similar problem was studied in [2], [3] for twisted group algebras $K^{\lambda} G$, where K is a field of characteristic p or a commutative local ring of characteristic p.

In this paper we exhibit twisted group algebras $S^{\lambda} G$ of SUR-type, where S is an integral domain of characteristic p and G is a finite group.

Dariusz Klein - Pomeranian University in Słupsk.

2. Preliminaries

Let K be a commutative ring of characteristic p, K^{*} the unit group of K, G a finite group, e the identity element of G, G_{p} a Sylow p-subgroup of G and G_{p}^{\prime} the commutator subgroup of G_{p}. We suppose that p divides $|G|$ and G_{p} is a normal subgroup of G. The twisted group algebra of G over K with a 2 -cocycle $\lambda \in H^{2}\left(G, K^{*}\right)$ is the free K-algebra $K^{\lambda} G$ with a K-basis $\left\{u_{g}: g \in G\right\}$ satisfying $u_{a} u_{b}=\lambda_{a, b} u_{a b}$ for all $a, b \in G$. The K-basis $\left\{u_{g}: g \in G\right\}$ is called canonical (corresponding to λ). By a $K^{\lambda} G$-module we mean a finitely generated left $K^{\lambda} G$-module that is K-free. Denote by $\operatorname{Ind}_{m}\left(K^{\lambda} G\right)$ the set of isomorphism classes of indecomposable $K^{\lambda} G$-modules of K-rank m. An algebra $K^{\lambda} G$ is defined to be of SUR-type (Strongly Unbounded Representation type) if there is a function $f_{\lambda}: \mathbb{N} \rightarrow \mathbb{N}$ such that $f_{\lambda}(n) \geq n$ and $\operatorname{Ind}_{f_{\lambda}(n)}\left(K^{\lambda} G\right)$ is an infinite set for every $n>1$. A function f_{λ} is called an SUR-dimension-valued function. Given a $K^{\lambda} H$-module V, we write $\operatorname{End}_{K^{\lambda} H}(V)$ for the ring of all $K^{\lambda} H$-endomorphisms of $V, \operatorname{rad}_{K^{\lambda} H}(V)$ for the Jacobson radical of $\operatorname{End}_{K^{\lambda} H}(V)$ and $\overline{\operatorname{End}_{K^{\lambda} H}(V)}$ for the quotient ring

$$
\operatorname{End}_{K^{\lambda} H}(V) / \operatorname{rad} \operatorname{End}_{K^{\lambda} H}(V)
$$

Given a subgroup Ω of K^{*}, we denote by $Z^{2}(H, \Omega)$ the group of all Ω-valued normalized 2-cocycles of the group H, where we assume that H acts trivially on Ω. If D is a subgroup of a group H, the restriction of $\lambda \in Z^{2}\left(H, K^{*}\right)$ to $D \times D$ is also denoted by λ. In this case, $K^{\lambda} D$ is the K-subalgebra of $K^{\lambda} H$ consisting of all K-linear combinations of the elements $\left\{u_{d}: d \in D\right\}$, where $\left\{u_{h}: h \in H\right\}$ is a canonical K-basis of $K^{\lambda} H$ corresponding to λ.

Throughout the paper, S denotes an arbitrary integral domain of characteristic p, which is not a field, \mathfrak{m} is a maximal ideal of S and $R=S_{\mathfrak{m}}$ is the localization of S at \mathfrak{m}. The ring R is a local ring and $\mathfrak{m} R$ is a unique maximal ideal of R. Moreover, $S / \mathfrak{m} \cong R / \mathfrak{m} R$ as fields, and as R-modules. Given $\mu \in Z^{2}\left(G_{p}, S^{*}\right)$, the kernel $\operatorname{Ker}(\mu)$ of μ is the union of all cyclic subgroups $\langle g\rangle$ of G_{p} such that the restriction of μ to $\langle g\rangle \times\langle g\rangle$ is a coboundary. We recall from [[3], p. 196] that $G_{p}^{\prime} \subset \operatorname{Ker}(\mu), \operatorname{Ker}(\mu)$ is a normal subgroup of G_{p} and the restriction of μ to $\operatorname{Ker}(\mu) \times \operatorname{Ker}(\mu)$ is a coboundary.

Let $H=\langle a\rangle$ be a cyclic p-group of order $|H|>2$, and K a commutative local ring of characteristic p. Suppose that there exists a non-zero element
$t \in \operatorname{rad} K$ which is not a zero-divisor. Let E_{m} be the identity matrix of order $m, J_{m}(0)$ the upper Jordan block of order m with zeros on the main diagonal, and $\langle 1\rangle$ the $m \times 1$-matrix of the form

$$
\left(\begin{array}{c}
1 \\
0 \\
\vdots \\
0
\end{array}\right)
$$

Denote by Γ_{i} the matrix K-representation of degree n of the group H defined in the following way:

1) if $n=2$ then

$$
\Gamma_{i}(a)=\left(\begin{array}{cc}
1 & t^{i} \\
0 & 1
\end{array}\right) \quad(i \in \mathbb{N})
$$

$2)$ if $n=3 m(m \geq 1)$ then

$$
\Gamma_{i}(a)=\left(\begin{array}{ccc}
E_{m} & t^{i} E_{m} & J_{m}(0) \\
0 & E_{m} & t^{i} E_{m} \\
0 & 0 & E_{m}
\end{array}\right) \quad(i \in \mathbb{N})
$$

$3)$ if $n=3 m+1(m \geq 1)$ then

$$
\Gamma_{i}(a)=\left(\begin{array}{cccc}
E_{m} & t^{2 i} E_{m} & J_{m}(0) & t\langle 1\rangle \\
0 & E_{m} & t^{i} E_{m} & 0 \\
0 & 0 & E_{m} & 0 \\
0 & 0 & 0 & 1
\end{array}\right) \quad(i \in \mathbb{N})
$$

4) if $n=3 m+2(m \geq 1)$ then

$$
\Gamma_{i}(a)=\left(\begin{array}{ccccc}
E_{m} & t^{i+2} E_{m} & J_{m}(0) & t^{2 i+4}\langle 1\rangle & t\langle 1\rangle \\
0 & E_{m} & t^{2 i+4} E_{m} & 0 & t^{2}\langle 1\rangle \\
0 & 0 & E_{m} & 0 & 0 \\
0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 1
\end{array}\right) \quad(i \in \mathbb{N})
$$

Lemma 1 ([3], p. 272). Let V_{i} be the underlying KH-module of the representation Γ_{i}. If $i \neq j$, then the $K H$-modules V_{i} and V_{j} are non-isomorphic. The algebra $\operatorname{End}_{K H}\left(V_{i}\right)$ is finitely generated as a K-module and there is an algebra isomorphism $\overline{\operatorname{End}_{K H}\left(V_{i}\right)} \cong K / \operatorname{rad} K$ for every $i \in \mathbb{N}$.

Lemma 2 ([3], p. 275). Let $H=\langle a\rangle \times\langle b\rangle$ be an abelian group of type (2, 2), $t \in \operatorname{rad} K, t \neq 0$ and assume that t is not a zero-divisor. Denote by V_{i} the underlying $K H$-module of the matrix representation Δ_{i} of degree n of the group H defined as follows:

1) if $n=2 m(m \geq 1)$, then

$$
\Delta_{i}(a)=\left(\begin{array}{cc}
E_{m} & t^{i} E_{m} \\
0 & E_{m}
\end{array}\right) \quad \Delta_{i}(b)=\left(\begin{array}{cc}
E_{m} & J_{m}(0) \\
0 & E_{m}
\end{array}\right) \quad(i \in \mathbb{N})
$$

2) if $n=2 m+1(m \geq 1)$, then
$\Delta_{i}(a)=\left(\begin{array}{ccc}E_{m} & t^{i} E_{m} & 0 \\ 0 & E_{m} & 0 \\ 0 & 0 & 1\end{array}\right) \quad \Delta_{i}(b)=\left(\begin{array}{ccc}E_{m} & J_{m}(0) & t^{i}\langle 1\rangle \\ 0 & E_{m} & 0 \\ 0 & 0 & 1\end{array}\right) \quad(i \in \mathbb{N}) ;$
If $i \neq j$, then the modules V_{i} and V_{j} are non-isomorphic.
Moreover, $\operatorname{End}_{K H}\left(V_{i}\right)$ is finitely generated as a K-module and there is an algebra isomorphism $\overline{\operatorname{End}_{K H}\left(V_{i}\right)} \cong K / \operatorname{rad} K$ for all $i \in \mathbb{N}$.

Let H be a finite p-group and $|H|>2$. Denote by $[M]$ the isomorphism class of $R H$-modules which contains M and by $\sum_{n}(R H)$ the set of all $[M]$ satisfying the following conditions:
(i) $M \cong R \otimes_{S} W$ for some $S H$-module W;
(ii) the R-rank of M equals n;
(iii) $\operatorname{End}_{R H}(M)$ is finitely generated as an R-module;
(iv) $\overline{\operatorname{End}_{R H}(M)} \cong R / \operatorname{rad} R$.

Lemma 3. The set $\sum_{n}(R H)$ is infinite for every integer $n>1$.
Proof. Let t be a non-zero element of \mathfrak{m}. Then $t \in \operatorname{rad} R$ and t is not a zero-divisor in R. Next apply Lemmas 1 and 2.

Lemma 4. Let K be a commutative local ring of characteristic p, B a finite abelian p-group, D a subgroup of $B, \lambda \in Z^{2}\left(B, K^{*}\right)$ and M an indecomposable $K^{\lambda} D$-module. Assume that $\operatorname{End}_{K^{\lambda} D}(M)$ is a finitely generated K-algebra and $\overline{\operatorname{End}_{K^{\lambda} D}(M)}$ is isomorphic to a field L containing $\bar{K}=K / \operatorname{rad} K$. Then

$$
M^{B}=K^{\lambda} B \otimes_{K^{\lambda} D} M
$$

is an indecomposable $K^{\lambda} B$-module, $\operatorname{End}_{K^{\lambda} B}\left(M^{B}\right)$ is a finitely generated K algebra and the quotient algebra $\overline{\operatorname{End}_{K^{\lambda} B}\left(M^{B}\right)}$ is isomorphic to a field that is a finite purely inseparable field extension of L.

The proof is similar to those of Lemma 2.2 in [1].
Let $\lambda \in Z^{2}\left(G, S^{*}\right)$. Denote by H_{p} the kernel of the restriction of λ to $G_{p} \times G_{p}$. If $h \in H_{p}$ and $x \in G$, then $x^{-1} h x \in G_{p}$ and $\left|x^{-1} h x\right|=|h|$. From the equality $u_{x}^{-1} u_{h} u_{x}=\gamma u_{x^{-1} h x}\left(\gamma \in S^{*}\right)$ follows

$$
u_{x}^{-1} u_{h}^{|h|} u_{x}=\gamma^{|h|} \cdot u_{x^{-1} h x}^{|h|}
$$

hence

$$
u_{x^{-1} h x}^{|h|}=\gamma^{-|h|} u_{e}
$$

We obtain $x^{-1} h x \in H_{p}$, therefore H_{p} is a normal subgroup of G. Since the restriction of λ to $H_{p} \times H_{p}$ is a coboundary, we may assume that $\lambda_{h_{1}, h_{2}}=1$ for all $h_{1}, h_{2} \in H_{p}$. Then $\gamma^{|h|}=1$, hence $\gamma=1$. Consequently, we may suppose that $\lambda_{a, g}=\lambda_{g, a}=1$ for arbitrary $a \in H_{p}$ and $g \in G$.

3. On TWisted group algebras of SUR-Type

We recall that S is an integral domain of characteristic p, which is not a field, and R is the localization of S at a maximal ideal \mathfrak{m}. Denote by F a subfield of S. We assume that G is a finite group, and G_{p} is a normal subgroup of G. Given $\lambda \in Z^{2}\left(G, S^{*}\right)$, we denote by H_{p} the kernel of the restriction of λ to $G_{p} \times G_{p}$.

Theorem 1. Let G be a finite group and $\lambda \in Z^{2}\left(G, S^{*}\right)$. If $\left|H_{p}\right|>2$ then $S^{\lambda} G$ is of SUR-type with an SUR-dimension-valued function $f_{\lambda}(n)=n t_{n}$, where $1 \leq t_{n} \leq\left|G: H_{p}\right|$.

Proof. By Lemma 3, $\sum_{n}\left(R H_{p}\right)$ is infinite for each $n>1$.
Let $[V] \in \sum_{n}\left(R H_{p}\right)$ and $V^{G}=R^{\lambda} G \otimes_{R H_{p}} V$. Denote by $\left\{g_{1}=e, g_{2}, \ldots, g_{t}\right\}$ a cross section of H_{p} in G. Then

$$
V^{G}=\otimes_{i=1}^{t} V_{i}, \quad V_{i}=u_{g_{i}} \otimes V
$$

The $R H_{p}$-module V_{i} is called a conjugate of V. Denote $V^{\left(g_{i}\right)}=V_{i}$. Since $\operatorname{End}_{R H_{p}}\left(V_{i}\right) \cong \operatorname{End}_{R H_{p}}(V)$, the ring $\operatorname{End}_{R H_{p}}\left(V_{i}\right)$ is local for every $i \in\{1, \ldots, t\}$. Hence V_{i} is an indecomposable $R H_{p}$-module. By Krull-Schmidt Theorem [[11],

Sect. 7.3], the $R H_{p}$-module V^{G} has a unique decomposition into a finite sum of indecomposable $R H_{p}$-modules, up to isomorphism and the order of summands.

Let $[L] \in \sum_{n}\left(R H_{p}\right)$. If V is isomorphic to an $R H_{p}$-module $L^{(g)}$, then L is isomorphic to the $R H_{p}$-module $V^{\left(g^{-1}\right)}$. Hence there are infinitely many classes $\left[L_{1}\right], \ldots,\left[L_{i}\right], \ldots$ in $\sum_{n}\left(R H_{p}\right)$ such that every indecomposable $R H_{p}$-component of $\left(L_{i}^{G}\right)_{H_{p}}$ is isomorphic to none of the indecomposable $R H_{p}$-component of $\left(L_{j}^{G}\right)_{H_{p}}$ if $i \neq j$. Therefore there are infinitely many non-isomorphic indecomposable $R^{\lambda} G$-modules M such that M is an $R^{\lambda} G$-component of a module of the form V^{G}. The R-rank of any $R^{\lambda} G$-component of V^{G} is divisible by n and does not exceed $n \cdot\left|G: H_{p}\right|$. Since

$$
V \cong R \otimes_{S} W, \quad V^{G} \cong R \otimes_{S} W^{G}
$$

for some $S H_{p}$-module W, there exists an integer t_{n} such that $1 \leq t_{n} \leq\left|G: H_{p}\right|$ and $\operatorname{Ind}_{n t_{n}}\left(S^{\lambda} G\right)$ is an infinite set.

Theorem 2. Let G be a finite group and $\lambda \in Z^{2}\left(G, S^{*}\right)$ and assume that $\left|H_{p}: G_{p}^{\prime}\right|>2$. Then $f_{\lambda}(n):=n d t_{n}$, where $d=\left|G_{p}: H_{p}\right|$ and $1 \leq t_{n} \leq\left|G: G_{p}\right|$, is an SUR-dimension-valued function for $S^{\lambda} G$.

Proof. Let $A=G / G_{p}^{\prime}$ and

$$
U=\bigoplus_{g \in G_{p}^{\prime} \backslash\{e\}} S\left(u_{g}-u_{e}\right)
$$

The set $V:=S^{\lambda} G \cdot U$ is a two-sided ideal of $S^{\lambda} G$. The quotient algebra $S^{\lambda} G / V$ is isomorphic to $S^{\mu} A$, where $\mu_{x G_{p}^{\prime}, y G_{p}^{\prime}}=\lambda_{x, y}$ for all $x, y \in G$.

It contains the group algebra $S B_{p}$, where $B_{p}=H_{p} / G_{p}^{\prime}$. Since $\left|B_{p}\right|>2$, by Lemma 3, $\sum_{n}\left(R B_{p}\right)$ is infinite for each positive integer n. The abelian group $A_{p}=G_{p} / G_{p}^{\prime}$ is a Sylow p-subgroup of A.

Let $[M] \in \sum_{n}\left(R B_{p}\right)$. By Lemma 4 , the $R^{\mu} A_{p}$-module

$$
M^{A_{p}}=R^{\mu} A_{p} \otimes_{R B_{p}} M
$$

is indecomposable and $\operatorname{End}_{R^{\mu} A_{p}}\left(M^{A_{p}}\right)$ is a local ring. The R-rank of $M^{A_{p}}$ equals $n \cdot\left|A_{p}: B_{p}\right|=n \cdot\left|G_{p}: H_{p}\right|$. Arguing similarly as in the proof of Theorem 1 , we conclude that if $[M]$ and $[N]$ belong to $\sum_{n}\left(R B_{p}\right)$ and $M \not \approx N$, then $M^{A_{p}} \not \not \approx N^{A_{p}}$. Let

$$
\left(M^{A_{p}}\right)^{A}:=R^{\mu} A \otimes_{R^{\mu} A_{p}} M^{A_{p}}
$$

By the same arguments as in the proof of Theorem 1, we can prove that there exist infinitely many pairwise non-isomorphic indecomposable $R^{\mu} A$-modules Ω such that Ω is an $R^{\mu} A$-component of a module of the form $\left(M^{A_{p}}\right)^{A}$. Note that the R-rank of Ω is divisible by $n \cdot\left|G_{p}: H_{p}\right|$ and does not exceed

$$
n \cdot\left|G_{p}: H_{p}\right| \cdot\left|G: G_{p}\right|=n d \cdot\left|G: G_{p}\right|
$$

Hence for every $n>1$ there is an integer t_{n} such that $1 \leq t_{n} \leq\left|G: G_{p}\right|$ and the set $\operatorname{Ind}_{n d t_{n}}\left(S^{\mu} A\right)$ is infinite.

If M is an $S^{\mu} A$-module, then M is as well an $S^{\lambda} G$-module. $S^{\mu} A$-modules M and N are isomorphic if and only if M and N are isomorphic as $S^{\lambda} G$-modules. Consequently, the set $\operatorname{Ind}_{n d t_{n}}\left(S^{\lambda} G\right)$ is also infinite for any $n>1$.
Theorem 3. Let $p \neq 2, G$ be a finite group and $\lambda \in Z^{2}\left(G, F^{*}\right)$. If the algebra $F^{\lambda} G$ is not semisimple, then the algebra $S^{\lambda} G$ is of SUR-type. Moreover, if $d=\operatorname{dim}_{F}\left(F^{\lambda} G_{p} / \operatorname{rad} F^{\lambda} G_{p}\right)$ and $d<\left|G_{p}: G_{p}^{\prime}\right|$, then a function $f_{\lambda}(n)=n d t_{n}$, where $1 \leq t_{n} \leq\left|G: G_{p}\right|$, is an SUR-dimension-valued function for $S^{\lambda} G$.

Proof. Applying Lemma 3 and arguing as in the proof of Theorem 2 in [3], we prove that, for every $n>1$, there are infinitely many pairwise non-isomorphic indecomposable $R^{\lambda} G_{p}$-modules V_{1}, V_{2}, \ldots satisfying the following conditions:

1) the R-rank of V_{i} is equal to $n d$;
2) $\operatorname{End}_{R^{\lambda} G_{p}}\left(V_{i}\right)$ is finitely generated as an R-module;
3) $\overline{\operatorname{End}_{R^{\lambda} G_{p}}\left(V_{i}\right)}$ is isomorphic to a field which is a finite purely inseparable field extension of $R / \operatorname{rad} R$;
4) $V_{i} \cong R \otimes_{S} W_{i}$, where W_{i} is an $S^{\lambda} G_{p}$-module.

Let $V_{i}^{G}:=R^{\lambda} G \otimes_{R^{\lambda} G_{p}} V_{i}$ and $\left(V_{i}^{G}\right)_{G_{p}}$ be the module V_{i}^{G} viewed as an $R^{\lambda} G_{p^{-}}$ module. The $R^{\lambda} G_{p}$-module $\left(V_{i}^{G}\right)_{G_{p}}$ is a direct sum of conjugates of V_{i}. By the Krull-Schmidt Theorem [[11], Sect. 7.3], $\left(V_{i}^{G}\right)_{G_{p}}$ has a unique decomposition into a finite sum of indecomposable $R^{\lambda} G_{p}$-modules, up to isomorphism and the order of summands. Hence the R-rank of each indecomposable component of $R^{\lambda} G$-module V_{i}^{G} is divisible by $n d$. It follows that the S-rank of each indecomposable component of $S^{\lambda} G$-module W_{i}^{G} is divisible by $n d$. Therefore, there exists an integer t_{n} such that $1 \leq t_{n} \leq\left|G: G_{p}\right|$ and $\operatorname{Ind}_{n d t_{n}}\left(S^{\lambda} G\right)$ is an infinite set.

Theorem 4. Let $p=2, G$ be a finite group, $\lambda \in Z^{2}\left(G, F^{*}\right)$ and moreover $d=\operatorname{dim}_{F}\left(F^{\lambda} G_{2} / \operatorname{rad} F^{\lambda} G_{2}\right)$.
(i) If the algebra $F^{\lambda} G$ is not semisimple, then the set $\operatorname{Ind}_{l}\left(S^{\lambda} G\right)$ is infinite for some $l \leq|G|$.
(ii) If $d<\frac{1}{2}\left|G_{2}: G_{2}^{\prime}\right|$, then $S^{\lambda} G$ is of $S U R$-type with an $S U R$-dimensionvalued function $f_{\lambda}(n)=n d t_{n}$, where $1 \leq t_{n} \leq\left|G: G_{2}\right|$.

Proof. Apply Lemma 3 and proceed as in the proof of Theorem 3 in [3].

References

[1] L. F. Barannyk, Modular projective representations of direct products of finite groups. Publ. Math. Debrecen, 63, 537-554, (2003).
[2] L. F. Barannyk, Absolutely indecomposable representations of a twisted group algebra of a finite p-group over a field of characteristic p. Publ. Math. Debrecen, 78, 413-437, (2011).
[3] L. F. Barannyk, D. Klein, Twisted group rings of strongly unbounded representation type. Colloq. Math., 100, 265-287, (2004).
[4] P. M. Gudyvok, On modular representations of finite groups. Dokl. Uzhgorod. Univ. Ser. Fiz.-Mat., 4, 86-87, (1961) (in Russian).
[5] P. M. Gudyvok and I.B. Chukhray, On the number of indecomposable matrix representations with given degree of a finite p-group over commutative local rings of characteristic p^{s}. Nauk. Visnyk Uzhgorod. Univ. Ser. Mat., 5, 33-40, (2000) (in Ukrainian).
[6] P. M. Gudyvok and I.B. Chukhray, On indecomposable matrix representations of the given degree of a finite p-group over a commutative local rings of characteristic p^{s}. An. Ştiinţ. Univ. Ovidius Constanţa Ser. Math., 8, 27-36, (2000).
[7] P. M. Gudyvok, I. P. Sygetij and I. B. Chukhray, On the number of matrix representations with a given degree of a finite p-group over certain commutative rings of characteristic p^{s}. Nauk. Visnyk Uzhgorod. Univ. Ser. Mat., 4, 47-53, (1999) (in Ukrainian).
[8] G. J. Janusz, Faithful representations of p-groups at characteristic p, I. J. of Algebra, 15, 335-351, (1970).
[9] G. J. Janusz, Faithful representations of p-groups at characteristic p, II. Ibid. 22, 137160, (1972).
[10] G. Karpilovsky, Group Representations, Vol. 2. North-Holland Math. Stud. 177, NorthHolland, 1993.
[11] F. Kasch, Moduln und Ringe. Teubner, Stuttgart, 1977.

Dariusz Klein
Pomeranian University of Seupsk
Institute of Mathematics, Arciszewskiego 22d, 76-200 SŁupsk, Poland
E-mail address: klein@apsl.edu.pl

