SCIENTIFIC ISSUES Jan Długosz University in Częstochowa Mathematics XVII (2012) 57–68

ON LOCAL WHITNEY CONVERGENCE

STANISŁAW KOWALCZYK

Abstract

In this paper we will give definitions of local Whitney convergence in $\mathcal{F}(X, Y)$ and in C(X, Y), where X is a topological space, (Y, d) is a metric space and $\mathcal{F}(X, Y)$ is the space of all functions from X to Y and C(X, Y) is the space of all continuous functions from X to Y. We will study some properties of this notion and connections with other kinds of convergence.

1. Preliminaries

Throughout the article (X, \mathcal{T}) will denote a T_1 topological space and (Y, d) will denote a metric space. For any subset A of the space X, its closure and interior will be denoted by cl(A) and int(A), respectively. Furthermore, $\mathcal{F}(X, Y)$ and C(X, Y) will denote the class of functions and the class of continuous functions from X to Y. Symbols \mathbb{R} , \mathbb{R}^+ and \mathbb{N} stand for the set of real numbers, positive real numbers and positive integers, respectively. If $f: X \to Y, A \subset X$, then by $f|_A$ we will denote the restriction of f to A.

Definition 1 ([1,2,4,5,6]). A sequence $(f_n)_{n \in \mathbb{N}}$ of functions from $\mathcal{F}(X, Y)$ is said to be convergent to a function $f \in \mathcal{F}(X, Y)$ in the sense of Whitney, shortly W-convergent, if for each $\varphi \in C(X, \mathbb{R}^+)$ there exists $n_0 \in \mathbb{N}$ such that $d(f_n(x), f(x)) < \varphi(x)$ for each $x \in X$ and $n \ge n_0$.

S. Kowalczyk — Pomeranian University in Słupsk.

Remark 1. It is obvious that if $(f_n)_{n \in \mathbb{N}}$ is a sequence of continuous functions which is W-convergent to f then f is continuous too.

Since each positive constant function from X to \mathbb{R} belongs to $C(X, \mathbb{R}^+)$, W-convergence implies uniform convergence. It is well-known that if X is a pseudo-compact completely regular topological space then W-convergence and uniform convergence are equivalent. More precisely, we have the following theorem.

Theorem 1 ([1,4]). Let X be a pseudo-compact completely regular topological space and let Y be a metrizable space. The sequence $(f_n)_{n \in \mathbb{N}}$ of functions from X to Y is W-convergent to $f: X \to Y$ if and only if it is uniformly convergent to f.

2. Local Whitney convergence

Now, we give the first definition of local Whitney convergence.

Definition 2. A sequence $(f_n)_{n \in \mathbb{N}}$ of functions from $\mathcal{F}(X, Y)$ is said to be convergent to a function $f \in \mathcal{F}(X, Y)$ in the sense of Whitney at a point $x_0 \in X$, shortly W-convergent at x_0 , if there exists a neighborhood U of x_0 such that for each $\varphi \in C(X, \mathbb{R}^+)$ there exists $n_0 \in \mathbb{N}$ such that

$$d(f_n(x), f(x)) < \varphi(x)$$

for each $x \in U$ and $n \ge n_0$.

We say that $(f_n)_{n \in \mathbb{N}}$ is locally W-convergent to f if it is W-convergent to f at each $x \in X$.

Corollary 1. If $(f_n)_{n \in \mathbb{N}}$ is a sequence of continuous functions which is locally W-convergent to f then f is continuous function too.

It follows directly from the definitions, that W-convergence implies local W-convergence. Later, we will give an example of locally W-convergent sequence of continuous functions which is not W-convergent.

Theorem 2. Let $f_n \in \mathcal{F}(X, Y)$ for $n \in \mathbb{N}$ and let $f \in \mathcal{F}(X, Y)$. If the sequence $(f_n)_{n \in \mathbb{N}}$ is locally W-convergent to f then $(f_n)_{n \in \mathbb{N}}$ is almost uniformly convergent to f.

Proof. Let $(f_n)_{n \in \mathbb{N}}$ be locally W-convergent to f. Take any $\varepsilon > 0$ and any compact subset A of X. Let $\varphi \in C(X, \mathbb{R}^+)$ be a constant function, $\varphi(x) = \varepsilon$ for $x \in X$.

Then for each $x \in A$ we can find a neighborhood U_x of x and $n_x \in \mathbb{N}$ such that

$$d(f_n(y), f(y)) < \varphi(y) = \varepsilon$$

for $y \in U_x$ and $n \ge n_x$.

Since A is compact, $A \subset U_{x_1} \cup \ldots \cup U_{x_k}$ for some $x_1, \ldots, x_k \in A$.

Let $n_0 = \max\{n_{x_1}, \ldots, n_{x_k}\}$. Then $d(f_n(x), f(x)) < \varepsilon$ for $x \in A$ and $n \ge n_0$. This completes the proof.

Theorem 3. Let (X, \mathcal{T}) be a paracompact space. The following conditions are equivalent:

- (1) for each metric space (Z, ϱ) , every sequence $(f_n)_{n \in \mathbb{N}}$ from $\mathcal{F}(X, Z)$ is locally W-convergent to $f \in \mathcal{F}(X, Z)$ if and only if $(f_n)_{n \in \mathbb{N}}$ is almost uniformly convergent to f,
- (2) every sequence $(f_n)_{n \in \mathbb{N}}$ of functions from $\mathcal{F}(X, \mathbb{R})$ is locally Wconvergent to $f \in \mathcal{F}(X, \mathbb{R})$ if and only if $(f_n)_{n \in \mathbb{N}}$ is almost uniformly convergent to f,
- (3) for each metric space (Z, ϱ) every sequence $(f_n)_{n \in \mathbb{N}}$ from C(X, Z)is locally W-convergent to $f \in C(X, Z)$ if and only if $(f_n)_{n \in \mathbb{N}}$ is almost uniformly convergent to f,
- (4) every sequence (f_n)_{n∈ℕ} from C(X, ℝ) is locally W-convergent to f from C(X, ℝ) if and only if (f_n)_{n∈ℕ} is almost uniformly convergent to f,
- (5) X is locally compact.

Proof. The implications $(1) \Rightarrow (2)$, $(3) \Rightarrow (4)$, $(1) \Rightarrow (3)$ and $(2) \Rightarrow (4)$ are obvious.

 $(4) \Rightarrow (5)$ Let local W-convergence and almost uniform convergence in $C(X, \mathbb{R})$ be equivalent. Suppose that X is not locally compact at some $x_0 \in X$. Let $f_n(x) = \frac{1}{n}$, f(x) = 0 for $n \in \mathbb{N}$, $x \in X$.

Obviously, the sequence $(f_n)_{n \in \mathbb{N}}$ is almost uniformly convergent to f (actually, $(f_n)_{n \in \mathbb{N}}$ is uniformly convergent to f). Let U be any neighborhood of x_0 . Then cl(U) is not compact and since X is paracompact, it is not pseudo-compact.

Thus there exists $\widetilde{\varphi} \in C(\operatorname{cl}(U), \mathbb{R}^+)$ such that $\inf_{x \in \operatorname{cl}(U)} \widetilde{\varphi}(x) = 0$. Hence $\inf_{x \in U} \widetilde{\varphi}(x) = 0$. By normality of X (X is normal, since it is paracompact), there exists $\varphi \in C(X, \mathbb{R}^+)$ such that $\varphi|_{\operatorname{cl}(U)} = \widetilde{\varphi}$. Then for each $n \in \mathbb{N}$ we have $|f_n(x) - f(x)| = \frac{1}{n} \ge \varphi(x)$ for some $x \in U$.

Hence the sequence $(f_n)_{n \in \mathbb{N}}$ is not locally W-convergent to f. This contradicts to assumptions. Thus X is locally compact.

 $(5) \Rightarrow (1)$ Let X be locally compact and let (Z, ϱ) be any metric space. Take any sequence $(f_n)_{n\in\mathbb{N}}$ from $\mathcal{F}(X, Z)$ and $f \in \mathcal{F}(X, Z)$. If the sequence is locally W-convergent to f then, by Theorem 2, it is almost uniformly convergent to f. Assume that $(f_n)_{n\in\mathbb{N}}$ is almost uniformly convergent to f. Let $x_0 \in X$. By local compactness of X there exists a neighborhood U of x_0 such that cl(U) is compact. Then $(f_n|_{cl(U)})_{n\in\mathbb{N}}$ is uniformly convergent to $f|_{cl(U)}$. Let $\varphi \in C(X, \mathbb{R}^+)$. Then $\inf_{x \in cl(U)} \varphi(x) = c > 0$ and there exists $n_0 \in \mathbb{N}$ such that $\varrho(f_n(x), f(x)) < c \leq \varphi(x)$ for $x \in cl(U)$ and $n \geq n_0$. It follows that the sequence $(f_n)_{n\in\mathbb{N}}$ is locally W-convergent to f. The proof is completed. \Box

Theorem 4. Let (X, \mathcal{T}) be a normal space and let $f_n \in \mathcal{F}(X, Y)$ for $n \in \mathbb{N}$ and $f \in \mathcal{F}(X, Y)$. For each $x_0 \in X$ the following conditions are equivalent:

- (1) the sequence $(f_n)_{n \in \mathbb{N}}$ is W-convergent to f at x_0 ,
- (2) there exists a neighborhood U of x_0 such that the sequence $(f_n|_{cl(U)})_{n \in \mathbb{N}}$ is W-convergent to $f|_{cl(U)}$,
- (3) for each neighborhood U of x_0 there exists a neighborhood $V \subset U$ of x_0 such that $(f_n|_{\operatorname{cl}(V)})_{n \in \mathbb{N}}$ is W-convergent to $f|_{\operatorname{cl}(V)}$,
- (4) there exists a neighborhood U of x_0 such that for each neighborhood $V \subset U$ of x the sequence $(f_n|_{\mathrm{cl}(V)})_{n \in \mathbb{N}}$ is W-convergent to $f|_{\mathrm{cl}(V)}$.

Proof. 2) \Rightarrow 1) Let U be a neighborhood of a point x_0 such that the sequence $(f_n|_{\mathrm{cl}(U)})_{n\in\mathbb{N}}$ is W-convergent to $f|_{\mathrm{cl}(U)}$. Take any $\varphi \in C(X, \mathbb{R}^+)$. Then $\varphi|_{\mathrm{cl}(U)} \in C(\mathrm{cl}(U), \mathbb{R}^+)$. Therefore there exists $n_0 \in \mathbb{N}$ such that

$$d(f_n(x), f(x)) < \varphi_{|\operatorname{cl}(U)}(x)$$

for each $x \in cl(U)$ and $n \ge n_0$. In particular,

$$d(f_n(x), f(x)) < \varphi(x)$$

for each $x \in U$ and $n \ge n_0$. It follows that $(f_n)_{n \in \mathbb{N}}$ is W-convergent to f at x_0 .

- $(3) \Rightarrow 2)$ This implication is evident.
- $(4) \Rightarrow 3$) This implication is evident too.

1) \Rightarrow 4) Let the sequence $(f_n)_{n \in \mathbb{N}}$ be W-convergent to f at x_0 . There exists a neighborhood U of x_0 such that for $\varphi \in C(X, \mathbb{R}^+)$ we can find $n_0 \in \mathbb{N}$ for which $d(f_n(x), f(x)) < \varphi(x)$ for $n \ge n_0$ and $x \in U$. Since X is normal, there exists a neighborhood U_1 of x_0 such that $\operatorname{cl}(U_1) \subset U$. Let V be any neighborhood of x_0 contained in U_1 . Then $\operatorname{cl}(V) \subset \operatorname{cl}(U_1) \subset U$.

We claim that the sequence $(f_n|_{cl(V)})_{n\in\mathbb{N}}$ is *W*-convergent to $f|_{cl(V)}$. Let $\tilde{\varphi} \in C(cl(V), \mathbb{R}^+)$. Since *X* is normal, there exists $\varphi \in C(X, \mathbb{R}^+)$ such that $\varphi|_{cl(V)} = \tilde{\varphi}$. Then we can find $n_0 \in \mathbb{N}$ such that

$$d(f_n(x), f(x)) < \varphi(x) = \widetilde{\varphi}(x)$$

for $x \in U$ and $n \geq n_0$. In particular, $d(f_n(x), f(x)) < \varphi(x) = \widetilde{\varphi}(x)$ for $x \in cl(V)$ and $n \geq n_0$. Thus $(f_n|_{cl(V)})_{n \in \mathbb{N}}$ is W-convergent to $f|_{cl(V)}$ and the proof is completed.

We will need the following result.

Theorem 5 ([3, Theorem 4]). Let (X, τ) be a normal topological space, (Y,d) a metric space. Let $f \in C(X,Y)$ and $f_n \in C(X,Y)$ for $n \in \mathbb{N}$. Then the sequence $(f_n)_{n \in \mathbb{N}}$ is W-convergent to f if and only if the following two conditions hold:

- (1) the sequence $(f_n)_{n \in \mathbb{N}}$ is uniformly convergent to f;
- (2) there exists a closed countably compact set $K \subset X$ such that if Uis an open subset of X containing K then we can find $n_0 \in \mathbb{N}$ such that $f_n|_{(X \setminus U)} = f|_{(X \setminus U)}$ for $n \ge n_0$.

Problem 1. Is Theorem 5 true for functions from $\mathcal{F}(X, Y)$?

Theorem 6. Let X be a paracompact space. Assume that $f_n \in C(X, Y)$ for $n \in \mathbb{N}$ and $f \in C(X, Y)$. Then the sequence $(f_n)_{n \in \mathbb{N}}$ is locally W-convergent to f if and only if it is almost uniformly convergent and there exist a locally compact set $F \subset X$ and a sequence $(A_n)_{n \in \mathbb{N}}$ of open subsets of X such that

(1) $f_k(x) = f(x)$ for all $x \in A_n$ and $k \ge n$,

STANISŁAW KOWALCZYK

- (2) $X \setminus F \subset \bigcup_{n=1}^{\infty} A_n$,
- (3) for each $x \in F$ there exists a neighborhood G_x of x such that for any neighborhood V of $F \cap G_x$ there exists n_0 such that $f_n(y) = f(y)$ for all $y \in G_x \setminus V$ and $n \ge n_0$.

Proof. First assume that $(f_n)_{n\in\mathbb{N}}$ is locally W-convergent to f. Obviously, $(f_n)_{n\in\mathbb{N}}$ is almost uniformly convergent. By Theorem 4, for each $x \in X$ we can find a neighborhood \widetilde{U}_x of x such that $(f_n|_{\operatorname{cl}(\widetilde{U}_x)})_{n\in\mathbb{N}}$ is Whitney convergent to $f|_{\operatorname{cl}(\widetilde{U}_x)}$. By Theorem 4 and by normality of X, there exists a neighborhood U_x of x such that $\operatorname{cl}(U_x) \subset \widetilde{U}_x$ and $(f_n|_{\operatorname{cl}(U_x)})_{n\in\mathbb{N}}$ is Whitney convergent to $f|_{\operatorname{cl}(U_x)}$.

Let $F_x \subset \operatorname{cl}(U_x)$ be a closed countably compact set which satisfies conditions of Theorem 5 for the sequence $(f_n|_{\operatorname{cl}(\widetilde{U}_x)})_{n\in\mathbb{N}}$. By paracompactness of X, F_x is locally compact.

Take any $y \in \operatorname{cl}(U_x) \setminus F_x \subset U_x \setminus F_x$. By normality of X, there exist a neighborhood V of y such that $\operatorname{cl}(V) \cap F_x = \emptyset$ and $\operatorname{cl}(V) \subset \tilde{U}_x$. Then, by Theorem 5, we can find $n_0 \in \mathbb{N}$ such that $f_n(t) = f(t)$ for each $t \in V$ and each $n \geq n_0$. Thus we have proven that

(*) for each $y \in \operatorname{cl}(U_x) \setminus F_x$ there exist a neighborhood V of y and $n_0 \in \mathbb{N}$ such that $f_n(t) = f(t)$ for each $t \in V$ and each $n \ge n_0$. Put

$$A_n = \inf\{x \in X \colon f_k(x) = f(x) \text{ for each } k \ge n\}$$

for $n \in \mathbb{N}$ and

$$F = X \setminus \bigcup_{n=1}^{\infty} A_n.$$

Then F is closed and, by (*), $F \cap cl(U_x) \subset F_x$ for $x \in X$. Hence F is locally compact. Take any $x \in F$ and put $G_x = U_x$. Then condition (3) is satisfied, by Theorem 5 and by definition of U_x .

Now, assume that $(f_n)_{n \in \mathbb{N}}$ is almost uniformly convergent to f and there exist a locally compact set $F \subset X$ and a sequence $(A_n)_{n \in \mathbb{N}}$ of open subsets of X for which conditions (1), (2) and (3) hold. Take any $x_0 \in X$. First consider the case, where $x_0 \notin F$.

Then $x_0 \in A_k$ for some $k \in \mathbb{N}$. Since X is normal, there exists a neighborhood U of x_0 such that $\operatorname{cl}(U) \subset A_k$. Then $f_n|_{\operatorname{cl}(U)} = f|_{\operatorname{cl}(U)}$ for $n \geq k$. Hence

 $(f_n|\operatorname{cl}(U))_{n\in\mathbb{N}}$ is Whitney convergent to $f|_{\operatorname{cl}(U)}$. By Theorem 4, $(f_n)_{n\in\mathbb{N}}$ is W-convergent to f at x_0 .

Finally, consider the case, where $x_0 \in F$. Let G_{x_0} be a neighborhood of x_0 such that for any neighborhood V of $F \cap G_{x_0}$ there exists n_0 such that $f_n(x) = f(x)$ for all $x \in G_{x_0} \setminus V$ and $n \ge n_0$.

Since F is locally compact and X is normal, there exists a neighborhood W_{x_0} of x_0 such that $\operatorname{cl}(W_{x_0}) \cap F$ is compact and $\operatorname{cl}(W_{x_0}) \subset G_{x_0}$. Consider the sequence $(f_n|_{\operatorname{cl}(W_{x_0})})_{n\in\mathbb{N}}$. Clearly, it is uniformly convergent to $f|_{\operatorname{cl}(W_{x_0})}$ and $F \cap \operatorname{cl}(W_{x_0})$ is compact. Let V be any neighborhood of $F \cap \operatorname{cl}(W_{x_0})$ in $\operatorname{cl}(W_{x_0})$. There exists open subset \widetilde{V} of X such that $V = \widetilde{V} \cap \operatorname{cl}(W_{x_0})$.

Then $(G_{x_0} \setminus \operatorname{cl}(W_{x_0})) \cup \widetilde{V})$ is a neighborhood of $F \cap G_{x_0}$. Therefore we can find n_0 such that $f_n|_{\operatorname{cl}(W_{x_0})}(t) = f|_{\operatorname{cl}(W_{x_0})}(t)$ for each $t \in \operatorname{cl}(W_{x_0}) \setminus V$. By Theorem 5, $(f_n|_{\operatorname{cl}(W_{x_0})})_{n \in \mathbb{N}}$ is Whitney convergent to $f|_{\operatorname{cl}(W_{x_0})}$ and, by Theorem 4, $(f_n)_{n \in \mathbb{N}}$ is W-convergent to f at x_0 .

Since x_0 was arbitrary, the proof is completed.

3. Strong local W-convergence and w^* -convergence

Theorem 4 motivates us to introduce two new definitions of local Whitney convergence.

Definition 3. A sequence $(f_n)_{n \in \mathbb{N}}$ of functions from $\mathcal{F}(X, Y)$ is said to be w^* -convergent to $f \in \mathcal{F}(X, Y)$ at a point $x_0 \in X$, if there exists a neighborhood U of x_0 such that for each $\varphi \in C(U, \mathbb{R}^+)$ there exists $n_0 \in \mathbb{N}$ such that

$$d\left(f_n(x), f(x)\right) < \varphi(x)$$

for each $x \in U$ and $n \ge n_0$.

Equivalently, $(f_n)_{n\in\mathbb{N}}$ is w^* -convergent to a function $f \in \mathcal{F}(X,Y)$ at a point $x_0 \in X$, if there exists a neighborhood U of the point x_0 such that $(f_n|_U)_{n\in\mathbb{N}}$ is W-convergent to $f|_U$.

We say that $(f_n)_{n \in \mathbb{N}}$ is locally w^{*}-convergent to f if it is w^{*}-convergent to f at every $x \in X$.

Definition 4. A sequence $(f_n)_{n \in \mathbb{N}}$ of functions from $\mathcal{F}(X, Y)$ is said to be W-convergent in the strong sense to $f \in \mathcal{F}(X, Y)$ at a point $x_0 \in X$, shortly SW-convergent at x_0 , if for each neighborhood U of x_0 we can find a neighborhood $V \subset U$ of x_0 such that for each $\varphi \in \mathcal{C}(V, \mathbb{R}^+)$ there exists $n_0 \in \mathbb{N}$ such that

$$d(f_n(x), f(x)) < \varphi(x)$$

for all $x \in V$ and $n \ge n_0$.

Equivalently, $(f_n)_{n\in\mathbb{N}}$ is SW-convergent to a function $f \in \mathcal{F}(X,Y)$ at a point $x_0 \in X$, if for each neighborhood U of x_0 there exists a neighborhood $V \subset U$ of x_0 such that the sequence $(f_n|_V)_{n\in\mathbb{N}}$ is W-convergent to $f|_V$. We say that $(f_n)_{n\in\mathbb{N}}$ is locally SW-convergent to f if it is SW-convergent to f at every $x \in X$.

Corollary 2. If a sequence $(f_n)_{n \in \mathbb{N}}$ of continuous functions from X to Y is locally SW-convergent or locally w^* -convergent to f then $f: X \to Y$ is continuous too.

From the definitions we easily get the following two propositions.

Proposition 1. Let $(f_n)_{n \in \mathbb{N}}$ be a sequence from $\mathcal{F}(X,Y)$, $f \in \mathcal{F}(X,Y)$ and $x_0 \in X$.

- (1) If $(f_n)_{n \in \mathbb{N}}$ is w^* -convergent to f at x_0 then $(f_n)_{n \in \mathbb{N}}$ is W-convergent to f at x_0 .
- (2) If $(f_n)_{n \in \mathbb{N}}$ is SW-convergent to f at x_0 then $(f_n)_{n \in \mathbb{N}}$ is w^* -convergent to f at x_0 .

The first relation follows from the obvious fact that if $\varphi \in C(X, \mathbb{R}^+)$ then $\varphi|_U \in C(U, \mathbb{R}^+)$.

Proposition 2. Let $(f_n)_{n\in\mathbb{N}}$ be a sequence of functions from $\mathcal{F}(X,Y)$ and $f \in \mathcal{F}(X,Y)$. If $(f_n)_{n\in\mathbb{N}}$ is W-convergent to function f then $(f_n)_{n\in\mathbb{N}}$ is locally w^* -convergent to f.

We can put U = X in the definition of w^* -convergence.

Relationships between discussed types of convergence can be illustrated in the following diagrams.

SW-conv. at $x_0 \Rightarrow w^*$ -conv. at $x_0 \Rightarrow$ W-conv. at x_0

W-convergence \Downarrow local SW-conv. \Rightarrow local w^* -conv. \Rightarrow local W-conv.

We will show that none of the reverse implications hold, even in C(X, Y).

Example 1. Let $f_n \colon \mathbb{R} \to \mathbb{R}$,

$$f_n(x) = \begin{cases} 0 & if \quad x \le n, \\ \frac{1}{n} & if \quad x \ge n+1, \\ \frac{x-n}{n} & if \quad n < x < n+1, \end{cases}$$

for $n \in \mathbb{N}$ and let $f \colon \mathbb{R} \to \mathbb{R}$, f(x) = 0 if $x \in \mathbb{R}$.

Then f and f_n for $n \in \mathbb{N}$ are continuous. Since for each $x_0 \in \mathbb{R}$ there exist $n_0 \in \mathbb{N}$ such that $f_n(x) = 0$ if $n \ge n_0$ and $x \in (x_0 - 1, x_0 + 1)$, the sequence $(f_n)_{n \in \mathbb{N}}$ is locally SW-convergent to f. On the other hand, there exists $\varphi \in C(\mathbb{R}, \mathbb{R}^+)$ such that $\varphi(n+1) = \frac{1}{n}$ for $n \ge 1$. Then $|f_n(n+1) - f(n+1)| = \frac{1}{n} = \varphi(n+1)$ for each n. It follows that $(f_n)_{n \in \mathbb{N}}$ is not W-convergent to f.

Example 2. Let $f_n: [0,1] \to \mathbb{R}$, $f_n(x) = \frac{1}{n}$ if $x \in [0,1]$, $n \in \mathbb{N}$ and let $f: [0,1] \to \mathbb{R}$, f(x) = 0 if $x \in [0,1]$. Then functions f and f_n are continuous. Since [0,1] is compact and $(f_n)_{n\in\mathbb{N}}$ is uniformly convergent to f, $(f_n)_{n\in\mathbb{N}}$ is W-convergent to f.

Take any $x \in (0, 1)$ and let U = (0, 1). Then U is a neighborhood of x and any neighborhood V of x contained in U is not closed. Therefore there exist $\varphi \in C(V, \mathbb{R}^+)$ and a sequence $(x_n)_{n \in \mathbb{N}} \subset V$ such that $\varphi(x_n) = \frac{1}{n}$. Hence $(f_n|_V)_{n \in \mathbb{N}}$ is not W-convergent to $f|_V$. Thus $(f_n)_{n \in \mathbb{N}}$ is not SW-convergent to f at any $x \in (0, 1)$. Hence $(f_n)_{n \in \mathbb{N}}$ is not locally SW-convergent to f.

Example 3. Let $f_n \colon \mathbb{R} \to \mathbb{R}$, $f_n(x) = \frac{1}{n}$ if $n \in \mathbb{N}$, $x \in \mathbb{R}$ and let $f \colon \mathbb{R} \to \mathbb{R}$, f(x) = 0 if $x \in \mathbb{R}$. Obviously, $(f_n)_{n \in \mathbb{N}}$ is not w^* -convergent to f at any point $x \in \mathbb{R}$ (arguments are similar as in the previous example).

Let $x_0 \in \mathbb{R}$ and $\varphi \in C(\mathbb{R}, \mathbb{R}^+)$. Then there exists $\delta > 0$ such that $\varphi(x) \geq \delta$ for $x \in (x_0 - 1, x_0 + 1)$. Hence $|f_n(x) - f(x)| = \frac{1}{n} < \delta \leq \varphi(x)$ for $x \in (x_0 - 1, x_0 + 1)$ and sufficiently large n. Thus $(f_n)_{n \in \mathbb{N}}$ is locally W-convergent.

The next example shows that w^* -convergence at a point is not a local property.

Example 4. Let $f_n, g_n \colon [0,2] \to \mathbb{R}, f_n(x) = \frac{1}{n}$ if $x \in [0,2]$ and

$$g_n(x) = \begin{cases} \frac{1}{n} & if \quad x \in \{0\} \cup \left[\frac{1}{n}, 2\right], \\ 1 & if \quad x = \frac{1}{2n}, \\ \text{linear in } \left[0, \frac{1}{2n}\right] \text{ and } \left[\frac{1}{2n}, \frac{1}{n}\right] \end{cases}$$

if $n \in \mathbb{N}$. Next, let $f: [0,2] \to \mathbb{R}$, f(x) = 0 if $x \in [0,2]$. Since [0,2] is compact and $(f_n)_{n \in \mathbb{N}}$ is uniformly convergent to f, $(f_n)_{n \in \mathbb{N}}$ is locally w^* -convergent to f.

Take any $x \in [0,2]$. Let U be any neighborhood of x. Then either $[0,\eta) \subset U$ for some $\eta > 0$ or U is not closed subset of [0,2].

If $[0,\eta) \subset U$ for some $\eta > 0$ then $(g_n|_U)_{n \in \mathbb{N}}$ is not uniformly convergent. Hence $(g_n|_U)_{n \in \mathbb{N}}$ is not Whitney convergent.

Finally, assume that U is not a closed subset of [0, 2]. Then there exist a sequence $(x_n)_{n \in \mathbb{N}} \subset U$ and $\varphi \in C(U, \mathbb{R}^+)$ such that $\varphi(x_n) = \frac{1}{n}$ for $n \ge 1$. Since $g(x) \ge \frac{1}{n}$ for $x \in [0, 2]$, we have

$$|g_n(x_n) - f(x_n)| \ge \frac{1}{n} = \varphi(x_n).$$

It follows that $(g_n|_U)_{n\in\mathbb{N}}$ is not Whitney convergent. We have proven that $(g_n)_{n\in\mathbb{N}}$ is not w^* -convergent at any $x \in [0, 2]$. Thus the sequence $(f_n)_{n\in\mathbb{N}}$ is w^* -convergent at each point $x \in [0, 2]$ and $(g_n)_{n\in\mathbb{N}}$ is not w^* -convergent at any $x \in [0, 2]$, nevertheless $f_n(x) = g_n(x)$ for all $x \in [1, 2]$ and $n \in \mathbb{N}$.

Theorem 7. Let (X, \mathcal{T}) be a paracompact perfect topological space, $x_0 \in X$ and let (Y, d) be any metric space. If X is locally compact at x_0 then the following conditions are equivalent:

- (1) W-convergence at x_0 and SW-convergence at x_0 in $\mathcal{F}(X,Y)$ are equivalent.
- (2) W-convergence at x_0 and SW-convergence at x_0 in C(X,Y) are equivalent.
- (3) there exists a local base of \mathcal{T} at x_0 consisting of sets which are both open and closed.

Proof. 3) \Rightarrow 1) Assume that there exists a local base at x_0 consisting of sets which are both open and closed. Let $(f_n)_{n \in \mathbb{N}}$ be any sequence from $\mathcal{F}(X,Y)$ and $f \in \mathcal{F}(X,Y)$. If $(f_n)_{n \in \mathbb{N}}$ is SW-convergent to f at x_0 then, obviously, it is W-convergent at x_0 .

On the other hand, assume that $(f_n)_{n\in\mathbb{N}}$ is W-convergent to f at x_0 and let U be any neighborhood of x_0 . By Theorem 4, there exists a neighborhood U_1 of x_0 such that for each neighborhood U_2 of x_0 contained in U_1 the sequence $(f_n|_{U_2})_{n\in\mathbb{N}}$ is W-convergent to $f|_{U_2}$. By assumption, we can find a neighborhood V of x_0 such that $V \subset U_1 \cap U$ and cl(V) = V. Then $(f_n|_V)_{n\in\mathbb{N}}$ is W-convergent to $f|_V$. It follows that $(f_n)_{n\in\mathbb{N}}$ is SWconvergent to f at x_0 . Thus W-convergence at x_0 and SW-convergence at x_0 in $\mathcal{F}(X, Y)$ are equivalent.

1) \Rightarrow 2) This implication is obvious.

2) \Rightarrow 3) Assume that W-convergence at x_0 and SW-convergence at x_0 are equivalent in C(X, Y). Suppose that there exists a neighborhood U of x_0 such that each neighborhood V of x_0 contained in U is not closed. By local compactness of X at x_0 , there exists a neighborhood U_0 of x_0 with compact closure. Let $f: X \to Y$, f(x) = 0 for $x \in X$. By normality of X, we can find a neighborhood G of x_0 and a sequence of continuous functions $f_n: X \to Y$ such that $cl(G) \subset U \cap U_0$, $f_n(x) = \frac{1}{n}$ for $x \in G$, $f_n(x) = 0$ for $x \in X \setminus (U \cap U_0)$ and $0 \le f_n(x) \le \frac{1}{n}$ for $x \in X$. By Theorem 5, $(f_n)_{n \in \mathbb{N}}$ is Whitney convergent to f, because $cl(U \cap U_0)$ is compact. Hence $(f_n)_{n \in \mathbb{N}}$ is W-convergent at x_0 .

Let $V \subset G$ be any neighborhood of x_0 . In particular, $V \subset U$. Therefore V is not closed. It follows that V is not compact. Since X is perfect, V is of type F_{σ} . Therefore V is a paracompact space. It follows that V is non pseudo-compact. Hence there exist a sequence $(x_n)_{n \in \mathbb{N}}$ of points from V and $\varphi \in C(V, \mathbb{R}^+)$ such that $\varphi(x_n) = \frac{1}{n}$ for $n \geq 1$. Then

$$d(f_n(x_n), f(x_n)) = \frac{1}{n} = \varphi(x_n)$$

for all n. It follows that $(f_n|_V)_{n\in\mathbb{N}}$ is not Whitney convergent to $f|_V$ and therefore $(f_n)_{n\in\mathbb{N}}$ is not SW-convergent to f at x_0 , which is a contradiction. This completes the proof.

Since every metric space is paracompact and perfect we have the following corollary.

Corollary 3. Let (X, d_X) be a locally compact metric space. The following conditions are equivalent:

- (1) for each metric space (Z, ϱ) local W-convergence and local SW-convergence in $\mathcal{F}(X, Z)$ are equivalent.
- (2) local W-convergence and local SW-convergence in $\mathcal{F}(X, \mathbb{R})$ are equivalent.
- (3) for each metric space (Z, ϱ) local W-convergence and local SW-convergence in C(X, Z) are equivalent.
- (4) local W-convergence and local SW-convergence in $C(X, \mathbb{R})$ are equivalent.
- (5) X is zero dimensional.

References

- G. Di Maio, Ľ. Holá, D. Holý, R. A. McCoy, Topologies on the space of continuous functions, Top. Appl. 86 (1998), 105-122.
- [2] J. Ewert, J. Jędrzejewski, Between Arzelá and Whitney convergences, Real Anal. Exchange, (29)1, 257–264, (2004).
- [3] S. Kowalczyk, On Whitney convergence, J. Appl. Annal., 15 Nr 1, 139–148, (2009).
- [4] N. Krikorian, A note concerning the fine topology on function spaces, Composito Math. 21 (4), 343-348, (1969).
- [5] R. A. McCoy, Fine topology on function spaces, J. Math. Sci., 9, 417–424, 1986.
- [6] H. Whitney, Differentiable Manifolds, Ann. Math. 37, 645–680, 1936.

Stanisław Kowalczyk

POMERANIAN UNIVERSITY IN SŁUPSK, INSTITUTE OF MATHEMATICS, UL. ARCISZEWSKIEGO 22A, 76-200 SŁUPSK, POLAND *E-mail address*: stkowalcz@onet.eu