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Abstract. A ring A is called right (left) semihereditary if all finitely generated right
(left) ideals of A are projective. In this paper we consider non-commutative semi-
hereditary rings and show their connection with non-commutative valuation rings.
We also present some criterion for a module to be flat.

1. Introduction

Historically semihereditary rings come from homological algebra and their
definition was first appeared in [1].

Definition 1. [1| A ring A is called right (left) semihereditary if all finitely
generated right (left) ideals of A are projective.

If a ring A is an integral domain, i.e. a commutative ring without divisors
of zero, then semihereditary domains coincide with Priifer domains. Priifer
domains were defined in 1932 by H. Priifer, and since that time they play
a central role in the development of the classical ring theory. Recall that an
integral domain is called a Priifer domain if all its finitely generated ideals
are invertible. Since in the case of integral domains any ideal is invertible
if and only if it is projective, we obtain that any Priifer domain is exactly
a semihereditary domain. Priifer domains naturally arise from valuation rings
of fields, since for any prime ideal P of a valuation ring A the localization
Ap of Ais a Priifer domain. So semihereditary domains can be considered as
a global theory for classical valuation rings.
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In the non-commutative case there are different generalizations of valua-
tion rings. If we consider invariant valuation rings of division rings which
were introduced by Schilling in [6], then we obtain that any invariant valua-
tion ring is a semihereditary ring in the sense of definition 1. So semihered-
itary rings can be considered as some generalizations of Priifer domains for
non-commutative rings. Another generalization of non-commutative valuation
rings were introduced and studied by Dubrovin in [3]. These rings were named
Dubrovin valuation rings after him. In this non-commutative valuation the-
ory any Dubrovin valuation ring of a simple Artinian ring @ is exactly a local
semihereditary order of Q). So semihereditary orders can be considered as the
global theory for Dubrovin valuation rings. Dubrovin valuation rings found
a large applications. More information about these rings and semihereditary
orders in simple Artinian rings can be found in the book [5].

Semihereditary rings are also interesting from homological point of view,
since they belong to the class of rings with weak global dimension < 1.

All rings considered in this paper are assumed to be associative with 1 # 0,
and all modules are assumed to be unital. We write U(A) for the group of
units of a ring A, and D* for the multiplicative group of a division ring D.
We refer to [4] for general material on theory of rings and modules.

2. Semihereditary rings and valuation rings

For the case of non-commutative rings there are different generalizations for
valuation rings. First consider the generalization which was proposed in 1945
by Schilling [6], who extended the concept of a valuation on a field to that on
a division ring.

Definition 2. Let G be a totally ordered group (written additively) with the
order relation >. Add to G a special symbol oo such that x+ o0 = co+x = 00
for all x € G. Let D be a division ring. A valuation on D is a surjective map
v:D — GU{oo} which satisfies the following relations:

1) v(0) = oo,

2) v(zy) = v(@) + v(y);

3) v(z +y) > min(v(x),v(y)), whenever x +y # 0,
for any x,y € D.

Then A = {x € D : v(x) > 0} is a ring which is called the (invariant)

valuation ring of D with respect to valuation v, and U = {u € D* : v(u) = 0}
1s called the group of valuation units.

In the general case we obtain the following definition.
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Definition 3. [6] A subring A of a division ring D is called an invariant
valuation ring of D if there is a totally ordered group G and a valuation
v:D — G of D such that A={x € D : v(z) > 0}.

The next proposition gives the basic properties of invariant valuation rings.

Proposition 1. Let A be an invariant valuation ring of a division ring D
with respect to a valuation v. Then

1. aA C bA or bA C aA for any a,b € A.
2. Fach ideal of A is two-sided.

3. A is a right and a left Ore domain. Therefore it has a left and right
division ring of fractions.

4. Any finitely generated ideal of A is principal.
As an immediately consequence of this proposition we obtain the following.

Proposition 2. Any invariant valuation ring of a division ring D is semi-
hereditary and Bézout ring.!

The following theorem gives the equivalent definitions of a invariant valu-
ation ring.

Theorem 1. Let A be a ring with a division ring of fractions D which is
wnwvariant in D. Then the following statements are equivalent:

1. A is an invariant valuation ring of some valuation v on D.
2. For any element x € D* either x € A or 7' € A.
3. The set of principal ideals of A is linearly ordered by inclusion.

4. A is a uniserial ring.”

Definition 4. A subring A of a division ring D is called a total valuation
ring if for each x € D* we have x € A or x™ € A.

Theorem 1 states that any invariant valuation ring is a total valuation ring,
but not conversely. Note that in the case of integral domains the notions of
invariant valuation rings and total valuation rings are equivalent to the notion
of a classical valuation ring of a field. Theorem 1 also states that any invariant
totally valuation ring is uniserial. Warfield |7| showed the connection of total
valuation rings with semihereditary rings in the case of local rings.

'Recall that a ring A is called a right Bézout ring if any its finitely generated ideal is
principal.

2Recall that a ring A is called uniserial if all ideals of A are linearly ordered with respect
to inclusion.
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Theorem 2. For a local ring A the following properties are equivalent:
(i) A is uniserial and semihereditary.

(73) A is a total valuation ring.

The next type of non-commutative valuation rings was introduced and
studied by Dubrovin [3].

Definition 5. Let S be a simple Artinian ring. A subring A of S, with
Jacobson radical J(A), is called a Dubrovin valuation ring if
1) A/J(A) is a simple Artinian ring;
2) for each s € S\ A there are a1,a3 € A such that say € A\ J(A) and
azs € A\ J(A).

Note that every Dubrovin valuation ring is a total valuation ring if and only
if A/J(A) is a division ring. Hence, if S is a field, then Dubrovin valuation
rings of S are exactly the usual valuation rings. The class of Dubrovin valua-
tion rings is much wider than the class of total valuation rings. The following
theorem gives the basic characterizations of Dubrovin valuation rings.

Theorem 3. [5] Let A be a subring of a simple Artinian ring Q. Then the
following conditions are equivalent:

(1) A is a Dubrovin valuation ring of G.
(2) A is a local semihereditary order in Q.
(3) A is a local Bézout order in Q.

3. Semihereditary rings and flat modules

While semisimple rings and hereditary rings are defined uniquely by their
projective global dimension, for semihereditary rings we have the following
statement which gives the equivalent characterization of semihereditary rings.

Theorem 4. 2| Let A be a ring. The following conditions are equivalent:

1. A is a left semihereditary ring.

2. w.gl.dimA < 1 and A is a right coherent ring.?

3. Every torsion-less right A-module is flat.

Note that semihereditary rings are not defined uniquely by the flatness
property. There are examples of rings with weak global dimension < 1 which
are not semihereditary. Note also that for any ring A, w.gl.dimA < 1 if and

only if every ideal of A is flat. The criteria for modules to be flat are very
important. In this section we give one of such criteria.

®Recall that a ring A is called right coherent if the direct product of an arbitrary family
of copies of A is flat as a right A-module.
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Theorem 5. Let 0 — X — P — M — 0 be an ezact sequence of right A-
modules, where P is projective. Then the following statements are equivalent:

(1) M is a flat module.
(2) For any x € X there is a 0 € Homa (P, X) with 0(x) = x.

(3) For any z1,22,... ,x, € X there is a 0 € Homy (P, X) with 0(x;) = x;
for all i.

Proof.

(1) = (2). Let P be a projective module, and M a flat module. By the
Kaplansky theorem (see e.g. theorem 5.5.1 [4]), P is projective if and only if
there is a system of elements {p; € P : i € I} and a system of homomorphisms
{¢i}, @i : P — A such that any element p € P can be written in the form

p= Zpi(soz-(p)),

where only a finite number of elements ¢;(p) € A are not equal to zero.
If x € X, then = p;, a1 +pi,as+ ...+ pi,, am, where a; = p;, (x) € A. Let
7 = Aa1+Aas+. ..+ Aay,. Since M is flat, € XNPZ = X7, by the flatness
test (see e.g. proposition 5.4.11 [4]). Therefore z = ) zc;, where z; € X and
¢j € . Now each ¢; = Y bjja;, so x = Y xla;, where x = Y x;b;;. Define
i 2 J

6 : P — X by 0(p;,) = x},, while § sends all the other system elements p; of
P into 0. Then

m

0(z) = 00> piar) = > (0(pi,)ar) = Y zhag = .
= k=1

k=1 k=1

(2) = (1). Let z € X N PZ, where 7 is a left ideal in A. Then z =
Di 01 + Piya2 + . .. + pi.ar, where a; € A. Define 7, = Aay + Aaz + ... + Aa,,
which is a finitely generated left ideal in A. It is clear that Z, C Z, and so
x € XZ, C XZ. Let 6 € Homa (P, X) with 6(x) = . Then z = 0(p;, )a; +
0(piy)az + ...+ 0(p;,)a, € XI,. Therefore x € X N PZ C X7, C XZ. From
the flatness test (see e.g. proposition 5.4.11 [4]) it follows that M is flat.

(2) = (3). This is proved by induction on n. Let z1,29,...,2, € X.
If n = 1, then the existence of # follows from (2). Assume that n > 1 and
(3) holds for all k < n. Let 6, : P — X be a homomorphism such that
On(xy) = xp. Let y; = x; — Op(z;) for i = 1,2,... ,n — 1. By induc-
tion hypothesis, there exists a homomorphism 6’ such that 6'(y;) = y; for
i=1,2,...,n—1. Now define § = 0’ +6,, — 0'0,, € Hom4 (P, X ). Then

0(zn) = 0 (x) + On(z0) — 00, (20) = 0 (2) + 20 — Oy = 1,
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=z —yi +0'(vi) = i
fori=1,2,... ,n—1. So 0 is a required homomorphism.

(3) = (2) follows by taking n = 1.

From this theorem it immediately follows the theorem which was first
proved by Villamayor and was given by Chase in his paper [2].

Theorem 6. [2] Let 0 — X — F — P — 0 be an ezact sequence of right
A-modules, where F' is free with a basis {e; : i € I}. Then the following
statements are equivalent:
(1) P is a flat module.
(2) For any x € X there is a § € Homy(F, X) with 6(x) = x.
(3) For any x1,x9,... ,x, € X there is a 0 € Homy(F, X) with 0(x;) = z;
for all i.
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