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Abstract. Let (G, +) be a uniquely 2-divisible Abelian group. In the present paper

we will consider the solutions of functional equation
[+ o) = [f (2 = y)I" + (20 +2y) + (20~ 29) = f(22)[f(20) +29(2)), 2,y € G,
where f and g are complex-valued functions defined on G.

1. Introduction

We know many trigonometric identities. To us, important will be the follow-

[sin (%)]2 - [Sin (”3 5 y>r =sin(z)sin(y), z,yeR, (1)

ing:

sin(x +y) + sin(r — y) = 2sin(x) cos(y), =,y € R, (2)

sinh(z — y) = sinh(x) cosh(y) — cosh(z) sinh(y), x,y € R. (3)

Let (G,+) be a uniquely 2-divisible Abelian group and f,g:G — C. Equation
(1) translates into the well known sine functional equation |1, 8|

FE] (53] = serw o wvee w
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and (2) gives rise to the familiar cosine functional equation [1, 6, 7|

fla+y)+ flz —y) = 2f(z)g(y) forall z,ycG, (5)
and (3) leads to the Aczel-Dhombres functional equation [1]
fle—y) = f(@)g(y) —g(x)f(y) forall zyeG. (6)

From now on, f, and f. stand for the odd and the even part of a function f.

Theorem 1 (Aczél and Dhombres [1]). Let (G,+) be a uniquely 2-divi-

sible Abelian group. Then f,g: G — C satisfy equation (6) if and only if

(i) f =0 and g is arbitrary; or

(ii) there exists an additive function A : G — C and a constant o € C such
that f(x) = A(z), g(z) = aA(z) + 1,2 € G; or

(iii) there exists an exponential function m : G — C and constants 3,y € C

such that f(z) = Bmy(x), g(x) = ymy(x) + me(x), = € G.

From the system of equations

{f<a: +y) = fl2)+ f(y),
flay) = f(2)f(y),

we get the Dhombres functional equation (see [2])

flx+y)+ flzy) = f(z) + f(y) + f(2)f(y)

for functions f mapping a given ring into another one. A different system of
the functional equations has been studied by Ger [3, 4, 5]. Here we consider
the sum of equations (4) and (5).

2. Main results

We replace x by 2z and y by 2y in (4) and (5). Summing up these functional
equations side by side, for all z,y € G, we get

[f (@ +y)I° =L (& = y)IP+ f(2x + 2y)+ f(2x — 2y) = f(22)[f (2y) +29(2y)]. (7)
Remark 1. Put x=y=0 in (7), so that we have f(0)=0V f(0)=2 — 2¢(0).

Lemma 1. Let (G, +) be a uniquely 2-divisible Abelian group and let functions
fr9: G — C satisfy equation (7). In this case
(i) of f =0, then g is arbitrary;

(ii) if g =0, then f =0 or f =2.
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Proof. Ad (ii). For g =0, putting y = z in (7), we get
f@) = [fO))* = f(0) = F(O)[f(0) = 1] =, z€G. (8)
From equation (7) we obtain
=2y =77
whence vy =0V v =2. By (8), we conclude that f =0V f = 2. O

Lemma 2. Let (G,+) be a uniquely 2-divisible Abelian group and let nonzero
functions f,g: G — C be functions defined by

f(z) = aA(z) + f(0), g(x) = bA(x) +9(0), =z €G, (9)

with some additive function A : G — C and a,b € C satisfy equation (7). In
this case we have the following possibilities:

(i) If f(0) =0, then f(z) = aA(x), g(x) =1, z € G.
(i) 17 £(0) # 0, then f(z) = £(0), g(x) =1 - L/(0), x € G.

Proof. Applying (9) to (7), we have
[aA(z+y) + f(0)]*— [aA(z —y) + f(0)]* + aA(2x + 2y) + 2f(0) + a A(2x — 2y)
= [aA(2z) + f(0)][(a + 20)A(2y) + f(0) +29(0)], =,y € G.

From the properties of additive function A for all z,y € G, we infer that
[2—f(0)—29(0)][2aA(z)+ f(0)]+2f(0)[a—2b] A(y) =8abA(x) A(y). ~ (10)
Case 1. Assume that f(0) = 0. Then equation (10) has a form
aA(z)[1 — g(0) — 26A(y)] =0, z,y € G. (11)

Ifa=0VA=0V(a#0ANA#0OADF#D0), then we get f =0, a contradiction.
Hence we have only one possibility (a # 0A A # 0 A b = 0). Consequently,
equation (11) gives g(0) = 1. From (9) we obtain (i).

Case 2. Let f(0) # 0. By Remark 1 and equation (10), we get the relation
A(y)[f(0)(a — 2b) — 4abA(x)] =0, =,y € G.
If A =0, then (ii). Assume that A # 0. From above we have
f(0)(a —2b) = 4abA(x), =z €.

Therefore (a =0=5b=0)V (b =0= a =0), the case (ii). If a #0Ab# 0,
then A =0, a contradiction. O
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Now, we formulate some properties of the exponential function without a proof.

Lemma 3. Let (G, +) be a uniquely 2-divisible Abelian group. Then a nonzero
exponential function m : G — C has the following properties

(i) me(z +y) + me(z —y) = 2me(z)me(y), =,y € G;

(i) [mo(z +y)I? = [mo(z — y)]* = mo(22)mo(2y), .y € G;

(iil) mo(z + y) + mo(z — y) = 2mo(z)me(y), z,y € G,
(iv) mo(2z) = 2mey(x)me(z), = € G;
(
(

(
(

V) [me(z +9)* = [me(z — y)]* = mo(22)mo(2y), =,y € G,
(

3

vi) mo(z +y) — mo(x — y) = 2me(x)mo(y), =,y € G.

Lemma 4. Let (G,+) be a uniquely 2-divisible Abelian group and let nonzero
functions f,g: G — C be functions defined by

f(x) = amy(x) + bme(z), g(x) = emo(x) + dme(z), z € G, (12)

with some exponential function m : G — C and a,b,c,d € C satisfying equa-
tion (7). Then we have the following possibilities:

(i) f(z) = amo(x), g(x) = me(z), © € G; or

(ii) f(z)=b#0, g(x) =1—3b, € G; or

(iii) f(z) = bmo(z) + bme(x), g(z) = Fbmo(z) + (1 — $b)me(z), 2 € G; or
(iv) £(z) = —bmo(w) + bme(2), g(a) = — Fbmo(@) + (1 — Feym (@), € G.

iv)
Proof. Inserting functions (12) into equation (7), for all x,y € G, we obtain
[amo(z + y) 4+ bme(x + y)]2 = [amo(x — y) + bme(x — y)]* + a[mo (22 + 2y)

+mo(22 — 2y)] + b[me (22 + 2y) + me (22 — 2y)]
= [amy,(22) + bm.(2z)][(a + 2¢)m, (2y) + (b + 2d)me(2y)].

From above and Lemma 3, we get

[b* — 2ac]mo(2)mo(y) + bla — 2¢]me (x)mo (y)

+al2 — b — 2d]mo(x)me(y) + b[2 — b — 2d|me(z)me(y) =0, z,y € G. (13)

Directly from the definition (12), we see that f(0) = band ¢g(0) = d. Moreover,
from Remark 1 we infer that b =0 or b = 2(1 — d).

Now we shall distinguish two cases regarding the value of function f at
z€ro.
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Case 1. Let f(0) = b =0. Then, by (13), we conclude that
amo(@)[—emoly) + (1 — dyme(y)] = 0, 2,y € G.
If a =0 or m, =0, then also f = 0. Hence
—emo(y) + (1 - dyme(y) =0, y € G. (14)

Putting y = 0 in (14) and using m,(0) = 0, we have d = 1. Jointly with (14),
for all y € G, this implies that —em,(y) = 0, whence ¢ = 0, which ends the
proof of (i).

Case 2. Assume that f(0)=b% 0. Set b=2(1—d) in (13). Then, we get
mo(y)[(b* = 2ac)me(z) + b(a — 2¢)me(z)] = 0, 2,y € G. (15)

Subcase 2.1. Let m, = 0. By equation (12), we conclude that f = bm,,
g = dme. Replacing y by —y in (7), we arrive at

[f =)l = [f (e4y)]" +F (22 —2y) + 22+ 2y) = f (22)[f (29) +29(2y)]. (16)
Subtracting (7) and (16), we get

[flz+y)?=[flz-yP zyed

Putting here y = z and replacing x by 5, we obtain f? =10 Thecase f = —b

is impossible. In other words, we have (ii): f =b, me =1, g =d = 2771’ =
1— 2b.
2
Subcase 2.2. Suppose m, # 0. Then (15) yields
(b — 2ac)my(z) + b(a — 2¢)me(z) =0, z € G. (17)

Putting * = 0, we have a = 2¢. From (17), for all z € G, we get
(b2 — 4c®)my(x) = 0, ie. b2 = 4c%. If a = 2¢ Ab = 2¢, then we have the
case (iii). However, a = 2c¢ A b = —2¢ yields (iv). ]
Theorem 2. Let (G,+) be a uniquely 2-divisible Abelian group. Then func-
tions f,g : G — C satisfy equation (7) if and only if

(i) f =0 and g is arbitrary; or

i) f(z) =a#0, g(z) =1—3a, z€G; or

(
(iii) there exists an additive function A:G—C such that f=A,g=1; or
(

iv) there exists an exponential functionm : G — C and some constant 3 € C
such that f=L0m,, g=me; or
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(v) there exists an exponential function m: G — C such that f(x)= f(0)m,(x)
+ FO)me(w), glw) = L2mo(x) + (1= ) me(a), w € G or
(vi) there exists an exponential function m : G — C such that f(x) =

— F(0)mo (@) + f(0)me (), g(z) = —@mo(x)+(1 - %0)) me(z), o € G.

Proof. From Lemma 1 we obtain (i) and (ii) for & = 2. Assume that f # 0
and g # 0. Putting z = 0 in (7), we get

[F) = [f(=9)* + £(29) + f(=2y) = FO)[f(2y) +29(2y)], y€G.
Let 2C := f(0). Thus, from above
F(2y) + f(=2y) = 2C[f(2y) +292)] = [f (=)’ = [fW)]*, yeG. (18)
Interchanging the roles of x and y in (7), we obtain

[f(y+2)]? = [f (y—2)* + f 2y +22) + f (2y —2z)

(19)
=f(2y)f(2x)+2f(2y)g(2x),2,y € G.
Subtracting (7) and (19), we get
[f(y—2)] = [f(z—y)*+ f(20—2y) - f(2y —22) 20)
=2f(22)9(2y) -2/ (2y)9(2z), x,y € G.
Applying (18) for y equal z — y, we recive
f(2z=2y)+ f (20+2y) —2C[f (22 —2y)+29 (22 —2y)] o)

=[fzt+y)P=[f(z—y)izy € G.
By (20) and (21), we get the relation
(1= CO)f(2z—2y) —2Cg(2z — 2y) = f(22)9(2y) — f(2y)9(22), =x,y€G.
Replacing 2 by £ and y by ¥, we obtain
(1=O)f(z—y) —2Cg(x —y) = f(x)g(y) — fW)g(x), z,yeG.  (22)
Case 1. Let f(0) = 0= C = 0. Thus, from (22) we get

flx—y) = f(x)g(y) — fy)g(x), =z,y€q,
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By Theorem 1 (ii), we infer that f(z) = A(x),g9(z) = aA(x) + 1 for some
additive function A and some constant «. In view of Lemma 2 for a = 1,
b=a, f(0) =0, g(0) =1, we deduce that

f(z)=A(x), g(z)=1, =zed.

This is the case (iii) of our theorem. By Theorem 1 (iii), we get

f(@) =PBmo(x), g(x) =ymo() +me(z), z€G.
Fora=p, b=0, c=~, d=1in Lemma 4 (i) we have the case (iv), i.e.

f(x) = Bmo(z),  g(x) = me(x), w€G.
Case 2. Assume that f(0) # 0. Then g(0) =1 — C, and (22) gives
9(0)f(x —y) = f(O)g(z —y) = f(2)9(y) = [(y)g(x), zyeCG.  (23)

Subcase 2.1. If g(0) = 0, then f(0) = 2. By (23), we infer that

oo~y =902 )"0 ayea 24

Theorem 1 (ii) yields g(z) = A(x), @ = aA(x)+1 for some additive function
A and some constant a. Thus

flz) =20A(z) +2, g(z)=Ax), zed.
By Lemma 2 for a = 2, b= 1, f(0) =2, g(0) =0, we get f =2, g =0. This

is the case (ii). Theorem 1 (iii) leads us to

f(x) =2ymy(x) 4+ 2me(x), g(z) = Bmo(x), =€ G.

From Lemma 4 (ii) for a = 2, b =2,c = 3,d = 0, we get (ii) of the theorem.
The case (iii) for f(0) = 2 gives (v), and (iv) gives (vi).
Subcase 2.2. Let f(0) # 0 and ¢(0) # 0. Thus, from (23) for

we conclude that
F(z —y)=F(z)G(y) - Fy)G(z), =z,y€cd. (25)
Again, by Theorem 1 (ii), we obtain

1+ f(0)g(0)a

g(x) = g(0)aA(z) +g(0), f(z) 9(0)

A(z)+ f(0), zed.
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By Lemma 2 (ii) for a =

1+fé%s;(0)a’ b = g(0)a, we get (ii) of the theorem.

Further, Theorem 1 (iii) yields

F(x) == g(0)f(z) = f(0)g(x) = Bmo(z), €,

or, equivalently,

g(x) = g(0)ymo(z) + g(0)me(x), z € G,

+7f(0)g(0
fw) = ZEIIO 1, 0) 4 fOmee), e
9(0)
Now, using Lemma 4 for a = W, b = f(0), ¢ = v9(0), d = ¢(0),
the case (ii) gives (ii) of our theorem, however (iii) yields (v), and (iv) gives
(vi). ]
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