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Abstract. The first step to make transitional systems more efficient is to minimize
the number of their states. A bisimulation relation is a mathematical tool that helps
in searching for equivalent systems, what is useful in the minimization of algorithms.
For two transition systems bisimulation is a binary relation associating systems which
behave in the same way in the sense that one system simulates the other and vice-
versa. The definition for classical systems is clear and simple, but what happens with
nondeterministic, probabilistic and quantum systems? This will be the main topic
of this article.

1. Introduction

During the last fifty years many scientists have been searching for new com-
putation models. They have developed probabilistic automata, models of
finite automata over infinite words, timed automata, hybrid automata, etc.
We can find their ontological review in the article [5]. In 1997 Kondacs and
Watrous formulated the model of 1-way quantum finite automata (1QFA) [4];
in the same year, independently, Moore and Crutchfield defined the quantum
finite automata [6]. Later, the model of quantum automata was evolved by
Ambainis in many works (see e.g. |1]). This article present the definition of
the bisimulation relation for different types of automata. The main focus will
be on a finite reactive probabilistic automaton and a one-way quantum finite
automaton.
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2. Definitions of models

A transition system is a four-tuple T'S = (S, E,T,sg), where S is a set
of states with the initial state sg, F is a set of events, T'C S x E x S is a
transition relation (as usual, the transition (s,a, s) is written as s —= s1) [5].

The more complex example of a transition system is a nondeterministic
finite automaton which is a tuple NFA = (Q, X, §, qo, F), where @ is a finite
set of states with the start state qg, 2 is a finite set of input symbols, ¢ is
a transition partial function § : Qx X+ 29, FCQ is a set of final states [3].

A Markov chain is the transition system, in which the probability of
reaching the given state is considered. A finite Markov chain is a pair
MC = (Q,9), where @ is a set of states, § is a transition function
(0 : Q — D(Q), where D(Q) is a discrete probability distribution) [10].

If g € Q and 6(q) = P with P(¢') = p > 0, then the Markov chain is
said to go from the state ¢ to the state ¢’ with probability p. We can find
the different notations of the same phenomenon: ¢ ~~ P, ¢ 2 q, 0(q) = P,
5(q)(¢') = p. Let us consider further extension of this model. A finite
reactive probabilistic automaton is a tuple PA = (Q, 3,0, qo, F'), where
Q is a finite set of states, X is a finite set of input symbols, 0 : Q X X — D(Q)
is a transition partial function, gy € @ is an initial state, F' C @ is a set of
final (accepting) states [10].
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Figure 1: The PA example

After each step, a probabilistic automaton is in a superposition of states:
Poqo + p1q1 + ... + Pngn, Where po +p1 + ... +pp = 1.

To define a quantum automaton we need a brief introduction to the theory
of quantum computing. In quantum mechanics the possible states of n-level
quantum mechanical system are represented by unit vectors (called "the state
vectors") residing in a complex Hilbert space H,, (called "the state space”).

For the description of this system an ortonormal basis is used:
|z1), |x2), ..., |zn), where the basis vectors |z;) are called the basis states.
Any quantum state can be expressed by a superposition of basis states:
aq|z1) +as|xa) +- - -+ ap|z,), where o is a complex number known as a prob-
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ability amplitude. The probability of observing the state z; is equal to |oy;|?,
with the normalization |a1|? + |ag|? + -+ + |au|?> = 1. Time evolution of
quantum system is represented by a unitary matrix (it has an inverse equal to
its conjugate transpose). This is a stronger condition than that in the proba-
bilistic systems, it causes a phenomenon of interference effects and guarantees
that the time evolution of quantum state is reversible [2].

A one-way quantum finite automaton (defined by Kondacs and Wa-
trous) is a tuple 1QF A = (Q, X, 9, qo, Qu, @), where @ is a finite set of states,
Y is a finite set of input symbols, § is a transition partial function, ¢g € Q is
an initial state, Q, C @ and Q, C @ are sets of accepting and rejecting states.

Figure 2: The 1-way QFA example

Q. and @, are called non-halting states; @, = Q\(Q, U Q,). The symbols |
and | mark the beginning and the end of the word on the tape. The working
alphabet of automaton is ' =X U {|, ]} [4].

The transition function 0 : Q x I' x Q — C represents the amplitude with
which an automaton being currently in a state |g), reading the symbol o, will
change a state to |¢/). For o € T, V; is a linear transformation defined by:

Vollg) = X geq d(a,0,4)1d) 1], [4].

3. Bisimulation

First, we must ask the question: when are two processes (states) behavioraly
equivalent? Secondly, what does it mean for two systems to be equal with
respect to their communication structures? The bisiumlation relation will
allow us to find the answers.

Two transition systems T'Sy = (T, %, 07,t9) and T'Sy = (S, %, dg, s0) are
bisimilar iff there is a relation R C S x T such that (sg,t9) € R and for all
pairs (s,t) € R and for all o € ¥ the following holds: whenever dp(t,0) =t/,
then there exists s’ € S such that dg(s,0) = s’ and (¢/,t') € R, and whenever
ds(s,0) = &', then there exists t' € T such that dp(¢t,0) = ¢, and (s',¢') € R.
The states s and ¢ are called bisimilar which is denoted by s ~ ¢ [7], [10].
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There is a simple way to determine whether two systems are bisimilar —
by playing a game. This is a game between two persons: the Player and the
Opponent. The Player tries to prove that systems are bisimilar, the Opponent
intends otherwise. The Opponent opens the game by choosing a transition
from the initial state of one of the systems. The Player has to find an equally
labelled transition from the initial state of the second system, new states are
the starting points for the next turn. If one of the players cannot move — the
other wins this turn of the game. The Player loses abundantly if there are no
corresponding transition for Opponent’s move. The Player wins any infinite
turn of the game or any repeated configuration.
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Figure 3: Example of nonbisimilar and bisimilar automata

In the first case, after reading the symbol 0 the Player must be in a state
t1 or t9, then the road runs out to him, accordingly, or for the symbol 2 or 1.
Systems are not bisimilar.

In the second example, we see that for each state and each symbol the
Player will always find a corresponding way in the second automaton, so the
automata are bisimilar.

4. Bisimulation for probabilistic and quantum
systems

To define a bisimulation relation for probabilistic and quantum automata, one
can wonder how to compare distributions of probabilities. For this purpose
we use the following definitions.

Let R € S x T be a relation between sets S and 7. Let P; € D(S5)
and P, € D(T) be probability distributions. Define P} =g P; iff there exists
a distribution Pr € D(S x T') such that Pr(s,T) = Pi(s) for any s € 5,
Pr(S,t) = Ps(t) for any t € T, Pr(s,t) # 0 iff (s,t) € R [10].

Let R be an equivalence relation on the set S and let Py, P, € D(S) be
probability distributions. Then P, =r P, <= VC € S/R: P(C) = P,(C),

where C' is an abstract class [10].
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Let R be an equivalence relation on the set S, A be an arbitrary set, and
let Py, P, € D(S) be probability distributions. Then P, =g 4 P» <= VC €
S/R,Na € A: Pi(a,C) = Ps(a,C) [10].

An equivalence relation on a set of states @ of a Markov chain (@, ) will
be a bisimulation relation iff V(g,¢) € R the following holds: if §(¢) = Pi, then
there exists 6(t) = P, such that P, =g P.

Let PA; = (5,%,0s) and PAs = (T, %, 1) be two probabilistic automata,
then there exists a bisimulation relation R C S x T if for all pairs (s,t) € R
and for all 0 € ¥ we have: if dg(s,0) = Pp, then there exists a probability
distribution P, such that for some ¢ € T there exists dr(t,0) = P, and

P1 ER,Z Pg [10].
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Figure 4: Bisimilar PA
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Finally let us go to the bisimulation of the quantum automata, in this case
we have to compare the linear operators.

For the given operator V, we define v,(S) = 3_ 4 d(q; 0, q')|? (the sum
of squares of the values of ruthless amplitudes), where S C Q.

Let R be an equivalence relation on the set S, A be an arbitrary set,
and V1, V5 be unitary operators corresponding to transitions of the quantum

system. Then V} =g 4 Vo <= VC € S/R, Va € A :v14(C) = v2,(C).
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Figure 5: Bisimilar 1-way QFA

Let 1IQFA; = (S5,%,65) and 1QF Ay = (T, %, d7) be two one-way quantum
finite automata. Then there exists a bisimulation relation R C S x T if for all
pairs (s,t) € R and for all o € 3 we have: if Vi, (|s)) = >, cq0s(s,0,5)|s'),
then there exists Vo, (|t)) = >, cp 07 (t, 0,t")|t') such that Vi =g V3.
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5. Summary

A bisimulation relation can be a great tool to search for systems that simulate
each other, and therefore their behavior is analogous to the same symbols,
actions, impulses.

The simple way for checking whether or not two classical systems are
bisimilar is a game, but for probabilistic and quantum systems we have to
consider the sum of probabilities and amplitudes.

Bisimulation can also be a foundation for relations useful, for example, in
minimization of systems [8], [9].
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