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Abstract. In the paper we deal with a classic concurrency problem — a faulty train
controller system (FTC). In particular, we formalise it by means of finite automata,
and consider several properties of the problem, which can be expressed as formulae
of a soft real-time branching time temporal logic, called RTECTL. Further, we verify
the RTECTL properties of FTC by means of SAT-based bounded model checking
(BMC) method, and present the performance evaluation of the BMC method with
respect to the considered problem. The performance evaluation is given by means of

the running time and the memory used.

1. Introduction

Concurrency is a property of systems that allows to perform multiple compu-
tations in parallel and it is ubiquitous in computer science today, for example,
it is the core feature of today operating systems. Concurrency is widespread
but error prone - typical error includes race conditions and mutual exclusion
violations; errors that are unknown in sequential computations. Traditional
reliability measures such as simulation and testing fail in the presence of con-
currency, due to the difficulties of reproducing erroneous behaviour.

Model checking [3] is an automated technique designed to establish in
a formal and precise way that specific properties are satisfied by a given sys-
tem. Its main idea consists in representing a (finite) state system as a Kripke
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structure M, expressing a specification by a logical formula ¢, and checking
automatically whether the formula ¢ holds in the model M. Unfortunately,
the practical applicability of model checking is strongly restricted by the state-
space explosion problem, which is mainly caused by representing concurrency
of operations by their interleaving. Therefore, there are many different reduc-
tion techniques aimed at minimising models. The major methods include ap-
plication of partial order reductions [10], symmetry reductions [6], abstraction
techniques [4], OBDD-based symbolic storage methods [1], and SAT-based
bounded [2, 9] and unbounded [8] model checking.

The RTCTL language [5] is a propositional branching-time temporal logic
with bounded operators, which was introduced to allow specification and rea-
soning about time-critical correctness properties. It makes possible to directly
express bounded properties like, for example, “property ¢ will occur in less
than 10 unit time”, or “property ¢ will always be asserted between 2 and 8
unit time”. Note that properties like above can be expressed using nested ap-
plications of the next state operators, however the resulting CTL formula can
be very complex and cumbersome to work with. RTCTL, by allowing bounds
on all temporal operators to be specified, provides a much more compact and
convenient way of expressing time-bounded properties.

In the paper we investigate a finite state systems modelled via a network
of finite automata. In particular, we deal with a faulty train controller system
(adapted from [7]) — a classic concurrency problem. We model it as a network
of finite automata, and verify using a SAT-based bounded model checking
(BMC) method for RTCTL properties.

The rest of the article is structured as follows. In the next section we
provide the main formalisms used throughout the paper, i.e., finite automata,
the RTCTL language together with its universal and existential subsets, and
SAT-based BMC for the existential part of RTCTL (RTECTL). In section 3
we show how our SAT-based BMC for RTECTL works by means of the faulty
train controller system. In section 4 we conclude our paper.

2. Preliminaries
2.1. Finite automata and parallel composition

Given is a set PV of propositional variables, each of which represents funda-
mental properties of the system in question. A finite automaton, we consider
in the paper, is a mathematical structure A = (%, 5,5, T, V) that consists of
a finite set of actions (), a finite set of states (S), an initial state (s°), a tran-
sition relation (7' C S x S) defining rules for going from one state to another
depending upon the input action, and a valuation function (V : § — 2FV)
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which assigns to every state a set of propositional variables that are assumed
to be true at this state.

Typically concurrent systems are designed as collections of interacting
computational processes that may be executed in parallel. Therefore, we as-
sume that a concurrent system is modelled as a network of automata that run
in parallel and communicate with each other via executing shared actions.
There are several ways of defining a parallel composition of a few automata.
We adapt the standard definition, namely, in the parallel composition the
transitions not corresponding to a shared action are interleaved, whereas the
transitions labelled with a shared action are synchronised.

The following definition formalises the above discussion. Let A; = (%;,S;,
s9,T;,V;) be an automaton, for i = 1,... ,m. We take ¥ = (J, ¥;, and
for o € ¥ we define a set X(0) = {1 < i < m | 0 € %;} that gives the
indices of the components that synchronise at o. A parallel composition of
m automata A; is the automaton A = (%,5,s°,T,V), where ¥ = U, 3,
S =112, 8, %= (s0,...,8%), V((s1,--- ,sm)) = U, Vi(s;), and a tran-
sition ((s1,-.. ,8m),0,(81,... ,s3,)) € T iff (Vj € X(0)) (s5,0,5}) € Tj and

?m

(Vie{l,... ,m}\ X(0)) s, = s;.
2.2. The RTCTL language

Let p € PV, and I be an interval in IN = {0,1,...} of the form: [a,b) and
[a,00), for a,b € IN!. Hereafter by left(I) we denote the left end of the
interval I, i.e. left(I) = a, and by right(I) the right end of the interval I, i.e.
right([a,b)) = b — 1 and right([a,c0)) = co. The language RTCTL is defined
by the following grammar:

¢ true |false [p | p|oAe|oV e |EXp | AXp |E(pUre) | AleUry) |
EGre | AGre

Ur and Gy are the operators for bounded “until” and “globally”, respectively.

E and A are the existential and universal path quantifiers, respectively. The re-

maining bounded temporal operators are defined in the standard way: O(aR;/53)

Y 08U (a A B)) VOGB, OFja % O(trueU;a), where O € {E, A},

RTACTL is the fragment of RTCTL such that the formulae are restricted to
the positive Boolean combinations of AXp, AGy and A(pUv). Negation
can be applied to propositions only.

RTECTL is the fragment of RTCTL such that the formulae are restricted to
the positive Boolean combinations of EX¢, EGp and E(pUv). Negation
can be applied to propositions only.

'Note that the remaining forms of intervals can be defined by means of [a, b) and [a, c0).
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A model for RTCTL is the automaton A = (X, S, s%, T, V) as defined in the
previous section. Note that this finite automaton can be viewed as a standard
Kripke structure or labelled transition system.

Let A = (3,5,5%,T,V) be a model. A path of A is an infinite sequence
™ = (80,51,...) of states such that (s;,s;41) € T for each j € IN. For a path
m = (s0,51,...), we take w(j) = s;. By II(s) we denote the set of all the
paths starting at s € S, O € {E, A}, and # = Ir € II(s) if O = E, otherwise
# = Vr € II(s). Given the above, the formal semantics of RTCTL is defined
recursively as follows:

A, s = true, o A, s [~ false |

AskEpifpeV(s), oAskE-piffpgV(s),

AsEanpiff AjsEaand A, s = [,

AsEaVpif AiskEaor A s =S,

A, s = OXa iff#(A, 7(1) E «a),

A, s = O(aUgp) iff #(3Im € I)[A,m(m) = B and (V5 < m)A,7(j) [ a],
A, s = OGra iff #(Vm € I)[A,m(m) = a.

We end the section by defining the notions of validity and the model check-
ing problem. Namely, a RTCTL formula ¢ is valid in A (denoted A = ¢)
iff A,s = ¢, i.e., @ is true at the initial state of the model A. The model
checking problem asks whether A = .

2.3. SAT-based BMC for RTECTL

In this section we give an overview of a SAT-based BMC method for the
existential fragment of RTCTL (RTECTL) [11]. As usual, we start by defining
k-paths, and (k,[)-loops, and then in turn we define a bounded semantics for
RTECTL, which is later used for translation to SAT.

Given are a model A = (X,5,s%,T,V) and a bound k > 0. A k-path is
the prefix of length k of a path in II. By P we denote a set of all the k-paths.
By Py(s) we denote a set of all the k-paths 7, with 7(0) = s. A (k,1)-loop is
a k-path m, = (75(0), ... ,mk(l),... ,m(k)) such that m(l) = m(k), for some
0 <1< k. A function loop : II;, — 21N identifies these k-paths that are loops
and it is defined as: loop(mg) = {l | 0 <1 < k and m(l) = m(k)}.

Definition 1 Given are a bound k € IN, a model A, and RTECTL formulae
a, . A, s = a denotes that o is k—true at the state s of A. The relation =y,
18 defined inductively as follows:

o A s = true, o A s £y false,

e Askrpiff pe V(s), e As k= piff p g Vis),

e A skEraVvpiff AjskEraor A s S,
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e AskEranpiff Ajs=, aand A, s =i 5,
o A s EXaiff k> 0and (3 € k(s))A,7(1) =i o,

o A s =, E(aU;f) iff (3m € i(s))(30 <m <k)(m € I and A, w(m) =
and (VO < j <m)A,7(j) Fr «),

o A s EGraiff (3r € i (s))((k > right(I) and (Vj € I) A, 7(j) Ex a) or
(k < right(I) and (31 € loop(m))(Vmin(left(I),l) < j < k)A,7(j) Fr @)).

A RTECTL formula ¢ is valid in model A with bound k (denoted A =y ¢)
iff A, s =1 o, i.e., @ is k—true at the initial state of the model A. The bounded
model checking problem asks whether A =i .

The following theorem, which can be proven by induction on the length of
a RTECTL formula, states that there exists a bound such that bounded and
unbounded semantics are equivalent. This implies that the model checking
problem (A = ¢) can be reduced to the bounded model checking problem

(A Fk ).

Theorem 1 Let A be a model and p a RTECTL formula. Then, the following
equivalence holds: A = ¢ iff there exists k > 0 such that A =i .

We can also show even the stronger property, namely, we can prove that
¢ is k—true in A if and only if ¢ is k—true in A with a number of k—paths
reduced to fi(¢), where the function f : RTECTL — N is defined as follows:

* fi(true) = fi(false) = fi(p) = fi(=p) =0, where p € PV,

o filanp) = frla) + fu(B),

o filaV B) =maz{fi(a), fr(B)},

o fr(Xa) = fr(a) +1,

o fi(E(aUrB)) =k - fr(a) + fu(3) + 1,

o fk(EGra) = (k+1) fi(a) +1

Given are a model A = (2,5,s°,T,V), a bound k > 0, and a RTECTL
formula ¢. The problem of checking whether A = ¢ holds can be translated
to the satisfiability problem of the following propositional formula:

[A, @l = [AP ]e Al (1)

where, the formula [A#*"], constrains the f;(¢) symbolic k-paths to be valid
k-paths of A, while the formula [¢] 4, encodes a number of constraints that
must be satisfied on these sets of k-paths for ¢ to be satisfied. Once this
translation is defined, checking satisfiability of a RTECTL formula can be
done by means of a SAT-solver.
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In order to define the formula [A, ], we proceed as follows. We assume
that each state s of A is encoded by a bit-vector whose length, say r, depends
on the number of local states of “component” automata. Thus, each state s
of A we can represent by a vector w = (uq,... ,u,) of propositional variables
(usually called state variables), to which we refer to as symbolic states. A finite
sequence (wyp, ... ,wy) of symbolic states is called a symbolic k-path. Since, in
general, we may need to consider more than one symbolic k-path, we introduce
a notion of the j-th symbolic k-path, which is denoted by (woj,... ,ws ;),
where w; ; are symbolic states for 0 < j < fi(¢) and 0 < i < k. Note that the
exact number of necessary symbolic k-paths depends on the checked formula
p, and it can be calculated by means of the function f.

The propositional formula [A“"’SO] 1 is defined over symbolic states w; ;, for
0<i<kand0<j< fr(p),in the following way:

fk(%") 1k—1

[./4‘1075 ] = I 0 wOO /\ /\ R wz,j,w1+1 j) (2)

where I,0(w) is a formula that encodes the initial state s of A, and R(w,w’)
is a formula that encodes the transition relation of A.

The next step is the translation of a RTECTL formula ¢ into a proposi-
tional formula [¢] 4 = [@]ECO’O], where k£ > 0 is a bound, [@]Lm’n] denotes the
translation of ¢ at the symbolic state wy, ,, and it is defined inductively as

follows:

. [true]g€ L = true, [false][m = = false,
4 [p] mn] — p(wm n) hd [_‘p]ggm - ﬁp(wm n)
Jr(p)— 1 L
e Exam . @ ”\/0 H (W, woy) Ao, if k>0
(2) false, otherwise
Jre(p)—1 k y - y
o EQUBL" =\ (Hwpn,won) A\ (B A (i 1) A /\ 1)
=0 i=0 j=0
fe(p)—1
° [EG[a]ECm’n] i \/ H (w s wo i) A
=0
right(I) ‘
W N [P, it right(I) < k
j=lefe(I)
k—1 k—1

(2) \/(H(wk,ll,wl,ll) A /\ [a]g’”]), otherwise.
=0 j=min(left(I),l)
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The following theorem, which can be proven by induction on the length
of a RTECTL formula, expresses the correctness and the completeness of the
translation presented above.

Theorem 2 Let A be a model, and ¢ a RTECTL formula. Then for every
ke N, A =i ¢ if, and only if, the propositional formula [A, ¢k is satisfiable.

3. A faulty train controller system

To evaluate the BMC technique for RTECTL, we analyse a scalable concurrent
system, which is a faulty train controller system (FTC) (adapted from [7]).
The system consists of a controller, and n trains (for n > 2), and it is assumed
that each train uses its own circular track for travelling in one direction. At
one point, all trains have to pass through a tunnel, but because there is only
one track in the tunnel, trains arriving from each direction cannot use it
simultaneously. There are colour light signals on both sides of the tunnel,
which can be either red or green. All trains notify the controller when they
request entry to the tunnel or when they leave the tunnel. The controller
controls the colour of the colour light signals, however it can be faulty, and
thereby it does not serve its purpose. Namely, the controller does not ensure
the mutual exclusion property: two trains never occupy the tunnel at the same
time.

Figure 1: A network of automata for train controller system

An automata model of the FTC system is shown on Figure 1. The speci-
fications for it are given in the universal form, i.e., they are expressed in the
RTACTL language:

01 = AG[p o] (InTunneh — AF[1 o] (InTunnell)),
@2 = AGp o) AL Nj—iy1 ~(InTunnel; A InTunnely)),
¢3 = AGjy o) (InTunnel; — AF} 1) (Vi InTunnel;)).
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The formula ¢ states that it is always the case that whenever Train 1 is in
the tunnel, it will be in the tunnel once again within a bounded period of
time, i.e., within n time units for n > 1. The formula @y represents the fact
that trains have exclusive access to the tunnel. The formula @3 expresses that
it is always the case that if Train 1 is in the tunnel, then either he or other
train will be in the tunnel during the next n 4+ 1 time units.

All the above formulae are not true in the model for FTC, and for every
specification given, there exists a counterexample. This was shown by means
of the BMC method for RTECTL and testing the formulae v; = —p; (for
i = 1,2,3), which are the negations of the assumed universal specifications
and are interpreted existentially.

For the tests we have used a computer equipped with AMD phenom(tm)
9550 Quad-Core 2200 MHz processor and 4 GB of RAM, running Ubuntu
Linux with kernel version 2.6.35-28-generic-pae, and we have set the timeout to
3600 seconds, and memory limit to 3072 MB. We have used the state of the art
SAT-solver MiniSat 2. The experimental results are shown in Table 1. In
particular, we present there the results for the formulae @1, @2, and ¢3, and
the maximum number of trains we were able to model check by means of our
BMC method for RTECTL.

To get the experimental results in Table 1, we started with a propositional
encoding of a network of automata that models FTC. To this end we have
encoded the states of the network, in particular the initial state, and the tran-
sition relation. An example of such encoding for two trains and a controller,
we present below.

Let SV = {p1,p2,...} be an infinite set of state variables. A Boolean
encoding of all the local states of the two automata representing trains is the
following:

Train 1 Train 2

state | bity bity | formula state | bity bits | formula

awayy 0 0 | =p1 A—p2 | aways 0 0 | —p3 A —py
waity 1 0 —p1 A p2 waits 1 0 —p3 A Py
tunnel; | 0 1 p1 A —py | tunnels | 0 1 p3 A\ TPy

Controller

location | bitg | bits | formula

green 0 0 | = ps A —pg
red 0 1 D5 N\ 7pe

faulty 1 0 =ps5 A Pg

Given the above, it is easy to see that each state of the network of automata
modelling the FTC system can be represented by a valuation of a symbolic
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state w = (p1,...,pe). Then, a propositional formula I, (w), which encodes
the initial global state of the considered system, is the conjunction of three
formulae that encode all the local initial states, i.e.

Io(w) = (=p1 A —p2) A (=p3 A =pa) A (—ps A —pe)

Furthermore, let w = (p1,... ,ps),w’ = (P, ... ,pj) be two different symbolic
states. A propositional formula R(w,w’), which encodes all the transitions
of the considered system is defined as the disjunction of formula that encode
single transitions:

‘ R(w,w") ‘ approachy V iny V outy V approachs V ing V outsy ‘
approachy | =p1 A =pa A =pi A py A (ps < ps) A (pa < p)) A (ps < p5)

Aps = Ps)
iny —p1 Apa APy A =ph A (p3 < p3) A (pa = ply) A (=ps A —pg/
p5 A = V s A —pe A = A pg V —ps A pe A —ps A pi)
outy p1 A —p2 A py A—py A (p3 < p3) A (pa < piy)A

(ps A\ —ps A\ = A —pg V —ps A pe A —ply A —pg)
approachs | —p3 A —pa A —p Apy A (p1 < p1) A (P2 < ph) A (ps < ph)

A(ps < pg)
ing —p3 Aps APy A=pl A (p1 < ph) A (p2 < ph) A (=ps A —pgA
p5 A —pg V ps A ps A ps A pg V s A pe A ps A D)
outy P3 A =pa AP A =pl A (p1 < py) A (P2 < Py)A

(ps A =pe A = A =g V —ps A pe A —ps A )

number of BMC MiniSat 2
¢ | k| fu(p) | trains | variables | clauses sec | MB sec | MB

2 | 1000 | 4251246 | 12747733 | 217.9 | 553.5 [ 2081.0 | 902.0 |
[ 2 ] 16 ] 1] 8] 4349 12418 0.1 ] 2018823 ] 32.0 |
2] 240 | 292798 | 876949 | 7.7 ] 39.6 [ 1851.0 [ 676.0 |

Table 1: Experimental results
4. Conclusions

In this paper we gave a SAT-based symbolic approach to bounded model
checking of concurrent systems modelled by network of finite automata. We
focused on the properties expressed in RTECTL. The method has been im-
plemented, and tested on the standard benchmark a faulty train controller
system. The benchmark has been carefully selected in such a way as to reveal
the advantages and disadvantages of both approaches.
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