Jan Dlugosz University in Czestochowa

Scientific Issues, Mathematics XIV, Czestochowa 2009

ANALYSIS OF FUNDAMENTAL SOLUTIONS
TO FRACTIONAL DIFFUSION-WAVE
EQUATION IN POLAR COORDINATES

Yuriy Povstenko

Institute of Mathematics and Computer Science
Jan Dtugosz University in Czestochowa
al. Armii Krajowej 18/15, 42-200 Czestochowa, Poland
e-mail: j.povstenko@ajd.czest.pl

Abstract

The diffusion-wave equation is a mathematical model of a wide range of important
physical phenomena. The first and second Cauchy problems and the source problem
for the diffusion-wave equation are considered in polar coordinates. The Caputo frac-
tional derivative is used. The Laplace and Hankel transforms are employed. The
results are illustrated graphically.

1. Introduction

In recent years considerable interest has been shown in time-fractional diffusion-
wave equation which is a mathematical model of a wide range of important
physical phenomena [1-5].

[The fundamental solution for the fractional diffusion-wave equation in one
Cartesian space-dimension was obtained by Mainardi [6] using the Laplace
transform. Wyss [7] obtained the solution of the Cauchy problem in terms of
H-functions using the Mellin transform. Schneider and Wyss [8] converted the
diffusion-wave equation with appropriate initial conditions into the integro-
differential equation and found the corresponding Green functions in terms of
Fox functions. Hanyga [9] studied Green’s functions and propagator functions
in one, two and three dimensions. This paper completes the results obtained
in [10, 11]. The Laplace and Hankel transforms are employed to reduce the
considered equation to an ordinary algebraic equation. The inverse Laplace
transform is expressed in terms of Mittag-Leffler type functions. Inversion of
Hankel transform leads to integral representation of the solution.
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2. The first Cauchy problem

Consider the Cauchy problem for the diffusion-wave equation with the Caputo
time-fractional derivative [12] and the delta-function initial value of a sought-
for function:
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As usually, we impose the zero condition at at infinity: 7Qlinolo u(r,t) = 0.

Using the Laplace transform with respect to time ¢ and the Hankel trans-
form with respect to the spatial coordinate r, we obtain
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where the asterisk denotes the transforms, or, after invertion of integral trans-
forms,
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The similarity variable 7, new integration variable 1 and nondimensional
solution u are defined as
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Now we consider several particular cases of the obtained solution.
For the Helmholtz equation (o — 0) we have

1
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Here Ky(r) is the modified Bessel function of the second kind.
In the case of the classical diffusion equation (o = 1) we get
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For the wave equation (o = 2) we obtain
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where 6(x) is the Heaviside step function (see also [13]).
The subdiffusion with o = 1/2 leads to
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Now we analyze the behavior of the solution at the origin. As we have
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only the fundamental solution to the classical diffusion equation (« = 1) has
no singularity at the origin. To investigate the type of singularity we rewrite
Eq. (7) in the following form

1 o0 1
u = %/0 [Ea(—UQ) B EDREE D Jo(n) ndn
1 o 1
+mwu_ayé T St mdn. (13)

The first integral in (13) has no singularity at the origin, while the second one
can be calculated analytically and yields the logarithmic singularity at the
origin
1
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Comparison of (14) and (8) allows us to substitute the condition
0<a<2by0<a<?2
Equation (15) rewritten in terms of (dimensional) solution u (see (6))
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is consistent with the behavior of the solution for small r obtained in [14].
[Dependence of nondimensional solution % on nondimensional distance is
shown in Fig. 1.
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Fig. 1. Dependence of solution on the similarity variable (the first
Cauchy problem with the delta pulse initial condition for the function).

3. The second Cauchy problem

Consider the Cauchy problem for the diffusion-wave equation with the delta-
function initial value of the time-derivative of a sought-for function:
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In the case of the wave equation (a = 2)

1
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0, 1 <7< o0.

|
Il

[To study the behavior of solution at the origin we observe that for large
values of &
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Computations similar to those carried out above lead to
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Hence, in the case of the second Cauchy problem with delta pulse initial
condition the solution also has the logarithmic singularity at origin.
Dependence of nondimensional solution % on the similarity variable (non-
dimensional distance) is depicted in Fig. 2.

Inr, l<a<2. (25)

4. The source problem

Next we analyze the source problem with zero initial conditions
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The solution has the form
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Fig. 2. Dependence of solution on the similarity variable (the second
Cauchy problem with the delta pulse initial condition for the time
derivative of a function).

Now let us discuss several particular cases of the obtained solution. In the
case of the source problem the solution to the classical diffusion equation coin-
cides with the corresponding solution to the first Cauchy problem (9). In the
case of the source problem the solution to the wave equation coincides with the
corresponding solution to the second Cauchy problem (22). For subdiffusion
with o = 1/2 we have
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It should be noted that
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Hence, the solution has no singularity at the origin for all 0 < a < 2.

Dependence of nondimensional solution w on the similarity variable is de-
picted in Fig. 3. It should be emphasized that solution (22) the same both
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Fig. 3. Dependence of solution on the similarity variable
(the delta pulse source problem with zero initial conditions).

for the second Cauchy problem and the source problem is approximated by
solutions (21) and (30) with @ — 2 in different ways, in particular the solution
(21) has the ligarithmic singulariry at the origin, whereas the solution (30) has
no singulariry.
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