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Notations

We will use the following notations:

R – set of real numbers,

Q – set of rational numbers,

Z – set of integers,

N – set of natural numbers (starting from 1),

N0 – set of natural numbers including 0,

P – set of prime numbers,

|X| – number of elements in the set X,

P(X), 2X – family of all subsets of the set X,

D(a) – set of divisors of the integer a, where a ∈ Z,

m | a – m divides a, where m, a ∈ Z,

m ∤ a – m does not divide a, where m, a ∈ Z.

Greek alphabet:

A α alfa
B β beta
Γ γ gamma
∆ δ delta
E ϵ, ε epsilon
Z ζ zeta
H η eta
Θ θ, ϑ theta
I ι jota
K κ kappa
Λ λ lambda
M µ mi

N ν ni
Ξ ξ xi
O o omikron
Π π pi
P ρ, ϱ ro
Σ σ, ς sigma
T τ tau
Y υ ypsilon
Φ ϕ, φ phi
X χ chi
Ψ ψ psi
Ω ω omega
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Preface

Discrete mathematics is a part of mathematics that deals with discrete structures.
The term "discrete" should be understood here in the sense of "not continuous" or "sep-
arated from each other" (as opposed to "discreet" meaning "unobtrusive"). In a more
restrictive sense, the term "discrete" is also understood as "finite", indicating that the ob-
jects of interest in discrete mathematics are finite structures and processes. Thus, discrete
mathematics is fundamentally different from calculus, theory of differential equations, or
topology, which are mainly concerned with continuous concepts and infinite objects.

More specifically, discrete mathematics is based on logic, set theory, and number
theory, with its main branches including combinatorics and graph theory. It is applied
in areas at the intersection of mathematics and computer science such as algorithms,
cryptography, coding theory, and computational theory. Discrete mathematics is essential
for understanding the theoretical foundations of computer science. A deep understanding
of discrete mathematics allows for efficient solving of complex computing problems and
the creation of effective algorithms.

This textbook aims to introduce the key concepts of discrete mathematics to all those
interested in this field, particularly first-year undergraduate students in computer science.
By learning the fundamentals of discrete mathematics, students develop problem-solving
skills applicable in various real-life scenarios.

The material for the script "Discrete Mathematics for Computer Science Students"
is selected to organize knowledge in this field acquired in high school and to supplement
it with topics necessary for further studies in computer science. This script covers the
basics of logic (Chapter 1), elements of number theory (Chapter 2), and an introduction to
combinatorics (Chapter 3). Each chapter is supplemented with a set of exercises, most of
which also include answers. The entire work is complemented by sample exam questions
(Chapter 4).
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Chapter 1

Elements of Logic

In this chapter, we will present selected elements of logic such as the basics of proposi-
tional calculus, predicate calculus, set theory, and relation theory. We will also introduce
the notation for sums and products along with formulas useful for applying this nota-
tion. The following chapters briefly discuss the principle of mathematical induction and
basic integer functions: the floor and ceiling functions. A large part of the content in
this chapter is a repetition of knowledge from secondary school and will likely not pose
problems for the reader. The exceptions may be the subsections concerning relations and
mathematical induction, which are topics usually not covered in high school.

1.1. Basics of Propositional Calculus

In classical logic, we distinguish between two truth values: true and false. The symbol
for true is 1, and the symbol for false is 0. We will start with a basic definition and
examples that illustrate it.

Definition 1.1. A logical statement is any statement to which a truth value can be
assigned: true or false.

Example 1.2. Examples of logical statements include:

1. 9− 3 = 5 (false).

2. 3 + 4 > 6 (true).

3. Every square is a rectangle (true).

4. The number
√
3 is a rational number (false).

5. Nicea is the capital of France (false).

6. Mieszko I was the king of Spain (false).

7. The Earth has exactly one moon (true).

8. Kangaroos live in Antarctica (false).

6
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Example 1.3. Examples of statements that are not logical statements:

1. Questions: Do crocodiles live in Africa?

2. Imperative sentences: Clean your room!

It should be noted that there are statements that are logical statements, even though
at this moment, or given our current state of knowledge, we are unable to assess their
truth value. For example, a statement like: "There are bacteria living on Mars." We
cannot determine the truth value of this statement because our knowledge about Mars
does not allow us to do so. However, it is a logical statement whose truth value we may
be able to assess in the future.

Logical statements can be combined to form compound statements. To build com-
pound statements, we use logical connectives (operators). The most commonly used
logical connectives are summarized in Table 1.1. The truth value of a compound state-
ment depends on the truth values of its component statements and the connectives used
to form it. Negation is a unary operator that changes the truth value of the negated
statement to its opposite (see Table 1.2). The remaining operators are binary, and the
truth values of compound statements formed using them are presented in Table 1.3.

Table 1.1: Logical Connectives

symbol name usage how to read
¬, ∼ negation (negation) ¬p, ∼ p not p
∨ disjunction p ∨ q p or q
∨ exclusive disjunction p∨q p either q
∧ conjunction p ∧ q p and q, p as well as q
⇒ implication p⇒ q if p, then q

⇔ biconditional p⇔ q
p if and only

if and only if q

In the implication "p⇒ q", the statement p is called the antecedent of the implica-
tion, and the statement q is called the consequent of the implication.

Table 1.2: Negation

p ¬p
1 0
0 1

Table 1.3: Binary Connectives

p q p ∨ q p∨ q p ∧ q p⇒ q p⇔ q

0 0 0 0 0 1 1
0 1 1 1 0 1 0
1 0 1 1 0 0 0
1 1 1 0 1 1 1
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Example 1.4. We will determine the truth values of the following compound logical
statements:

1. It is not true that the Earth is flat.
Let us denote the statement "The Earth is flat" by the symbol p. The statement p
is false, thus based on Table 1.2, the statement ¬p is true.

2. In Africa, there are black-and-white zebras and pink hippos.
The above statement is written in natural language. To assess the truth value of
this statement, we should change its form to a more precise one: "In Africa, there
are black-and-white zebras and in Africa, there are pink hippos." Let us denote the
statement "In Africa, there are black-and-white zebras" by the symbol p, and the
statement "In Africa, there are pink hippos" by the symbol q. The statement p is
true, and the statement q is false; thus (Table 1.3, column 5, row 4) the conjunction
p ∧ q is false.

3. If owls are mammals, then butterflies are insects.
Let us denote the statement "Owls are mammals" by the symbol p, and the state-
ment "Butterflies are insects" by the symbol q. The statement p is false, and the
statement q is true, hence (Table 1.3, column 6, row 3) the implication p⇒ q is true.

4. 3 | 10 ⇔ (2 + 3) > 4

Let us denote the statement "3 | 10" by p, and the statement "(2 + 3) > 4" by the
symbol q. The statement p is false, and the statement q is true; hence (Table 1.3,
column 7, row 3) the statement p⇔ q is false.

The symbols p and q in tables 1.1, 1.2, and 1.3 (p. 7) are called propositional
variables, which are variables under which we can substitute any logical statements.
Expressions constructed from propositional variables and logical connectives (and, op-
tionally, brackets) are called formulas or statements of propositional calculus.

Definition 1.5. A logical law (law of propositional calculus, tautology) is a for-
mula of propositional calculus that is always true, meaning it is true when substituting
any logical statements for the propositional variables.

We will present selected tautologies along with their names:

1. Law of double negation:
¬(¬p) ⇔ p,

2. Law of excluded middle:
p ∨ ¬p,

3. Laws of associativity for disjunction and conjunction:

(p ∨ q) ∨ r ⇔ p ∨ (q ∨ r), (p ∧ q) ∧ r ⇔ p ∧ (q ∧ r),

4. Laws of commutativity for disjunction and conjunction:

p ∨ q ⇔ q ∨ p, p ∧ q ⇔ q ∧ p,

5. Laws of distribution of conjunction over disjunction and disjunction over conjunc-
tion:

(p ∨ q) ∧ r ⇔ (p ∧ r) ∨ (q ∧ r), (p ∧ q) ∨ r ⇔ (p ∨ r) ∧ (q ∨ r),
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6. Law of transitivity of implication:

[(p⇒ q) ∧ (q ⇒ r)] ⇒ (p⇒ r),

7. Law of negation of implication:

¬(p⇒ q) ⇔ [p ∧ (¬q)],

8. Law of transposition:
(p⇒ q) ⇔ [(¬q) ⇒ (¬p)],

9. De Morgan’s laws:

¬(p ∧ q) ⇔ (¬p ∨ ¬q), ¬(p ∨ q) ⇔ (¬p ∧ ¬q),

10. Rule of detachment:
[p ∧ (p⇒ q)] ⇒ q,

11. Law of equivalence substitution:

(p⇔ q) ⇔ (p⇒ q ∧ q ⇒ p).

Example 1.6. We will present one of the methods for proving that a given formula is
a tautology. Consider the law of transitivity of implication:

[(p⇒ q) ∧ (q ⇒ r)] ⇒ (p⇒ r).

In the above formula, we have three logical variables: p, q, and r. We will list all possible
values of these variables in a table in subsequent rows, as shown below:

p q r

0 0 0
0 0 1
0 1 0
1 0 0
0 1 1
1 0 1
1 1 0
1 1 1

Next, in the headers of the subsequent columns, we will write all increasingly complex
formulas that form the law of transitivity of implication:

p q r p ⇒ q q ⇒ r p ⇒ r (p ⇒ q) ∧ (q ⇒ r) [(p ⇒ q) ∧ (q ⇒ r)] ⇒ (p ⇒ r)

0 0 0
0 0 1
0 1 0
1 0 0
0 1 1
1 0 1
1 1 0
1 1 1

Finally, we fill in the table according to the rules of operation of logical connectives
(see Tables 1.2 and 1.3, p. 7). Notice that in the last column, where we have the truth
values of the law of transitivity of implication for all possible values of the variables p, q,
and r, there are only truth symbols, which means that the given statement is a tautology.
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p q r p ⇒ q q ⇒ r p ⇒ r (p ⇒ q) ∧ (q ⇒ r) [(p ⇒ q) ∧ (q ⇒ r)] ⇒ (p ⇒ r)

0 0 0 1 1 1 1 1
0 0 1 1 1 1 1 1
0 1 0 1 0 1 0 1
1 0 0 0 1 0 0 1
0 1 1 1 1 1 1 1
1 0 1 0 1 1 0 1
1 1 0 1 0 0 0 1
1 1 1 1 1 1 1 1

1.2. Basics of Quantifier Calculus

This subsection will begin with the introduction of the concept of a propositional
function. A propositional function (also known as a propositional formula, propo-
sitional form, or predicate) of the variable x is an expression that contains the variable
x and becomes a logical statement when we substitute an element from a certain set, which
we call the domain or range of variability of the variable x, in place of x. In a similar
way, we define propositional functions for a greater number of variables. For example,
the expression "x is a positive number" is a propositional function, which becomes a true
statement when we substitute any real number greater than zero for x, such as 5 or π,
and becomes a false statement otherwise.

Quantifiers are another element of mathematical language that significantly expands
the range of possible statements. They are phrases that allow the creation of new propo-
sitional functions and logical statements from already existing propositional functions.
The two most commonly used quantifiers are:

• The universal quantifier, also called the large quantifier. This quantifier is used for
phrases such as "for every," "for any," or "for all." The symbolic notation for this
quantifier typically uses the symbols:

∧
or ∀.

• The existential quantifier, also known as the small quantifier. This quantifier is used
for phrases such as "there exists" or "for some." In symbolic notation, it usually
takes one of the forms

∨
or ∃.

You may also encounter in the literature the notation ∃!, which expresses the quantifier:
"there exists exactly one."

A quantifier always appears with a variable, which we say is a bound variable under
the action of that quantifier. Variables that appear in a propositional function and are not
bound by the action of a quantifier are called free variables. If a propositional function
contains no quantifiers, then all variables present in it are free. If there is only one free
variable in a propositional function, applying a binding quantifier to that function will
yield a logical statement. Applying a quantifier to a propositional function with more
free variables results in a new propositional function, but with fewer free variables.

Let Φ(x) be a propositional formula in which x is a free variable. Then:

1. The expression
∧
x

Φ(x) can be read in one of the following ways:

• For every x, Φ(x) holds,

• For any x, Φ(x) holds,

• For all x, Φ(x) holds,
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2. The expression
∨
x

Φ(x) can be read in one of the following ways:

• There exists an x such that Φ(x) holds,

• There exists an x for which Φ(x) holds,

• For some x, Φ(x) holds.

To explicitly specify the range of variability of the variable, it is convenient to include the
relevant information next to the quantifier. Thus:

• Instead of
∧
x

(x ∈ X ∧ Φ(x)), we usually write
∧
x∈X

Φ(x),

• Instead of
∨
x

(x ∈ X ∧ Φ(x)), we usually write
∨
x∈X

Φ(x).

Example 1.7. We will present several logical statements using quantifiers along with
their corresponding symbolic notation:

1. For every natural number n, the number n(n+ 1) is divisible by 2:∧
n∈N

2 | n(n+ 1).

2. There exists an integer x such that x+ 7 = −3:∨
x∈Z

x+ 7 = −3.

3. The square of every real number in the interval (−1, 1) is non-negative and less
than 1: ∧

x∈(−1,1)

0 ≤ x2 < 1.

4. The sum of the squares of two arbitrary real numbers is a non-negative number:∧
x∈R

∧
y∈R

x2 + y2 ≥ 0.

5. There exist natural numbers a, b, c, d such that ab = cd:∨
a∈N

∨
b∈N

∨
c∈N

∨
d∈N

ab = cd.

6. For every integer x, there exists an integer y such that their sum is 0:∧
x∈Z

∨
y∈Z

x+ y = 0.
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Instead of several quantifiers of the same type standing next to each other, we can
write one:

• Instead of:
∧
x∈R

∧
y∈R

x2 + y2 ≥ 0, we can write:
∧

x,y∈R
x2 + y2 ≥ 0,

• Instead of:
∨
a∈N

∨
b∈N

∨
c∈N

∨
d∈N

ab = cd, we can write:
∨

a,b,c,d∈N
ab = cd.

We will present selected laws of quantifier calculus along with their names:

1. Law of rearrangement of universal quantifiers:∧
x∈X

∧
y∈Y

Φ(x, y) ⇐⇒
∧
y∈Y

∧
x∈X

Φ(x, y),

2. Law of rearrangement of existential quantifiers:∨
x∈X

∨
y∈Y

Φ(x, y) ⇐⇒
∨
y∈Y

∨
x∈X

Φ(x, y),

3. De Morgan’s laws:

¬
∧
x

Φ(x) ⇐⇒
∨
x

¬Φ(x), ¬
∨
x

Φ(x) ⇐⇒
∧
x

¬Φ(x),

4. Law of rearrangement of a universal quantifier with an existential quantifier:∨
x∈X

∧
y∈Y

Φ(x, y) =⇒
∧
y∈Y

∨
x∈X

Φ(x, y).

Remark 1.8. In point 4 above, the implication in the reverse direction does not hold.
Consider the statement 6 from example 1.7 (p. 11):∧

x∈Z

∨
y∈Z

x+ y = 0.

This statement is true because for every integer x, the number y = −x, chosen individually
for each x, satisfies the condition x + y = 0. Rearranging the quantifiers gives us the
statement: ∨

y∈Z

∧
x∈Z

x+ y = 0,

which is false because there is no integer y that, when added to any integer x, would
always yield the same sum equal to 0.
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1.3. Elements of Set Theory

A set is a fundamental concept in set theory and is uniquely defined by its elements,
meaning there is exactly one set composed of given elements. When considering sets, it
is necessary to indicate whether a given element belongs or does not belong to a specific
set. We use the symbols ∈ and ̸∈ for this purpose:

• a ∈ A is read as "a is an element of the set A" or "a belongs to the set A",

• b ̸∈ A is read as "b is not an element of the set A" or "b does not belong to the
set A".

Typically, sets are denoted by uppercase letters, while their elements are denoted by
lowercase letters. There are several ways to define a set. One of them is to list all its
elements. For example, the set denoted as A, consisting of odd numbers greater than 0
and less than 10, is presented as follows:

A = {1, 3, 5, 7, 9}.

In the case of sets with a large number of elements, this solution is impractical. Moreover,
for sets with an infinite number of elements, this solution is impossible to apply. Therefore,
a much better way to define a set is to construct a propositional function that is true only
for its elements. In this way, the above set A can be defined as follows:

A = {x ∈ N : x = 2k + 1 ∧ k ∈ N0 ∧ x > 0 ∧ x < 10}

or
A = {x ∈ N : x = 2k + 1 ∧ k ∈ N0 ∧ k ≥ 0 ∧ k ≤ 4}.

If we wanted to define the set B consisting of odd numbers from a much larger range, for
example from 0 to 210, listing all elements of the set B would be very time-consuming.
One way is to use an ellipsis in the notation along with the initial and final elements of
the set B:

B = {1, 3, 5, . . . , 1021, 1023}.

However, this type of notation should be used with caution because the correct inter-
pretation of the elements of the set largely depends on the assumptions of the reader.
Meanwhile, following the definition of set A, we obtain:

B = {x ∈ N : x = 2k + 1 ∧ k ∈ N0 ∧ x > 0 ∧ x < 210}

or
B = {x ∈ N : x = 2k + 1 ∧ k ∈ N0 ∧ k ≥ 0 ∧ k ≤ 29 − 1}.

Notice that there exists a set that has no elements. This is the empty set, denoted by
the symbol ∅, which can be defined as ∅ = {} or ∅ = {x : x ̸= x}.
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When considering sets, it is often necessary to define a certain relation between two
sets, as stated in the following definition.

Definition 1.9. We say that a set A is a subset of a set B if every element of set A is
also an element of set B.

The above concept is denoted as A ⊆ B and is read as "set A is a subset of set B" or
"set A is contained in set B" or "set B contains set A." We can also illustrate it:

A B

If A ⊆ B and B ⊆ A, then obviously A = B. Furthermore, the concept of a subset
can also be expressed symbolically as:

A ⊆ B ⇐⇒
∧
x∈A

(x ∈ A⇒ x ∈ B).

Example 1.10. A specific example where A ⊆ B is given by the sets A and B defined
at the beginning of subsection 1.3 (p. 13).

When considering the concept of a subset, it is important to mention the power set.

Definition 1.11. The family of all subsets of a set X is called the power set of set X
and is denoted by P(X) or 2X .

The concept of a power set can be briefly summarized with the notation:

A ∈ P(X) ⇐⇒ A ⊆ X.

Example 1.12. For the set X = {a, b, c}, the power set P(X) is given by

P(X) = {∅, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}}.

Notice that |X| = 3 and |P(X)| = 23 = 8. We encourage the reader to experimentally
investigate whether a four-element set will have 24 = 16 elements in its power set. What
is the general formula for the number of elements in a power set? It is worth comparing
this example with Exercise 3.24 (p. 67).

The next step is to discuss operations that can be performed on sets.

Definition 1.13. The union (or multiset union) of sets A and B, denoted A∪B, is the
set of elements that belong to set A or set B:

x ∈ A ∪B ⇐⇒ x ∈ A ∨ x ∈ B.

A B
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Definition 1.14. The intersection (or common part) of sets A and B, denoted A∩B,
is the set of elements that belong to both set A and set B:

x ∈ A ∩B ⇐⇒ x ∈ A ∧ x ∈ B,

A B

Sets A and B are called disjoint if A ∩B = ∅.

Definition 1.15. The difference of sets A and B, denoted A \B, is the set of elements
that belong to set A and do not belong to set B:

x ∈ A \B ⇐⇒ x ∈ A ∧ x ̸∈ B,

A B

Example 1.16. If A = {a, b, c, d} i B = {c, d, e, f}, then:

A ∪B = {a, b, c, d, e, f}, A \B = {a, b}, A ∩B = {c, d}, B \A = {e, f}.

If all considered sets are subsets of a certain set Ω, which is called the space or universe,
we can talk about the complements of sets.

Definition 1.17. If A ⊆ Ω, the complement of set A in Ω is defined as the set Ω \A.

Typically, the complement of set A is denoted by A′, and we can illustrate it as follows:

AA′

Ω

Example 1.18. Let Ω = {a, b, c, d, e, f, g, h}, A = {a, b, c, d}, and B = {c, d, e, f}. Then:

A′ = {e, f, g, h}, B′ = {a, b, g, h}.

We will present selected laws of set theory along with their names:

1. Law of double complementation:

(A′)′ = A,

2. Laws of associativity for union and intersection:

(A ∪B) ∪ C = A ∪ (B ∪ C), (A ∩B) ∩ C = A ∩ (B ∩ C),
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3. Laws of commutativity for union and intersection:

A ∪B = B ∪A, A ∩B = B ∩A,

4. Laws of distribution of intersection over union and union over intersection:

(A ∪B) ∩ C = (A ∩ C) ∪ (B ∩ C), (A ∩B) ∪ C = (A ∪ C) ∩ (B ∪ C),

5. De Morgan’s laws:

(A ∩B)′ = A′ ∪B′, (A ∪B)′ = A′ ∩B′.

Notice that De Morgan’s laws have appeared three times: in classical propositional cal-
culus, in quantifier calculus, and in set theory.

The last concept in this subsection is the Cartesian product.

Definition 1.19. The Cartesian product of non-empty sets A and B is defined as:

A×B = {(a, b) : a ∈ A, b ∈ B}.

The Cartesian product of two sets is thus the set of all such pairs—two-element tu-
ples—in which the first element of the pair belongs to the first set, while the second
element of the pair is an element of the second set.

We can easily generalize the concept of the Cartesian product to any finite number of
sets:

A1 × · · · ×An = {(a1, . . . , an) : ai ∈ Ai, i ∈ {1, . . . , n}}, n ∈ N.

Example 1.20.

1. For the sets A = {1, 4, 5} and B = {2, 3}, we have

A×B = {(1, 2), (1, 3), (4, 2), (4, 3), (5, 2), (5, 3)}.

2. If A = {3, 7} and B = {7, 9}, then:

A×B = {(3, 7), (3, 9), (7, 7), (7, 9)}.

3. For A = {2, 6}, B = {w, z}, and C = {α, β}, we have

A×B × C =

= {(2, w, α), (2, w, β), (2, z, α), (2, z, β), (6, w, α), (6, w, β), (6, z, α), (6, z, β)}.

We encourage the reader to consider the relationship between the number of elements in
the Cartesian product and the cardinalities of the sets forming that product. We will
return to this issue in subsection 3.3, p. 59.

Remark 1.21.

1. When defining sets, we always use curly braces. Furthermore, each element of a set
"occurs" in it exactly once, which means that the set {a, a, b, c, c, c} is identical to
the set {a, b, c}. The order in which we list the elements of a set also does not
matter, so the same set can also be written as {b, c, a}.

2. The elements of the Cartesian product—tuples—are written using parentheses. It
is important to pay attention to the order of the elements in the tuple because if
a ̸= b, then (a, b) ̸= (b, a). Consequently, the Cartesian product is not commutative:
if A ̸= B, then A×B ̸= B ×A.
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1.4. Elements of Relation Theory

The study of relationships between objects, phenomena, and concepts is the essence
of science. The same is true in mathematics. However, we often use the term "relation"
without considering the deeper meaning of the word. For instance, in this textbook, in
the paragraph just before definition 1.9 (p. 14), we used the phrase "relation between two
sets" (this case will be discussed in detail in example 1.31, p. 19). Beyond mathemat-
ics, various relations are considered, although the concept of a relation usually remains
informal. In this regard, mathematics differs from other fields, as it must rely on precise
concepts and formal definitions.

Definition 1.22. Let X be a non-empty set. Any subset R ⊆ X ×X is called a binary
relation in the set X.

In other words, a relation in the set X is a subset of the Cartesian product X ×X.
If (x, y) ∈ R, we say that the element x is in relation R with the element y, which we
will denote as xRy or R(x, y).

Example 1.23. Let X = {1, 2, 5, 8}. In the set X, we can define many relations in
various ways.

1. We can list all the elements of the relation:

R1 = {(1, 5), (8, 5), (2, 5), (8, 2), (8, 8)}.

2. We can define the relation by providing a propositional function that is true only
for its elements:

R2 = {(a, b) ∈ X ×X : a+ b is an odd number},

which is convenient when the set X has many elements. In our example, X has
only 4 elements, so we can afford to list all the elements of the relation R2:

R2 = {(1, 2), (2, 1), (1, 8), (8, 1), (2, 5), (5, 2), (5, 8), (8, 5)}.

3. We can specify which elements of the set X are in relation by providing a proposi-
tional function on the right side of the equivalence that is true for the elements in
relation:

R3(a, b) ⇐⇒ a | b for a, b ∈ X.

The relation defined above consists of the following pairs:

R3 = {(1, 1), (1, 2), (1, 5), (1, 8), (2, 2), (2, 8), (5, 5), (8, 8)}.

Among the many interesting properties that relations can have, the most important
are: reflexivity, symmetry, antisymmetry, and transitivity. These will allow us to define
two extremely important types of relations: partial orders and equivalence relations.



Elements of Relation Theory 18

Definition 1.24. Let X be a non-empty set. We say that a relation R in the set X is:

1. reflexive if
∧
x∈X

xRx,

2. symmetric if
∧

x,y∈X

xRy ⇒ yRx,

3. transitive if
∧

x,y,z∈X

xRy ∧ yRz ⇒ xRz,

4. antisymmetric if
∧

x,y∈X

xRy ∧ yRx⇒ x = y.

Definition 1.25. Let X be a non-empty set. We say that a relation R in the set X is
a equivalence relation if it is reflexive, symmetric, and transitive.

The concept of an equivalence class is intrinsically linked to an equivalence relation,
which is the set of all elements with which a given element is related.

Definition 1.26. Let R be an equivalence relation in a non-empty set X and let x ∈ X.
The set

[x]R = {y ∈ X : xRy}

is called the equivalence class of the element x.

Remark 1.27. The set [x]R is always non-empty because, due to the reflexivity of the
relation R, we have x ∈ [x]R. It is also easy to observe that if two elements are related,
then their equivalence classes are equal. Conversely, if two elements are not related, then
their equivalence classes are disjoint.

Example 1.28. Let us examine the following relation in the set Z:

R = {(a, b) ∈ Z× Z : 5 | (a− b)}.

The relation R is:

1. reflexive, because for any a ∈ Z, we have:

5 | 0 ⇒ 5 | (a− a) ⇒ aRa.

2. symmetric, because for any a, b ∈ Z, we have:

aRb ⇒ 5 | (a− b) ⇒ 5 | [−(a− b)] ⇒ 5 | (b− a) ⇒ bRa.

3. transitive, because for any a, b, c ∈ Z, if aRb and bRc, that is, 5 | (a − b) and
5 | (b− c), then a− b = 5k and b− c = 5l for some k, l ∈ Z. Thus,

a− c = (a− b) + (b− c) = 5k + 5l = 5(k + l),

and therefore:
5 | (a− c) ⇒ aRc.

These considerations justify that the relation R is an equivalence relation.
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Let’s check what the equivalence class [0]R looks like. We are looking for integers b
such that 5 | (0− b). Notice that:

5 | (0− b) ⇒ 5 | (−b) ⇒ 5 | b.

Thus, the equivalence class [0]R includes all integers divisible by 5.
Now, let’s examine which elements belong to the equivalence class [1]R. We are looking

for integers b for which 5 | (1 − b), which means 1 − b = 5k for some k ∈ Z. Hence,
b = 1 − 5k = 1 + 5(−k), so the equivalence class [1]R includes all integers that leave
a remainder of 1 when divided by 5.

Similar considerations can be made for [2]R, [3]R, and [4]R. Notice that 5 ∈ [0]R,
6 ∈ [1]R, 7 ∈ [2]R, etc., leading to the conclusion that every integer belongs to one of the
5 equivalence classes determined by the remainders when divided by 5:

[0]R = { . . . ,−10,−5, 0, 5, 10, 15, . . . },
[1]R = { . . . ,−9,−4, 1, 6, 11, 16, . . . },
[2]R = { . . . ,−8,−3, 2, 7, 12, 17, . . . },
[3]R = { . . . ,−7,−2, 3, 8, 13, 18, . . . },
[4]R = { . . . ,−6,−1, 4, 9, 14, 19, . . . }.

Definition 1.29. Let X be a non-empty set. We say that a relation R in the set X is
a partial order relation (is a partial order) if it is reflexive, transitive, and antisym-
metric.

Example 1.30. The relation R from example 1.28 (p. 18) is not a partial order relation
because it is not antisymmetric. It is possible to find such a, b ∈ Z that 5 | (a − b) and
5 | (b− a), but a ̸= b. For example, let a = 12 and b = 27.

Example 1.31. Let Z be a set such that |Z| ≥ 2. Let’s examine the relation of set
inclusion, that is, the relation R in the power set P(Z) defined as:

R(K,L) ⇐⇒ K ⊆ L for K,L ∈ P(Z).

This relation is:

1. reflexive, because for any K ∈ P(Z) we have

K ⊆ K ⇒ R(K,K).

2. transitive, because for any K,L,M ∈ P(Z) we have

R(K,L) ∧R(L,M) ⇒ K ⊆ L ∧ L ⊆M ⇒ K ⊆M ⇒ R(K,M).

3. antisymmetric, because for any K,L ∈ P(Z) we have:

R(K,L) ∧R(L,K) ⇒ K ⊆ L ∧ L ⊆ K ⇒ K = L.

These considerations justify that R is a partial order relation. The inclusion relation is
not an equivalence relation because it is not symmetric: for example, taking K = ∅ and
letting L be any non-empty subset of Z, we have K ⊆ L, but L ̸⊆ K.
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In a partial order relation, we may encounter a situation where many elements are
incomparable, meaning that both x is not related to y and y is not related to x. If
we require that such a situation does not occur, meaning that any two elements are
comparable, we obtain a linear order.

Definition 1.32. We say that a relation R in a non-empty set X is a linear order
relation if it is a partial order relation and:∧

x,y∈X

xRy ∨ yRx.

Example 1.33. The relation from example 1.31 (p. 19) is not a linear order relation.
The set Z has at least two elements, so let us take such z1, z2 ∈ Z that z1 ̸= z2. Of
course, {z1} and {z2} ∈ P(Z), but {z1} ̸⊆ {z2} ∧ {z2} ̸⊆ {z1}.

Example 1.34. Let X = R. Consider the following relation:

R = {(x, y) ∈ R× R : x ≤ y}.

The reader can easily verify that this is a partial order relation. It is also a linear order
relation because for any real numbers x, y ∈ R, we have x ≤ y or y ≤ x.

1.5. Notation for Sums and Products

To concisely represent the sum of many terms, we use the summation symbol, which is
the uppercase letter Σ (sigma). Below and above this symbol (or in the lower and upper
indices), we indicate the range of summation:

n∑
k=1

ak = a1 + a2 + · · ·+ an−1 + an.

An alternative notation for the above sum can take the form:
n∑

k=1

ak =
∑

k∈{1,2, ...,n}

ak =
∑

1≤k≤n

ak.

Similarly, to concisely represent the product of many factors, we use the multiplication
symbol Π (pi):

n∏
k=1

ak = a1 · a2 · · · an−1 · an.

The above product can also be written as:

n∏
k=1

ak =
∏

k∈{1,2, ...,n}

ak =
∏

1≤k≤n

ak.
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The fundamental properties useful when working with the summation symbol are as
follows:

1.
n∑

k=1

λak = λ

n∑
k=1

ak, λ ∈ R,

2.
n∑

k=1

ak +

n∑
k=1

bk =

n∑
k=1

(ak + bk),

n∑
k=1

ak −
n∑

k=1

bk =

n∑
k=1

(ak − bk),

3.
n∑

k=1

ak =

n+t∑
k=1+t

ak−t,

4.
n∑

k=1

ak +

m∑
k=n+1

ak =

m∑
k=1

ak,

5.
n∑

k=1

r∑
j=1

ak,j =

r∑
j=1

n∑
k=1

ak,j ,

6.
n∑

k=1

ak ·
r∑

j=1

bj =

n∑
k=1

r∑
j=1

(akbj) =

r∑
j=1

n∑
k=1

(akbj).

The fundamental properties of the multiplication symbol are as follows:

1.
n∏

k=1

aλk =

(
n∏

k=1

ak

)λ

, λ ∈ R,

2.
n∏

k=1

ak ·
n∏

k=1

bk =

n∏
k=1

(ak · bk),
n∏

k=1

ak ÷
n∏

k=1

bk =

n∏
k=1

(ak ÷ bk),

3.
n∏

k=1

ak =

n+t∏
k=1+t

ak−t,

4.
n∏

k=1

ak ·
m∏

k=n+1

ak =

m∏
k=1

ak,

5.
n∏

k=1

r∏
j=1

ak,j =

r∏
j=1

n∏
k=1

ak,j .

It can be easily observed that the summation properties from 1 to 5 have analogous
versions for multiplication. However, the summation property number 6 does not have
a corresponding counterpart for multiplication. Let’s take a closer look at this and write
down the property for n = 2 and r = 2:

2∑
k=1

ak ·
2∑

j=1

bj = (a1 + a2) · (b1 + b2) = a1b1 + a1b2 + a2b1 + a2b2 =

2∑
k=1

2∑
j=1

(akbj).
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If an analogous property held for multiplication, its left and right sides would look as
follows and would be equal:

L =

2∏
k=1

ak +

2∏
j=1

bj = (a1 · a2) + (b1 · b2),

P =

2∏
k=1

2∏
j=1

(ak + bj) = (a1 + b1) · (a1 + b2) · (a2 + b1) · (a2 + b2).

But, the equality L = P is false because in the set of real numbers, addition does not
distribute over multiplication. To verify this, it is sufficient to take a1 = a2 = b1 = b2 = 1.

Example 1.35. Let us expand the following expressions:

1.
5∑

k=1

ak = a1 + a2 + a3 + a4 + a5,

2.
4∏

k=1

(bk + 2) = (b1 + 2) · (b2 + 2) · (b3 + 2) · (b4 + 2),

3.
6∑

k=3

7ck = 7c3 + 7c4 + 7c5 + 7c6,

4.
4∏

k=1

d32k = d32 · d34 · d36 · d38,

5.
3∑

k=1

4∑
j=2

ek,j =

3∑
k=1

(ek,2 + ek,3 + ek,4) = e1,2 + e1,3 + e1,4 + e2,2 + e2,3 + e2,4 +

+ e3,2 + e3,3 + e3,4,

6.
5∑

k=2

(−1)kfk = f2 − f3 + f4 − f5.

1.6. Mathematical Induction

Mathematical induction is a method for proving statements about natural numbers.
In its basic version, it relies on the application of the following theorem.

Theorem 1.36. Let T (n) be a logical statement for n ∈ N. If:

1. the statement T (1) is true,

2. for every k ∈ N, if the statement T (k) is true, then the statement T (k + 1) is also
true,

then the statement T (n) is true for every n ∈ N.

The first condition is called the base case. The second condition, known as the
inductive step, involves using the inductive hypothesis to prove the inductive con-
clusion.
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Example 1.37. Using mathematical induction, we will prove that 6 | (n3−n) for n ∈ N.

1. Base case: For n = 1, we have n3 − n = 13 − 1 = 0, and the statement 6 | 0 is true.

2. Inductive step. Let us fix an arbitrary k ∈ N.

• Inductive hypothesis: 6 | (k3 − k).

• Inductive conclusion: 6 | ((k + 1)3 − (k + 1)).

We have

(k + 1)3 − (k + 1) = k3 + 3k2 + 3k + 1− k − 1 =

= (k3 − k) + (3k2 + 3k) =

= (k3 − k) + 3k(k + 1).

The expression k3 − k is divisible by 6 by the inductive hypothesis. The factors of
the product 3k(k + 1) are two consecutive natural numbers: k and k + 1, so one
of them is even, and therefore the product is also even. Moreover, this product is
a multiple of 3, so it is divisible by 6. Hence, (k+1)3− (k+1), as a sum of numbers
divisible by 6, is also divisible by 6, which completes the proof of the inductive
conclusion.

By virtue of theorem 1.36 (p. 22): 6 | (n3 − n) for every n ∈ N.

Example 1.38. We will prove that 6 | (10n + 4n − 2) for n ∈ N, using mathematical
induction.

1. Base case: For n = 1, we have 10n +4n − 2 = 101 +41 − 2 = 12 and 6 | 12, thus the
statement 6 | (101 + 41 − 2) is true.

2. Inductive step. Let us fix an arbitrary k ∈ N.

• Inductive hypothesis: 6 | (10k + 4k − 2).

• Inductive conclusion: 6 | (10k+1 + 4k+1 − 2).

We have

10k+1 + 4k+1 − 2 = 10 · 10k + 4 · 4k − 2 =

= 10 · (10k + 4k − 2) + (18− 6 · 4k) =
= 10 · (10k + 4k − 2) + 6(3− 4k).

The first term of the above sum is divisible by 6 by the inductive hypothesis, and
the second term is a multiple of 6, so the entire sum is also divisible by 6.

By virtue of theorem 1.36 (p. 22): 6 | (10n + 4n − 2) for every n ∈ N.
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1.7. Integer-Valued Functions

In discrete mathematics, we like to work with integers, so functions that round real
numbers to integers are useful:

1. ⌊x⌋ – the largest integer less than or equal to x, called the floor, rounds real numbers
down,

2. ⌈x⌉ – the smallest integer greater than or equal to x, called the ceiling, rounds real
numbers up.

The fractional part of a number is also related to the floor and is defined by the formula:

⟨x⟩ = x− ⌊x⌋.

The fundamental properties of the floor and ceiling functions are as follows:

1. ⌊x⌋ = c⇐⇒ c ⩽ x < c+ 1,

2. ⌊x⌋ = c⇐⇒ x− 1 < c ⩽ x,

3. ⌈x⌉ = c⇐⇒ c− 1 < x ⩽ c,

4. ⌈x⌉ = c⇐⇒ x ⩽ c < x+ 1.

There are also many additional properties that are worth knowing:

1. x− 1 < ⌊x⌋ ⩽ x ⩽ ⌈x⌉ < x+ 1,

2. 0 ≤ ⟨x⟩ < 1,

3. ⌊x⌋ = ⌈x⌉ = x⇐⇒ x ∈ Z,

4. ⌈x⌉ − ⌊x⌋ = 1 ⇐⇒ x ̸∈ Z,

5. ⌊−x⌋ = −⌈x⌉,

6. ⌈−x⌉ = −⌊x⌋,

7. ⌊x+ k⌋ = ⌊x⌋+ k ⇐⇒ k ∈ Z,

8. ⌈x+ k⌉ = ⌈x⌉+ k ⇐⇒ k ∈ Z,

9. x < k ⇐⇒ ⌊x⌋ < k, k ∈ Z,

10. k < x⇐⇒ k < ⌈x⌉, k ∈ Z,

11. x ⩽ k ⇐⇒ ⌈x⌉ ⩽ k, k ∈ Z,

12. k ⩽ x⇐⇒ k ⩽ ⌊x⌋, k ∈ Z.

Example 1.39. Let us compute the value of the expression:⌊
⌈5,1⌉ − ⟨7,7⟩+ ⌈−8,3⌉ − ⟨−9,6⟩ · ⌊−2,5⌋

⌋
=
⌊
6− 0,7− 8− 0,4 · (−3)

⌋
= ⌊−1,5⌋ = −2.

Example 1.40. Let us calculate how many integers are in the interval [−55, 45] that are
divisible by 6. We divide the interval [−55, 45] into parts: [−55,−1], (−1, 1), [1, 45]. We
introduce a working notation d(A) for the number of integers divisible by 6 in the set A.
Notice that d([1, x]) = d([−x,−1]) = ⌊x/6⌋ for any x ∈ R. Thus, we have:

d([−55, 45]) = d([−55,−1]) + d((−1, 1)) + d([1, 45])

= d([1, 55]) + 1 + d([1, 45]) =

=

⌊
55

6

⌋
+ 1 +

⌊
45

6

⌋
= 9 + 1 + 7 = 17.

Let us verify the result by listing all these numbers:

−54,−48,−42,−36,−30,−24,−18,−12,−6, 0, 6, 12, 18, 24, 30, 36, 42.
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1.8. Exercises

Exercise 1.1. Indicate which of the following statements are logical statements:

a) 2 + 2 = 10.

b) Don’t eat so many hamburgers!

c) There exists a value x such that
x2 − 2x+ 9 = 0.

d) Who is the president of France?

e) |5| = −5.

f) The number π is rational.

g) Be careful!

h) How many continents are there on Earth?

i) All sharks are herbivorous.

j) Kraków was the capital of Poland.

k) Every quadrilateral is convex.

l) What is the highest peak in the Alps?

m) 3 > 7.

n) Viruses live at the bottom of the Pacific
Ocean.

Exercise 1.2. Determine the truth value of the following formulas, assuming the follow-
ing truth values for the propositional variables: p = 1, q = 0, r = 1:

a) [(p ∨ q) ∧ r] ⇔ (p ∧ ¬q),

b) [(p⇔ q) ∨ (p⇒ r)] ⇒ (¬ ∧ p),

c) [(p⇒ q) ∧ ¬r] ⇔ ¬p,

d) [(p ∨ q) ⇒ (p ∨ ¬q)] ⇔ (¬p ∨ q),

e) [(p ∨ q) ∧ ¬p] ⇒ q,

f) [(p⇒ q) ∧ (q ⇒ r)] ⇒ (r ∨ q).

Exercise 1.3. Determine the truth values of the following statements:

a) It is not true that 3 + 4 = 9.

b) If 2 + 2 = 4, then 2 + 4 = 8.

c) If 2 + 2 = 5, then 2 + 4 = 6.

d) If 2 + 2 = 4, then 2 + 4 = 6.

e) If 2 + 2 = 5, then 2 + 4 = 8.

f) If the Earth has the shape of a cone, then Bolesław Chrobry was the first king of
Poland.

g) If Washington was the first president of the United States, then 3 + 3 = 8.

h) In Poland, coffee or cocoa is grown.

i) (1 + 2)2 ̸= (−1− 2)2 ∨ −0.5 > − 1
3 .

j) (15 | 45 ∨ 5 | 45) ⇐⇒ [(2 < −1) =⇒ (42 = (−4)2)].

k) [(2 + 3)2 = 25 ⇐⇒ (2 + 3)2 > 1] ∧ [(2 · 2 = 4) ⇐⇒ (3 · 5 = 10)].

l) The Sun is a star if and only if the Earth has three moons.
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Exercise 1.4. Check whether the given formulas are tautologies:

a) [(p⇔ q) ∨ (¬p ∧ q)] ⇒ (p ∨ q),

b) [(p ∨ ¬q) ⇒ ¬q] ∧ (p⇔ q),

c) [p ∧ (q ∨ r)] ⇔ [(p ∧ q) ∨ (p ∧ r)],

d) [(p ∨ q) ⇒ r] ⇔ [(p⇒ q) ∨ (q ⇒ r)],

e) (p ∧ q) ∨ [(¬p ∧ q) ∨ (¬p ∧ ¬q)],

f) (((p∧q) ⇒ r)∧(p∨q) ⇒ ¬r) ⇒ (p∧q∧r).

Exercise 1.5. Create the negations of the following statements, using the appropriate
laws (p. 8):

a) Marek spent his vacation in Greece or Spain.

b) Beata is studying French and English.

c) If Adam is a student, then he does not work.

d) 7 is a natural number or a prime number.

e) 2 is an even number or 5 is a divisor of 8.

f) 3 is not a composite number and 9 is not an even number.

g) Penguins do not fly and the elephant is larger than the goat.

h) If snow is white, then grass is pink.

Exercise 1.6. Determine the truth values of the following statements:

a)
∧
x∈R

|x|+ 1 > 0,

b)
∧
x∈R

sin2 x+ cos2 x = 1,

c)
∨
x∈R

x2 − x+ 1 = 0,

d)
∧

a,b∈R

∧
n∈N

(ab)n = anbn,

e)
∧
x∈R

∨
y∈R

x+ y > 0,

f)
∨
y∈R

∧
x∈R

x+ y > 0,

g)
∨
x∈Z

x > 5 ∨ x < 3,

h)
∨
x∈Z

x > 5 ∧ x < 3,

i)
∨
x∈N

x > 7 ∧ x < 8.

Exercise 1.7. Evaluate the truth value of the given statements and write them using
quantifiers and mathematical symbols:

a) Every natural number is non-negative.

b) There exists a real number x such that x+ 5 = 12.

c) The square of any real number increased by 1 is a positive number.

d) There exists an integer whose cube is a negative number.

e) For every real number, there exists an integer that is less than it.

f) There exists a real number that is not greater than any natural number.

g) There exists an integer that is not greater than any real number.

h) For every real number x, there exists a real number y such that x− y is negative.
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Exercise 1.8. Create the negations of the following statements, using the appropriate
laws (p. 12):

a) All students passed the exam in discrete mathematics.

b) There is a person who knows their future.

c) Every real number is positive or every real number is negative.

d) There exists a natural number that is odd and divisible by 10.

e) All rectangles are squares.

f) There exists a natural number divisible by 3 and every integer is non-negative.

Exercise 1.9. List the elements of the following sets:

a) A = {x ∈ Z : −4 < x ≤ 3},

b) B = {x ∈ N : (x+ 3)(x− 2) = 0},

c) C = {x ∈ R : |x| = 3},

d) D = {x ∈ N : x = 2k ∧ k ∈ Z ∧ x < 8},

e) E = {x ∈ N : x | 12},

f) F = {x ∈ Z : 4 | x ∧ −7 < x ≤ 4}.

Exercise 1.10. Provide all elements of the power set P(X) when:

a) X = {k, l},

b) X = {{a, b}, 3},

c) X = {cat, horse, perch},

d) X = {a, β, C, δ},

e) X = {{x, 4}, {y, 7}},

f) X = {{K, {L,M}}, α}.

Exercise 1.11. Determine the sets A ∪B, A ∩B, A \B, and B \A if:

a) A = {a, b, c}, B = {c, d},

b) A = {−2,−1, 0, 1, 5}, B = {1, 3, 5, 8},

c) A = {5, 7, 9, 11}, B = {7, 9},

d) A = {−1,−2,−3}, B = {1, 2, 3},

e) A = {x ∈ N : x < 9}, B = x ∈ N : x ≥ 3.

Exercise 1.12. Let the set Ω = {1, 2, 3, 4, 5, 6, 7, 8, 9} be space. Determine the sets
A′, B′, A′ ∪B′, (A ∪B)′, A′ ∩B′, and (A ∩B)′ if:

a) A = {x ∈ Ω : x is a prime number}, B = {x ∈ Ω : x = 2k ∧ k ∈ N},

b) A = {x ∈ Ω : x | 8}, B = {x ∈ Ω : 2 | x},

c) A = {x ∈ Ω : 3 | x}, B = {x ∈ Ω : x = 2k + 1 ∧ k ∈ N0}.
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Exercise 1.13. Given the sets:

A = {1, 2, 3}, B = {3, 4}, C = {5}, D = {w, z}, E = {w, x, y, z}.

Determine the Cartesian products:

a) A×B,

b) B ×A,

c) B ×B,

d) A×B × C,

e) B × C ×B,

f) D ×B,

g) E ×D,

h) C × E.

Exercise 1.14. Verify whether the given relation is reflexive, symmetric, antisymmetric,
or transitive:

a) X = N, Rα = {(a, b) ∈ N× N : a | b},

b) X = Z, Rβ = {(a, b) ∈ Z× Z : a | b},

c) X = N, R1 = {(x, y) ∈ N× N : x < y},

d) X = N, R2 = {(x, y) ∈ N× N : x ≤ y},

e) X = R, R3 = {(x, y) ∈ R× R : x ≤ y},

f) X = N, R4 = {(x, y) ∈ N× N : x ≤ y2},

g) X = R, R5 = {(x, y) ∈ R× R : x ≤ y2},

h) X = Z, R̄ = {(a, b) ∈ Z× Z : 3|(a− b)},

i) X = Z, R̃ = {(a, b) ∈ Z× Z : 7|(a− b)},

j) X = R× R, R̂ = {((x1, y1), (x2, y2)) ∈ (R× R)× (R× R) : x1 ≤ x2 ∧ y1 ≤ y2},

k) X = P({a, b, c}), T = {(K,L) ∈ P({a, b, c})× P({a, b, c}) : K ⊆ L},

l) X – set of points in the plane Oxy,
H = {(a, b) ∈ X ×X : the distance of point a from the origin is equal to

the distance of point b from the origin},

m) X – set of all countries,
G = {(x, y) ∈ X ×X : country x has a land border with country y},

n) X – set of words in the English language dictionary,
S1 = {(x, y) ∈ X ×X : word x has at least one common letter with word y},

o) X – set of words in the English language dictionary,
S2 = {(x, y) ∈ X ×X : word x has the same number of letters as word y},

p) X – set of words in the English language dictionary,
S3 = {(x, y) ∈ X ×X : word x starts with the same letter as word y},

q) X – set of words in the English language dictionary,
S4 = {(x, y) ∈ X ×X : word x occupies an earlier or the same position

in lexicographic order as word y},

r) X – set of lines in the plane,
K1 = {(x, y) ∈ X ×X : line x is parallel to line y},
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s) X – set of lines in the plane,
K2 = {(a, b) ∈ X ×X : line a is perpendicular to line b},

t) X – set of Polish citizens living on January 1st 2024 at 00:01,
P1 = {(k, l) ∈ X ×X : person k is an ancestor of person l},

u) X – set of Polish citizens living on January 1st 2024 at 00:01,
P2 = {(k, l) ∈ X ×X : person k is a parent of person l},

v) X – set of Polish citizens living on January 1st 2024 at 00:01,
P3 = {(k, l) ∈ X ×X : person k is a child of person l},

w) X – set of Polish citizens living on January 1st 2024 at 00:01,
P4 = {(k, l) ∈ X ×X : person k is a husband or wife of person l},

x) X – set of Polish citizens living on January 1st, 2024, at 00:01,
P5 = {(k, l) ∈ X ×X : person k has at least one common parent with person l},

y) X – set of Polish citizens living on January 1st, 2024, at 00:01,
P6 = {(k, l) ∈ X ×X : person k has the same parents as person l},

z) X – set of Polish citizens living on January 1st, 2024, at 00:01,
L = {(k, l) ∈ X ×X : person k was born in the same month as person l}.

Exercise 1.15. Indicate which relations from task 1.14 are:

a) equivalence relations; determine their equivalence classes,

b) partial orders,

c) linear orders.

Exercise 1.16. List all the elements of the following sums and products:

a)
5∑

i=1

a3i ,

b)
7∏

j=3

4bj ,

c)
6∑

k=2

ck+1,

d)
4∑

i=1

(−1)idiei,

e)
5∑

j=2

6∑
k=3

fj,k,

f)
∏

0≤m≤4

gm2 ,

g)
∑

1≤i,j≤4

aibj ,

h)
∑

1≤i<j≤4

aibj ,

i)
∑

1≤i≤j≤4

aibj ,

j)
4∏

k=2

(ck + dk),

k)
∏
i,j≥1
i+j=5

ei,j ,

l)
∑

5≤m<8

(fm + 4).

Exercise 1.17. Express the following expressions using summation or product notation:

a) 1 + 2 + 3 + 4 + · · ·+ 17,

b) 1 + 2 + 4 + 8 + · · ·+ 512,

c) 18 + 21 + 24 + 27 + · · ·+ 45,

d) 1 +
1

3
+

1

9
+

1

27
+ · · ·+ 1

6561
,

e) 2 · 4 · 6 · 8 · · · 26,

f)
1

5
· 1

15
· 1

25
· · · 1

85
,

g) −1 + 2− 3 + 4− 5 + · · · − 17,

h) 1− 2 + 3− 4 + 5− · · ·+ 17.
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Exercise 1.18. Show that for every natural number n:

a) 3 | (n3 + 2n),

b) 3 | (n3 − 3n2 + 2n− 3),

c) 6 | (n3 − n),

d) 6 | (n3 + 12n),

e) 6 | (n3 + 3n2 + 2n),

f) 9 | (n3+(n+1)3+(n+2)3).

Exercise 1.19. Show that for every natural number n:

a) 4 | (55n+3 + 3),

b) 7 | (2n+2 + 32n+1),

c) 8 | (52n+1 + 3),

d) 10 | (34n+2 + 1),

e) 11 | (26n+1 + 32n+2),

f) 14 | (34n+2 + 52n+1).

Exercise 1.20. Calculate:

a) ⌈2π⌉+
⌈√

150
⌉
,

b)
⌈
⌈−8.6⌉ · ⌊2.44⌋+ ⟨−5.54⟩

⌉⌊√
300
⌋ ,

c)
⌈
⌈3.75⌉ · ⟨4.53⟩

⌉
+ ⌈11.6⌉ − 3 · ⌊−5.9⌋,

d)
⌈
⌈4.75⌉+ ⌊−3.41⌋ − ⟨2.43⟩

⌉⌊
⌊π⌉ − ⌈24 − 3.5⌉+ ⟨−7.33⟩)

.

Exercise 1.21. Using any real number x that is not an integer, verify the basic and
complementary properties of integer-valued functions (p. 24).

Exercise 1.22.

a) How many numbers in the interval [1, 30] are divisible by 7?

b) How many numbers in the interval [0, 42] are divisible by 9?

c) How many numbers in the interval [−33,−1] are divisible by 5?

d) How many numbers in the interval [−25, 11] are divisible by 6?

e) How many numbers in the interval [17, 53] are divisible by 8?

f) How many numbers in the interval [1, 7564] are divisible by 7?

g) How many numbers in the interval [0, 5437] are divisible by 11?

h) How many numbers in the interval [−3563,−1] are divisible by 9?

i) How many numbers in the interval [−2565, 3451] are divisible by 6?

j) How many numbers in the interval [1787, 5663] are divisible by 7?

1.9. Answers

Answer 1.1. Logical statements: a, c, e, f, i, j, k, m, n.

Answer 1.2.

a) 1,

b) 1,

c) 1,

d) 0,

e) 1,

f) 1.
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Answer 1.3.

a) 1,

b) 0,

c) 1,

d) 1,

e) 1,

f) 1,

g) 0,

h) 0,

i) 0,

j) 1,

k) 0,

l) 0.

Answer 1.4.

a) No, the value is 0 for (p, q) = (0, 0).

b) No, the value is 0 for (p, q) ∈ {(1, 0), (0, 1), (1, 1)}.

c) Yes.

d) No, the value is 0 for (p, q, r) ∈ {(0, 1, 0), (1, 0, 0), (1, 1, 0)}.

e) No, the value is 0 for (p, q) = (1, 0).

f) No, the value is 0 for (p, q, r) ∈ {(0, 0, 0), (0, 0, 1), (0, 1, 0), (1, 0, 0)}.

Answer 1.5.

a) Marek did not spend his vacation in Greece and did not spend his vacation in Spain.

b) Beata is not studying French or is not studying English.

c) Adam is a student and works.

d) 7 is not a natural number and is not a prime number.

e) 2 is not an even number and 5 is not a divisor of 8.

f) 3 is a composite number or 9 is an even number.

g) Penguins fly or the elephant is not bigger than the goat.

h) Snow is white and the grass is not pink.

Answer 1.6.

a) 1,

b) 1,

c) 0,

d) 1,

e) 1,

f) 0,

g) 1,

h) 0,

i) 0.

Answer 1.7.

a) 1,
∧
x∈N

x ≥ 0.

b) 1,
∨
x∈R

x+ 5 = 12.

c) 1,
∧
x∈R

x2 + 1 > 0.

d) 1,
∨
x∈Z

x3 < 0.

e) 1,
∧
x∈R

∨
y∈Z

y < x.

f) 1,
∨
x∈R

∧
y∈N

x ≤ y.

g) 0,
∨
x∈Z

∧
y∈R

x ≤ y.

h) 1,
∧
x∈R

∨
y∈R

x− y < 0.
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Answer 1.8.

a) There exists a student who did not pass the exam in discrete mathematics.

b) No person knows their future.

c) There exists a real number that is not positive, and there exists a real number that is
not negative.

d) Every natural number is even or not divisible by 10.

e) There exists a rectangle that is not a square.

f) Every natural number is not divisible by 3 or there exists a negative integer.

Answer 1.9.

a) A = {−3,−2,−1, 0, 1, 2, 3},

b) B = {2},

c) C = {−3, 3},

d) D = {2, 4, 6},

e) E = {1, 2, 3, 4, 6, 12},

f) F = {−4, 0, 4}.

Answer 1.10.

a) P(X) = {∅, {k}, {l}, {k, l}},

b) P(X) = {∅, {{a, b}}, {3}, {{a, b}, 3}},

c) P(X) = {∅, {cat}, {horse}, {perch}, {cat, horse}, {cat, perch},
{horse, perch}, {cat, horse, perch}},

d) P(X) = {∅, {a}, {β}, {C}, {δ}, {a, β}, {a,C}, {a, δ}, {β,C}, {β, δ}, {C, δ},
{a, β, C}, {a, β, δ}, {a,C, δ}, {β,C, δ}, {a, β, C, δ}},

e) P(X) = {∅, {{x, 4}}, {{y, 7}}, {{x, 4}, {y, 7}}},

f) P(X) = {∅, {{K, {L,M}}}, {α}, {{K, {L,M}}, α}}.

Answer 1.11.

a) A ∪B = {a, b, c, d}, A ∩B = {c}, A \B = {a, b}, B \A = {d}.

b) A∪B = {−2,−1, 0, 1, 5, 3, 8}, A∩B = {1, 5}, A \B = {−2,−1, 0, }, B \A = {3, 8}.

c) A ∪B = {5, 7, 9, 11}, A ∩B = {7, 9}, A \B = {5, 11}, B \A = ∅.

d) A ∪B = {−1,−2,−3, 1, 2, 3}, A ∩B = ∅, A \B = A, B \A = B.

e) A ∪B = N, A ∩B = {3, 4, 5, 6, 7, 8}, A \B = {1, 2}, B \A = {x ∈ N : x ≥ 9}.
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Answer 1.12.

a) A = {2, 3, 5, 7}, B = {2, 4, 6, 8},
A′ = {1, 4, 6, 8, 9}, B′ = {1, 3, 5, 7, 9},
A′ ∪B′ = {1, 3, 4, 5, 6, 7, 8, 9}, (A ∪B)′ = {1, 9},
A′ ∩B′ = {1, 9}, (A ∩B)′ = {1, 3, 4, 5, 6, 7, 8, 9}.

b) A = {1, 2, 4, 8}, B = {2, 4, 6, 8},
A′ = {3, 5, 6, 7, 9}, B′ = {1, 3, 5, 7, 9},
A′ ∪B′ = {1, 3, 5, 6, 7, 9}, (A ∪B)′ = {3, 5, 7, 9},
A′ ∩B′ = {3, 5, 7, 9}, (A ∩B)′ = {1, 3, 5, 6, 7, 9}.

c) A = {3, 6, 9}, B = {1, 3, 5, 7, 9},
A′ = {1, 2, 4, 5, 7, 8}, B′ = {2, 4, 6, 8},
A′ ∪B′ = {1, 2, 4, 5, 6, 7, 8}, (A ∪B)′ = {2, 4, 8},
A′ ∩B′ = {2, 4, 8}, (A ∩B)′ = {1, 2, 4, 5, 6, 7, 8}.

Answer 1.13.

a) A×B = {(1, 3), (1, 4), (2, 3), (2, 4), (3, 3), (3, 4)},

b) B ×A = {(3, 1), (3, 2), (3, 3), (4, 1), (4, 2), (4, 3)},

c) B ×B = {(3, 3), (3, 4), (4, 3), (4, 4)},

d) A×B × C = {(1, 3, 5), (1, 4, 5), (2, 3, 5), (2, 4, 5), (3, 3, 5), (3, 4, 5)},

e) B × C ×B = {(3, 5, 3), (3, 5, 4), (4, 5, 3), (4, 5, 4)},

f) D ×B = {(w, 3), (w, 4), (z, 3), (z, 4)},

g) E ×D = {(w,w), (w, z), (x,w), (x, z), (y, w), (y, z), (z, w), (z, z)},

h) C × E = {(5, w), (5, x), (5, y), (5, z)}.
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Answer 1.14.

refl.? sym.? trans.? antisym.? equiva.? part. o.? lin. o.?
a Y N Y Y ✓
b Y N Y N
c N N Y Y*
d Y N Y Y ✓ ✓
e Y N Y Y ✓ ✓
f Y N N N
g N N N N
h Y Y Y N ✓
i Y Y Y N ✓
j Y N Y Y ✓
k Y N Y Y ✓
l Y Y Y N ✓
m Y Y N N
n Y Y N N
o Y Y Y N ✓
p Y Y Y N ✓
q Y N Y Y ✓ ✓
r Y Y Y N ✓
s N Y N N
Y N N Y Y*
u N N N Y*
v N N N Y*
w N Y N N
x N Y N N
y Y Y Y N ✓
z Y Y Y N ✓

* – The antecedent of the implication is vacuously satisfied, the entire implication is true.

Answer 1.15.

a) Equivalence relations: h, i, l, o, p, r, y, z.
Equivalence classes for h:

• [0]R̄ = {. . . ,−6,−3, 0, 3, 6, 9, . . . },
• [1]R̄ = {. . . ,−5,−2, 1, 4, 7, 10, . . . },
• [2]R̄ = {. . . ,−4,−1, 2, 5, 8, 11, . . . }.

Equivalence classes for i:

• [0]R̃ = {. . . ,−14,−7, 0, 7, 14, . . . },
• [1]R̃ = {. . . ,−13,−6, 1, 8, 15, . . . },
• [2]R̃ = {. . . ,−12,−5, 2, 9, 16, . . . },
• [3]R̃ = {. . . ,−11,−4, 3, 10, 17, . . . },
• [4]R̃ = {. . . ,−10,−3, 4, 11, 18, . . . },
• [5]R̃ = {. . . ,−9,−2, 5, 12, 19, . . . },
• [6]R̃ = {. . . ,−8,−1, 6, 13, 20, . . . }.



Answers 35

Equivalence classes for l: one equivalence class is the set of points on a circle centered
at the point (0, 0).
Equivalence classes for o: one equivalence class is the set of words that have the same
number of letters.
Equivalence classes for p: one equivalence class is the set of words that start with the
same letter.
Equivalence classes for r: one equivalence class is the set of lines that have the same
direction.
Equivalence classes for y: one equivalence class is the set of individuals who have the
same parents.
Equivalence classes for z: one equivalence class is the set of individuals born in the
same month.

b) Partial order relations: a, d, e, j, k, q.

c) Linear order relations: d, e, q.

Answer 1.16.

a) a31 + a32 + a33 + a34 + a35,

b) 4b3 · 4b4 · 4b5 · 4b6 · 4b7,

c) c3 + c4 + c5 + c6 + c7,

d) −d1e1 + d2e2 − d3e3 + d4e4,

e) f2,3+f2,4+f2,5+f2,6+f3,3+f3,4+f3,5+f3,6+f4,3+f4,4+f4,5+f4,6+f5,3+f5,4+f5,5+f5,6,

f) g0 · g1 · g4 · g9 · g16,

g) a1b1 + a1b2 + a1b3 + a1b4 + a2b1 + a2b2 + a2b3 + a2b4 + a3b1 + a3b2 + a3b3 + a3b4 +
a4b1 + a4b2 + a4b3 + a4b4,

h) a1b2 + a1b3 + a1b4 + a2b3 + a2b4 + a3b4,

i) a1b1 + a1b2 + a1b3 + a1b4 + a2b2 + a2b3 + a2b4 + a3b3 + a3b4 + a4b4,

j) (c2 + d2) · (c3 + d3) · (c4 + d4),

k) e1,4 · e2,3 · e3,2 · e4,1,

l) (f5 + 4) + (f6 + 4) + (f7 + 4).

Answer 1.17.

a)
17∑
k=1

k,

b)
9∑

i=0

2i,

c)
15∑
j=6

3j,

d)
8∑

k=0

1

3k
,

e)
13∏
i=1

2i,

f)
8∏

j=0

1

5(2j + 1)
,

g)
17∑
k=1

(−1)kk,

h)
17∑
k=1

(−1)k+1k.

Answer 1.18. —

Answer 1.19. —
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Answer 1.20.

a) 20, b) −15

17
, c) 33, d) − 1

10
.

Answer 1.21. —

Answer 1.22.

a)
⌊
30

7

⌋
= 4,

b)
⌊
42

9

⌋
+ 1 = 5,

c)
⌊
33

5

⌋
= 6,

d)
⌊
25

6

⌋
+

⌊
11

6

⌋
+ 1 = 6,

e)
⌊
53

8

⌋
−
⌊
16

8

⌋
= 4,

f)
⌊
7564

7

⌋
= 1080,

g)
⌊
5437

11

⌋
+ 1 = 495,

h)
⌊
3563

9

⌋
= 395,

i)
⌊
2565

6

⌋
+

⌊
3451

6

⌋
+ 1 = 1003,

j)
⌊
5663

7

⌋
−
⌊
1786

7

⌋
= 554.



Chapter 2

Elements of Number Theory

In this chapter, we will present selected elements of number theory, such as divisibility
of numbers, prime and composite numbers, greatest common divisor and least common
multiple, the Euclidean algorithm, and relatively prime numbers. These concepts are
already introduced in mathematics and computer science classes in primary and secondary
school; however, it is very important to organize and supplement this knowledge.

2.1. Divisibility of Numbers

We will begin by recalling the basic definition related to divisibility. We say that an
integer m divides an integer a, or equivalently, is a divisor of the integer a, if there
exists an integer n such that mn = a. We denote this fact as m | a. If the number
m does not divide the number a, we write m ∤ a. The set of all integer divisors of the
number a is denoted by D(a). If the number a is natural, we distinguish proper divisors
within its set of divisors. These are the divisors that are natural numbers different from a.
Conventionally, we do not refer to proper divisors of negative numbers.

Example 2.1. Let a = 12 and m = 3. Then 3 | 12, and the set of all integer divisors of
12 is as follows:

D(12) = {−12,−6,−4,−3,−2,−1, 1, 2, 3, 4, 6, 12}.

Of course, D(12) = D(−12). The proper divisors of the number 12 are 1, 2, 3, 4, and 6.

Let us recall that the divisibility relation in the set of natural numbers:

RN = {(a, b) ∈ N× N : a | b}

is a partial order relation (Exercise 1.14a, p. 28). However, the analogous relation con-
sidered in the set of integers:

RZ = {(a, b) ∈ Z× Z : a | b}

is not antisymmetric (Exercise 1.14b, p. 28), therefore it is no longer a partial order
relation.

37
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The most important properties of divisibility are listed below. Let a, b,m ∈ Z. Then:

1. if m | a and m | b, then m | (a+ b) and m | (a− b),

2. if m | a and a | b, then m | b,

3. if m | a, then m | ab,

4. if m | a and a ̸= 0, then |m| ≤ |a|,

5. if m | a and a | m, then m = a or m = −a,

6. m | 0, in particular, 0 | 0,

7. for a ̸= 0, it is not true that 0 | a,

8. 1 | a, −1 | a, a | a, −a | a.

In the next step, we will present a theorem that forms the basis of the Euclidean
algorithm.

Theorem 2.2. If a, b ∈ Z and b ̸= 0, then there exists exactly one pair of integers q, r
satisfying the conditions:

a = qb+ r, 0 ≤ r < |b|. (2.1)

Moreover, b | a holds if and only if r = 0.

The number r from the statement of the above theorem is called the remainder of the
division of a by b, and the number q is called the quotient of this division.

Example 2.3.

1. If a = 31, b = 9, then q = 3, r = 4, because 31 = 3 · 9 + 4.

2. If a = 31, b = −9, then q = −3, r = 4, because 31 = −3 · (−9) + 4.

3. If a = −31, b = 9, then q = −4, r = 5, because −31 = (−4) · 9 + 5.

4. If a = −31, b = −9, then q = 4, r = 5, because −31 = 4 · (−9) + 5.

Remark 2.4. It is essential to remember that the remainder r from the division is always
a non-negative number. The quotient q is chosen in such a way that the equality (2.1)
holds for the remainder r.

At the end of this subsection, let us recall the divisibility rules that allow for a quick
check, without performing the division, whether a given number is divisible by another
number. We will limit ourselves here to presenting the divisibility rules for a few numbers:

• 2 | n if the last digit of the number n is even.

• 3 | n if the sum of the digits of the number n is divisible by 3.

• 4 | n if the last two digits of the number n form a number that is divisible by 4.

• 5 | n if the last digit of the number n is 0 or 5.
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• 7 | n if the alternating sum of the numbers formed by grouping the digits of the number
n in threes (starting from the right) is divisible by 7.

• 8 | n if the last three digits of the number n form a number that is divisible by 8.

• 9 | n if the sum of the digits of the number n is divisible by 9.

• 11 | n if the alternating sum of the digits of the number n is divisible by 11.

• 13 | n if the alternating sum of the numbers formed by grouping the digits of the
number n in threes (starting from the right) is divisible by 13.

Above, we intentionally omitted the numbers 6, 10, and 12. The divisibility rules for
these numbers (as well as for 14 and 15) will be discussed at the end of section 2.3 on
page 42.

Example 2.5.

1. Let a = 6379 586. Then 2 | a, because the last digit of a is 6, which is even.

2. Let b = 2686 863. Then 3 | b, because 2 + 6 + 8 + 6 + 8 + 6 + 3 = 39 and 3 | 39.

3. Let c = 22 738 848. Then 4 | c, because the last two digits of c form the number 48,
which is divisible by 4.

4. Let d = 34 567 525. Then 5 | d, because the last digit of d is 5.

5. Let f = 2172 912. Then 7 | f , because 2− 172 + 912 = 742 and 7 | 742.

6. Let g = 77 269 936. Then 8 | g, because the last three digits of g form the number 936,
which is divisible by 8.

7. Let h = 7878 258. Then 9 | h, because 7 + 8 + 7 + 8 + 2 + 5 + 8 = 45 and 9 | 45.

8. Let j = 940 412. Then 11 | j, because 9− 4 + 0− 4 + 1− 2 = 0 and 11 | 0.

9. Let l = 7207 356. Then 13 | l, because 7− 207 + 356 = 156 and 13 | 156.

2.2. Prime and Composite Numbers

Prime numbers have a very simple definition, which is already known to primary
school students. Although they were known in antiquity, they continue to fascinate many
professional mathematicians as well as enthusiasts not professionally involved in mathe-
matics. For example, the extremely simple formulation of Goldbach’s conjecture (actually
proposed by Euler in 1742) remains unresolved—it has not been proven, nor has a coun-
terexample been found to date.

Conjecture 2.6. (Goldbach’s Conjecture) Every even number greater than 2 is the sum
of two (not necessarily distinct) prime numbers.

Let us begin by recalling the definitions of a prime number and a composite number.

Definition 2.7. A natural number n > 1 is called a prime number if it has exactly
two natural divisors: 1 and n.
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The set of prime numbers is denoted by P. At the time of writing this text, the largest
known prime number is

2136 279 841 − 1,

which has over 41 million digits and was discovered on October 12, 2024. The following
theorem was already known to the ancient Greeks.

Theorem 2.8. The set P of prime numbers is infinite.

Definition 2.9. A natural number n > 1 is called a composite number if it is not
a prime number.

Note that there are also infinitely many composite numbers. It suffices to consider all
powers of any natural number greater than 1.

Remark 2.10. The number 1 is neither a prime number nor a composite number.

The aim of this subsection is to present theorems regarding the uniqueness of the
factorization of natural and integer numbers, which we present below.

Theorem 2.11. Every natural number n > 1 can be uniquely expressed as a product of
powers of prime numbers:

n = pα1
1 · pα2

2 · · · pαk

k ,

where p1 < p2 < · · · < pk are prime numbers and k, α1, α2, . . . , αk ∈ N.

Theorem 2.12. Every integer n different from 0, 1,−1 can be uniquely expressed in the
form:

n = sgn(n) · pα1
1 · pα2

2 · · · pαk

k ,

where p1 < p2 < · · · < pk are prime numbers and k, α1, α2, . . . , αk ∈ N.

The function sgn used in the above theorem guarantees that we account for the sign of
the number n, and its values are as follows:

sgn(n) =


−1, if n < 0,

0, if n = 0,

1, if n > 0.

The factorizations occurring in the above theorems are called canonical factoriza-
tions or prime factorizations.

Example 2.13. Let us recall the method for finding the canonical factorization. We
start by writing the number for which we are seeking the factorization and a vertical line
to its right. In each step of the algorithm, for the number n—the last (written lowest)
number on the left side of the line—we look for the smallest prime number p that divides
the number n. We write the number p to the right of the line opposite the number n.
Below n, on the left side, we write the quotient n/p. This step is repeated until we
obtain a quotient equal to 1. The operation of this algorithm is illustrated below using
the example of the number a = 1260:

1260 1260 2 1260 2 1260 2 1260 2 1260 2 1260 2
630 630 2 630 2 630 2 630 2 630 2

315 315 3 315 3 315 3 315 3
105 105 3 105 3 105 3

35 35 35 5
7 7 7

1
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The obtained canonical factorization has the form a = 22 · 32 · 5 · 7. Note that in
subsection 2.1 (p. 38), we presented divisibility rules that we can apply here to quickly
check whether the successive quotients are divisible by small prime numbers: 2, 3, 5, . . . .

In the case of a negative number, the procedure is the same except for the final answer,
where we need to account for the sign of the number, e.g., −1260 = (−1) · 22 · 32 · 5 · 7.

Remark 2.14. Based on the canonical factorization of the number n in example 2.13
(p. 40), we can determine the number of its divisors. Note that every natural divisor of
the number n has the form 2x · 3y · 5z · 7w, where x ∈ {0, 1, 2}, y ∈ {0, 1, 2}, z ∈ {0, 1},
and w ∈ {0, 1}. By multiplying the number of possible values that each exponent can
take, we obtain 3 · 3 · 2 · 2 = 36. Thus, the number of natural divisors is 36, while the
number of integer divisors is 2 · 36 = 72. We encourage the reader to carry out similar
reasoning for smaller numbers and to derive a general formula for the number of divisors
for a number that has a specified canonical factorization. It is worth comparing this
remark with Exercises 3.64 (p. 70) and 3.127 (p. 75).

2.3. Greatest Common Divisor and Least Common
Multiple

In this subsection, we will demonstrate how to use the canonical factorization of
numbers to determine their greatest common divisor and least common multiple. Let us
recall the definitions of these concepts.

Definition 2.15. The greatest common divisor of numbers a1, a2, . . . , ak ∈ Z, where
k ∈ N and not all these numbers are zero, denoted by GCD(a1, a2, . . . , ak), is the largest
natural number that divides each of these numbers.

Definition 2.16. The least common multiple of numbers a1, a2, . . . , ak ∈ Z \ {0},
k ∈ N, denoted by LCM(a1, a2, . . . , ak), is the smallest natural number that is divisible
by each of these numbers.

Example 2.17. Let a = 23 760, b = 69 300. We factor the given numbers into prime
factors as we demonstrated in Example 2.13 (p. 40), obtaining:

a = 24 · 33 · 5 · 11, b = 22 · 32 · 52 · 7 · 11.

Then:

1. GCD(a, b) = 22 · 32 · 5 · 11 = 1980.
We select the prime factors that appear in both factorizations: 2, 3, 5, 11. For each
prime factor, we take the smaller exponent from both factorizations: 22, 32, 51, 111.
We multiply the resulting factors.

2. LCM(a, b) = 24 · 33 · 52 · 7 · 11 = 831 600.
We select all prime factors that appear in at least one of the factorizations: 2, 3, 5, 7, 11.
For each prime factor, we take the larger exponent from both factorizations: 24, 33,
52, 71, 111. We multiply the resulting factors.
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Now we will list some basic properties of the greatest common divisor and least com-
mon multiple. Let a, d,m, a1, a2, . . . , ak ∈ Z \ {0}, where k ∈ N. Then:

1. If d | a1, d | a2, . . ., d | ak, then d | GCD(a1, a2, . . . , ak),

2. If a1 | m, a2 | m, . . ., ak | m, then LCM(a1, a2, . . . , ak) | m,

3. GCD(a1, a2) · LCM(a1, a2) = |a1 · a2|,

4. GCD(a1, . . . , ak−2, ak−1, ak) = GCD(a1, . . . , ak−2, GCD(ak−1, ak)),

5. LCM(a1, . . . , ak−2, ak−1, ak) = LCM(a1, . . . , ak−2, LCM(ak−1, ak)),

6. GCD(a, 1) = 1, GCD(a,−1) = 1,

7. If a1 | a, a2 | a and GCD(a1, a2) = 1, then a1a2 | a.

In subsection 2.4, in Examples 2.22, 2.23, 2.24, and 2.25 (p. 44-45), we will demon-
strate how to apply the above properties in solving problems.

While listing divisibility rules on page 38, we omitted the numbers 6, 10, and 12.
These are composite numbers whose canonical factorizations contain more than one prime
factor. In such cases, we use divisibility rules for prime numbers or their powers along
with property 7 presented above. From this arise the following divisibility rules:

• 6 | n if both 2 | n and 3 | n.

• 10 | n if both 2 | n and 5 | n, which means that the last digit of the number n is 0.

• 12 | n if both 3 | n and 4 | n.

• 14 | n if both 2 | n and 7 | n.

• 15 | n if both 3 | n and 5 | n.

Example 2.18.

1. Let e = 27 526 158. Then 6 | e, because the last digit of e is 8, which is even, and also
because 2 + 7 + 5 + 2 + 6 + 1 + 5 + 8 = 36 and 3 | 36 (we checked divisibility by 2
and 3).

2. Let i = 8651 370. Then 10 | i, because the last digit of i is 0.

3. Let k = 6507 720. Then 12 | k, because 6+ 5+0+7+7+2+0 = 27 and 3 | 27, while
at the end of k we have the two-digit number 20, which is divisible by 4 (we checked
divisibility by 3 and 4).

4. Let m = 1255 128. Then 14 | m because the last digit of m is 8, which is even, and
1− 255 + 128 = −126 and 7 | −126 (we checked divisibility by 2 and 7).

5. Let n = 978 345. Then 15 | n, because 9 + 7 + 8 + 3 + 4 + 5 = 36 and 3 | 36, and the
last digit of n is 5 (we checked divisibility by 3 and 5).
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2.4. Euclidean Algorithm

The Euclidean algorithm presents a method for determining the greatest common
divisor. It is one of the oldest known algorithms: its first description appeared in the work
of Euclid entitled "Elements" around three hundred years before our era. Its simplicity
and efficiency make it a widely known and commonly used algorithm to this day.

Algorithm 2.19. (Euclidean Algorithm)

Input: a, b ∈ Z, |b| < |a|.
Output: GCD(a, b).

1. We define the sequences r−1, r0, r1, . . . and q1, q2, . . . as follows:

(a) We set r−1 = a, r0 = b;

(b) If we have already determined the numbers r−1, r0, r1, . . . , rk−1, then rk and qk
are calculated from the equality (2.1, p. 38), that is:

rk−2 = qkrk−1 + rk, 0 ≤ rk < rk−1; (2.2)

(c) We continue determining the sequences r−1, r0, r1, . . . and q1, q2, . . . until we have
rn = 0 for some n ∈ N.

2. We return the result GCD(a, b) = rn−1.

Note that the quotients calculated during the application of the above algorithm do
not affect the value of the greatest common divisor. Therefore, in practice, we omit them,
determining only the remainders in subsequent steps and using the equality:

GCD(qb+ r, b) = GCD(b, r), q, b, r ∈ Z, 0 ≤ r < b. (2.3)

Example 2.20. Let a = 111, b = 48. To carry out the Euclidean algorithm, we propose
constructing a convenient table, which we present below. In the first row, we write the
equality (2.2) for r−1 = a = 111, r0 = b = 48, determining q1 = 2 and r1 = 15. In the
second row, for r0 = 48, r1 = 15, we determine q2 = 3 and r2 = 3. The remainder is
still non-zero, so we continue the algorithm: in the third row, for r1 = 15, r2 = 3, we
determine q3 = 5 and r3 = 0. Since the remainder r3 is equal to zero, we conclude the
algorithm by taking GCD(48, 111) = r2 = 3 as the last non-zero remainder.

k rk−2 = qk · rk−1 + rk
1 111 = 2 · 48 + 15
2 48 = 3 · 15 + 3
3 15 = 5 · 3 + 0

Using the formula (2.3), we can express the operation of the Euclidean algorithm as
a sequence of equalities:

GCD(111, 48) = GCD(48, 15) = GCD(15, 3) = GCD(3, 0) = 3.

Example 2.21. The presented method can be applied to three or more numbers. Suppose
we want to determine GCD(105, 147, 161). In successive steps, we write down the smallest
non-zero number and replace the other numbers with the remainders from dividing by it.
We continue this procedure until we have all remainders—except one—equal to zero:
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GCD(105, 147, 161) = GCD(105, 42, 56), because the remainder of dividing 147 by
105 is 42 and the remainder of dividing 161 by 105 is 56. We continue:

GCD(105, 42, 56) = GCD(42, 21, 14), because the remainder of dividing 105 by 42 is
21 and the remainder of dividing 56 by 42 is 14. Next:

GCD(42, 21, 14) = GCD(14, 0, 7), because the remainder of dividing 42 by 14 is 0 and
the remainder of dividing 21 by 14 is 7. We continue:

GCD(14, 0, 7) = GCD(7, 0, 0), because the remainder of dividing 14 by 7 is 0 and the
remainder of dividing 0 by 7 is also 0. We conclude the operation of the algorithm:

GCD(7, 0, 0) = 7.

Let us summarize the methods we have learned for determining the greatest common
divisor and least common multiple. To find the greatest common divisor, we have at our
disposal:

1. prime factorization (Example 2.17, p. 41), a method for two or more numbers,

2. the Euclidean algorithm (full notation, Example 2.20, p. 43), a method for exactly
two numbers,

3. the Euclidean algorithm (quick notation, Example 2.21, p. 43), a method for two or
more numbers.

To determine the least common multiple, we currently have prime factorization (Ex-
ample 2.17, p. 41) available—this is a method for two or more numbers. Note that in
subsection 2.3, we have property 3 (p. 42), which can be used to find the least com-
mon multiple of two numbers, provided that we know their greatest common divisor.
A relevant example is given below.

Example 2.22. Let a = 111, b = 48. Then based on Example 2.20 (p. 43), we have
GCD(111, 48) = 3, and using property 3 (p. 42), we obtain:

LCM(48, 111) =
48 · 111

GCD(48, 111)
=

5328

3
= 1776.

The same property can be used for a certain special type of problem, as described in
the following example.

Example 2.23. Let us determine the natural numbers a, b knowing that LCM(a, b) = 63
and GCD(a, b) = 3. Note that:

LCM(a, b) ·GCD(a, b) = a · b = x ·GCD(a, b)︸ ︷︷ ︸
a

· y ·GCD(a, b)︸ ︷︷ ︸
b

,

for such numbers x, y ∈ N that GCD(x, y) = 1. Substituting the known numerical values
gives us: 63 · 3 = x · 3 · y · 3, which simplifies to the equation x · y = 21. We are
therefore looking for all pairs of natural numbers satisfying the conditions x · y = 21 and
GCD(x, y) = 1:{

x = 1

y = 21
or

{
x = 3

y = 7
or

{
x = 7

y = 3
or

{
x = 21

y = 1.

From this, the possible values for numbers a and b are:{
a = 3

b = 63
or

{
a = 9

b = 21
or

{
a = 21

b = 9
or

{
a = 63

b = 3.
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Let us illustrate how properties 4 and 5 (p. 42) work with two simple examples.

Example 2.24. We would like to calculate GCD(161, 147, 105). According to prop-
erty 4 (p. 42), we can perform the calculations step by step. First, we can calculate
GCD(147, 105) = 21, and then we replace the numbers 147 and 105 in the initial ex-
pression with this result and find GCD(161, 21) = 7. The appropriate notation is as
follows:

GCD(161, 147, 105) = GCD(161, GCD(147, 105)) = GCD(161, 21) = 7.

Example 2.25. We would like to calculate LCM(161, 147, 105). According to prop-
erty 5 (p. 42), we can perform the calculations step by step. First, we can calculate
LCM(147, 105) = 735, and then we replace the numbers 147 and 105 in the expression
LCM(161, 147, 105) with the obtained result and determine LCM(161, 735) = 16905.
The appropriate notation is as follows:

LCM(161, 147, 105) = LCM(161, LCM(147, 105)) = LCM(161, 735) = 16905.

Many problems can be reduced to finding integer solutions to linear equations. In such
cases, the extended version of the Euclidean algorithm becomes useful, which we will
present at the end of this subsection. In addition to finding the greatest common divisor,
this algorithm also determines the numbers mentioned in the statement of the following
theorem.

Theorem 2.26. Let a, b ∈ Z. Then there exist integers x, y ∈ Z such that the equation
ax+ by = GCD(a, b) holds.

Algorithm 2.27. (Extended Euclidean Algorithm)

Input: a, b ∈ Z, |b| < |a|.
Output: GCD(a, b) and integers x, y ∈ Z such that ax+ by = GCD(a, b).

1. We perform the Euclidean algorithm 2.19 (p. 43), resulting in GCD(a, b) = rn−1.

2. We define the sequences u−1, u0, u1, . . . and v−1, v0, v1, . . . as follows:

(a) We set u−1 = 1, u0 = 0, v−1 = 0, v0 = 1;

(b) If we have obtained the numbers u−1, u0, u1, . . . , uk−1 and v−1, v0, v1, . . . , vk−1,
then uk and vk are calculated as follows:

uk = uk−2 − qk · uk−1, vk = vk−2 − qk · vk−1. (2.4)

3. We return: x = un−1, y = vn−1.

Example 2.28. Let a = 357, b = 161. First, we perform the Euclidean Algorithm 2.19
(p. 43), resulting in the table below and GCD(357, 161) = 7.

k rk−2 = qk · rk−1 + rk
1 357 = 2 · 161 + 35
2 161 = 4 · 35 + 21
3 35 = 1 · 21 + 14
4 21 = 1 · 14 + 7
5 14 = 2 · 7 + 0
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The second part of the extended Euclidean algorithm can also be carried out using a
convenient table, which we construct as follows:

1. In the first column, we write the index values i, starting from −1 and ending at
n− 1 = 4 (here n = 5, because the algorithm ended after five steps),

2. In the second column, we write the values of qk for k = 1, . . . , n− 1; these numbers
are taken from the first table,

3. In the third and fourth columns, we write the initial values of the elements u−1, u0,
v−1, v0, which are given in item 2a (p. 45) of the above algorithm,

4. In the third and fourth columns, we write the values of the elements uk and vk,
which we calculate using formulas (2.4, p. 45).

k qk uk vk
−1 × 1 0
0 × 0 1
1 2 1 −2
2 4 −4 9
3 1 5 −11
4 1 −9 20

u1 = u−1 − q1 · u0 = 1− 2 · 0 = 1
v1 = v−1 − q1 · v0 = 0− 2 · 1 = −2
u2 = u0 − q2 · u1 = 0− 4 · 1 = −4
v2 = v0 − q2 · v1 = 1− 4 · (−2) = 9
u3 = u1 − q3 · u2 = 1− 1 · (−4) = 5
v3 = v1 − q3 · v2 = −2− 1 · 9 = −11
u4 = u2 − q4 · u3 = −4− 1 · 5 = −9 = x
v4 = v2 − q4 · v3 = 9− 1 · (−11) = 20 = y

5. Finally, we check the correctness of the obtained result:

357 · (−9) + 161 · 20 = −3213 + 3220 = 7. ✓

2.5. Relatively Prime Numbers

At the end of this chapter, we will provide definitions of relatively prime numbers,
pairwise relatively prime numbers and Euler’s totient function.

Definition 2.29. Let a1, a2, . . . , ak ∈ Z \ {0}, k ∈ N. We say that the numbers
a1, a2, . . . , ak are relatively prime if GCD(a1, a2, . . . , ak) = 1.

Definition 2.30. Let a1, a2, . . . , ak ∈ Z \ {0}, k ∈ N. We say that the numbers
a1, a2, . . . , ak are pairwise relatively prime if GCD(ai, aj) = 1 for all such pairs
i, j ∈ {1, 2, . . . , k} for which i ̸= j.

Example 2.31. Let a = 75, b = 87, c = 121.

1. The given numbers are relatively prime because GCD(75, 87, 121) = 1.

2. To check whether the given numbers are pairwise relatively prime, we need to check
the greatest common divisor of each pair:

GCD(75, 87) = 3, GCD(75, 121) = 1, GCD(87, 121) = 1.

If the greatest common divisor of each pair were equal to 1, then these numbers
would be pairwise relatively prime. However, since GCD(75, 87) = 3, the given
numbers are not pairwise relatively prime.

Definition 2.32. The Euler’s totient function is defined as the function φ : N −→ N,
which assigns to each natural number the count of numbers that are relatively prime to
it and not greater than it.
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The value of Euler’s totient function for any natural number can be calculated using
its prime factorization, as stated in the following theorem.

Theorem 2.33. Let n = pα1
1 · pα2

2 · · · pαk

k , where k ∈ N, be the prime factorization of the
number n. Then

φ(n) = pα1−1
1 (p1 − 1) · pα2−1

2 (p2 − 1) · · · pαk−1
k (pk − 1). (2.5)

Example 2.34. Let n = 21 600. First, we find the prime factorization of the number:

21 600 = 25 · 33 · 52.

Next, using formula (2.5), we obtain:

φ(21 600) = φ(25 · 33 · 52) = 24(2− 1) · 32(3− 1) · 51(5− 1) = 5760.

This result means that there are 5760 numbers that are relatively prime to 21 600 and
not greater than 21 600.

From Theorem 2.33, we can draw the following conclusion.

Theorem 2.35. Euler’s totient function φ is multiplicative: for relatively prime numbers
m,n ∈ N we have

φ(m · n) = φ(m) · φ(n).

2.6. Exercises

Exercise 2.1. For the divisibility properties 1 – 5 (p. 38), choose numbers a, b,m ∈ Z
such that the antecedents of the implications are true. Then verify the truth of their
consequents.

Exercise 2.2. Determine the remainder r and the quotient q from dividing a by b, if:

a) a = 15, b = 7,

b) a = −15, b = 7,

c) a = 15, b = −7,

d) a = −15, b = −7,

e) a = 43, b = 13,

f) a = −43, b = 13,

g) a = 43, b = −13,

h) a = −43, b = −13,

i) a = 200, b = 35,

j) a = −200, b = 35,

k) a = 200, b = −35,

l) a = −200, b = −35.

Exercise 2.3. Using appropriate divisibility rules, justify that:

a) 2 | 64 536,

b) 3 | 176 895,

c) 4 | 234 968,

d) 5 | 547 855,

e) 6 | 39 504,

f) 7 | 3 948 861,

g) 8 | 417 472,

h) 9 | 856 512,

i) 10 | 145 820,

j) 11 | 2 801 557,

k) 12 | 7 049 076,

l) 13 | 763 646,

m) 14 | 733 096,

n) 15 | 852 630,

o) 18 | 1 541 214,

p) 21 | 1 180 914,

q) 22 | 1 440 516,

r) 24 | 1 353 336,

s) 26 | 6 128 148,

t) 30 | 137 010.

Exercise 2.4. Choose any eight-digit number x ∈ N. Using appropriate divisibility rules,
check whether the chosen number x is divisible by the numbers from 2 to 15.
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Exercise 2.5. Determine the canonical factorization of the following numbers:

a) 42 768,

b) −508 079,

c) 17 712,

d) 10 800,

e) −3 375,

f) 6 462 720,

g) 82 320,

h) −348 480.

Exercise 2.6. By factoring the given numbers, calculate their GCD:

a) 5, 292, 5, 544,

b) 9, 075, −32, 175,

c) 14, 175, 75, 600,

d) −3, 375, 4, 320, 82, 320,

e) 2, 520, −5, 184, 10, 584,

f) −3, 003, 5, 040, −14, 994,

g) 3, 024, 6, 048, 9, 072, 10, 584,

h) 3, 640, 4, 080, 4, 320, −5, 525.

Exercise 2.7. Using the prime factorizations of the numbers from Exercise 2.6, find their
LCM .

Exercise 2.8. Using the Euclidean algorithm (full notation), compute the GCD of the
given numbers:

a) 5, 8,

b) 87, −237,

c) 462, 1, 260,

d) −525, −2, 345,

e) 4, 370, 5, 720,

f) −6, 948, 178, 542.

Exercise 2.9. Using the Euclidean algorithm (quick notation), compute the GCD of the
numbers from Exercises 2.6 and 2.8.

Exercise 2.10. For the properties of GCD and LCM numbered 1 and 2 (p. 42), choose
such numbers d,m, a1, a2, a3, a4 ∈ Z that the antecedents of the implications are true.
Then verify the truth of their consequents.

Exercise 2.11. Using the appropriate formula (property 3, p. 42), calculate the LCM
of the numbers from Exercise 2.8.

Exercise 2.12. Using the appropriate formula (property 4, p. 42), calculate the GCD
of the given numbers:

a) 28, 42, 70,

b) 715, 990, 1001,

c) 3570, 4116, 5607,

d) 5928, 6396, 8385, 9685,

e) 8320, 9180, 11 250, 14 157,

f) 2197, 3780, 4352, 7128, 13 310.

Exercise 2.13. Using the appropriate formula (property 5, p. 42), calculate the LCM
of the numbers from Exercise 2.12 (Note: The resulting numbers may be very large, so it
is advisable to use prime factorizations).

Exercise 2.14. Knowing that LCM(a, b) = 99 and GCD(a, b) = 11, determine a, b ∈ N.

Exercise 2.15. Knowing that LCM(a, b) = 180 andGCD(a, b) = 45, determine a, b ∈ N.

Exercise 2.16. Knowing that LCM(a, b) = 210 and GCD(a, b) = 3, determine a, b ∈ N.
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Exercise 2.17. Knowing that LCM(a, b) = 3120 and GCD(a, b) = 13, determine
a, b ∈ N.

Exercise 2.18. Knowing that LCM(a, b) = 1980 and GCD(a, b) = 11, determine
a, b ∈ N.

Exercise 2.19. Using the extended Euclidean algorithm, compute GCD(a, b) and such
integers x, y ∈ Z that ax+ by = GCD(a, b), if:

a) a = 61, b = 7,

b) a = −84, b = 15,

c) a = 123, b = 93,

d) a = 241, b = −79,

e) a = 377, b = 123,

f) a = −533, b = −187,

g) a = 777, b = 555,

h) a = −1140, b = 570,

i) a = 76 501, b = 29 719.

Exercise 2.20. Check whether the following numbers are relatively prime and whether
they are pairwise relatively prime:

a) 24, 33, 44,

b) 150, 169, 325,

c) 196, 225, 289,

d) 256, 729, 3125,

e) 1918, 4080, 5125, 6375,

f) 4913, 5733, 6859, 14 641.

Exercise 2.21. Determine the value of Euler’s function φ for the numbers from Exer-
cise 2.5. (Note: If a given number is negative, consider its opposite number.)

2.7. Answers

Answer 2.1. —

Answer 2.2.

a) q = 2, r = 1,

b) q = −3, r = 6,

c) q = −2, r = 1,

d) q = 3, r = 6,

e) q = 3, r = 4,

f) q = −4, r = 9,

g) q = −3, r = 4,

h) q = 4, r = 9,

i) q = 5, r = 25,

j) q = −6, r = 10,

k) q = −5, r = 25,

l) q = 6, r = 10.

Answer 2.3.

a) 2 | 64 536, because the last digit of 64 536 is 6, which is even.

b) 3 | 176 895, because 1 + 7 + 6 + 8 + 9 + 5 = 36 and 3 | 36.

c) 4 | 234 968, because the last two digits of 234 968 are 68, which is divisible by 4.

d) 5 | 547 855, because the last digit of 547 855 is 5.

e) 6 | 39 504, because the last digit of 39 504 is 4, which is even, and
3 + 9 + 5 + 0 + 4 = 21 and 3 | 21.

f) 7 | 3 948 861, because 3− 948 + 861 = −84 and 7 | 84.
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g) 8 | 417 472, because the last three digits of 417 472 are 472, which is divisible by 8.

h) 9 | 856 512, because 8 + 5 + 6 + 5 + 1 + 2 = 27 and 9 | 27.

i) 10 | 145 820, because the last digit of 145820 is 0.

j) 11 | 2 801 557, because 2− 8 + 0− 1 + 5− 5 + 7 = 0 and 11 | 0.

k) 12 | 7 049 076, because 7+0+4+9+0+7+6 = 33 and 3 | 33, and the last two digits
of 7049076 are divisible by 4.

l) 13 | 763 646, because 763− 646 = 117 and 13 | 117.

m) 14 | 733 096, because the last digit of 733 096 is 6, which is even, and
733− 096 = 637 and 7 | 637.

n) 15 | 852 630, because 8+ 5+2+6+3+0 = 24 and 3 | 24, and the last digit of 852630
is 0.

o) 18 | 1 541 214, because the last digit of 1 541 214 is 4, which is even, and
1 + 5 + 4 + 1 + 2 + 1 + 4 = 18 and 9 | 18.

p) 21 | 1 180 914, because 1 + 1 + 8 + 0 + 9 + 1 + 4 = 24 and 3 | 24, and
1− 180 + 914 = 735 and 7 | 735.

q) 22 | 1 440 516, because the last digit of 1 440 516 is 6, which is even, and
1− 4 + 4− 0 + 5− 1 + 6 = 11 and 11 | 11.

r) 24 | 1 353 336, because 1+ 3+5+3+3+3+6 = 24 and it follows that 3 | 24, and the
last three digits of 1, 353, 336 are 336, which is divisible by 8.

s) 26 | 6, 128, 148, since the last digit 8 is even, and also
6− 128 + 148 = 26, thus 13 | 26.

t) 30 | 137, 010, since 1 + 3 + 7 + 0 + 1 + 0 = 12, hence 3 | 12, while the last digit is 0.

Answer 2.4. —

Answer 2.5.

a) 24 · 35 · 11,

b) −112 · 13 · 17 · 19,

c) 24 · 33 · 41,

d) 24 · 33 · 52,

e) −33 · 53,

f) 28 · 33 · 5 · 11 · 17,

g) 24 · 3 · 5 · 73,

h) −26 · 32 · 5 · 112.

Answer 2.6.

a) 252,

b) 825,

c) 4725,

d) 15,

e) 72,

f) 21,

g) 1512,

h) 5.

Answer 2.7.

a) 116 424,

b) 353 925,

c) 226 800,

d) 37 044 000,

e) 1 270 080,

f) 85 765 680,

g) 127 008,

h) 33 415 200.
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Answer 2.8.

a) 1, b) 3, c) 42, d) 35, e) 10, f) 18.

Answer 2.9. Results as in Answers 2.6 and 2.8.

Answer 2.10. —

Answer 2.11.

a) 40,

b) 6873,

c) 13 860,

d) 35 175,

e) 2 499 640,

f) 68 917 212.

Answer 2.12.

a) 14, b) 11, c) 21, d) 13, e) 1, f) 1.

Answer 2.13.

a) 420,

b) 90 090,

c) 93 412 620 = 22 · 32 · 5 · 73 · 17 · 89,

d) 7 786 042 680 = 23 · 3 · 5 · 13 · 19 · 41 · 43 · 149,

e) 57 760 560 000 = 27 · 33 · 54 · 112 · 13 · 17,

f) 36 078 632 029 440 = 28 · 34 · 5 · 7 · 113 · 133 · 17.

Answer 2.14.{
a = 11

b = 99
or

{
a = 99

b = 11

Answer 2.15.{
a = 45

b = 180
or

{
a = 180

b = 45

Answer 2.16.{
a = 3

b = 210
or

{
a = 210

b = 3
or

{
a = 6

b = 105
or

{
a = 105

b = 6
or

{
a = 15

b = 42
or

{
a = 42

b = 15
or

{
a = 21

b = 30
or

{
a = 30

b = 21
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Answer 2.17.{
a = 13

b = 3120
or

{
a = 3120

b = 13
or

{
a = 208

b = 195
or

{
a = 195

b = 208
or

{
a = 39

b = 1040
or

{
a = 1040

b = 39
or

{
a = 65

b = 624
or

{
a = 624

b = 65

Answer 2.18.{
a = 11

b = 1980
or

{
a = 1980

b = 11
or

{
a = 44

b = 495
or

{
a = 495

b = 44
or

{
a = 55

b = 396
or

{
a = 396

b = 55
or

{
a = 99

b = 220
or

{
a = 220

b = 99

Answer 2.19.

a) GCD(a, b) = 1,
x = 3, y = −26,

b) GCD(a, b) = 3,
x = −2, y = −11,

c) GCD(a, b) = 3,
x = −3, y = 4,

d) GCD(a, b) = 1,
x = 20, y = 61,

e) GCD(a, b) = 1,
x = −46, y = 141,

f) GCD(a, b) = 1,
x = −20, y = 57,

g) GCD(a, b) = 111,
x = −2, y = 3,

h) GCD(a, b) = 570,
x = 0, y = 1,

i) GCD(a, b) = 113,
x = 54, y = −139.

Answer 2.20.

a) Relatively prime: Y,
Pairwise rel. prime: N,

b) Relatively prime: Y,
Pairwise rel. prime: N,

c) Relatively prime: Y,
Pairwise rel. prime: Y,

d) Relatively prime: Y,
Pairwise rel. prime: Y,

e) Relatively prime: Y,
Pairwise rel. prime: N,

f) Relatively prime: Y,
Pairwise rel. prime: Y.

Answer 2.21.

a) 12 960,

b) 380 160,

c) 5 760,

d) 2 880,

e) 1 800,

f) 1 474 560,

g) 18 816,

h) 84 480.



Chapter 3

Elements of Combinatorics

In this chapter, we will present selected combinatorial concepts used for counting el-
ements of finite sets. To this end, we will first introduce the definition of factorial and
the binomial coefficient, and show their relationship with Pascal’s triangle and Newton’s
binomial theorem. Next, we will discuss the concepts of variations, permutations, combi-
nations, as well as the multiplication and addition principles. These concepts are typically
covered in secondary school; however, they require thorough review, which is why they
are illustrated with a large number of exercises. Finally, we will present the principle of
inclusion-exclusion and Dirichlet’s box principle.

3.1. Factorial and Binomial Coefficient

We will start by recalling two fundamental concepts related to combinatorics, specifi-
cally factorial and the binomial coefficient. In the second part of the subsection, we will
show their relationship with Pascal’s triangle and Newton’s binomial theorem.

The factorial of a natural number n is the product of all natural numbers not greater
than n:

n! = 1 · 2 · · ·n.

Remark 3.1. During calculations, we may encounter the expression 0!. In such cases,
we accept that 0! = 1.

Example 3.2.

5! = 1 · 2 · 3 · 4 · 5 = 120,

8! = 1 · 2 · 3 · 4 · 5 · 6 · 7 · 8 = 40 320,

10! = 1 ·2 ·3 ·4 ·5 ·6 ·7 ·8 ·9 ·10 = 3 628 800,

20! = 2 432 902 008 176 640 000.

As a fun fact, we can mention the (only) four numbers for which the sum of the
factorials of their digits equals the numbers themselves:

1! = 1, 2! = 2, 1! + 4! + 5! = 145, 4! + 0! + 5! + 8! + 5! = 40585.

53
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The Newton Symbol is a function of two arguments defined by the formula:(
n

k

)
=

n!

k!(n− k)!
,

where n, k ∈ N0 and k ≤ n. For k > n, we define
(
n
k

)
= 0. The above symbol is read as

“n choose k ”.

Example 3.3. When calculating the value of the Newton symbol, it is important to
remember the possibility of canceling the numerator with the denominator to avoid dealing
with excessively large numbers:

1.
(
5

3

)
=

5!

3!(5− 3)!
=

5!

3! · 2!
=

3! · 4 · 5
3! · 2!

=
4 · 5
2

=
2 · 5
1

= 2 · 5 = 10,

2.
(
6

4

)
=

6!

4!(6− 4)!
=

6!

4! · 2!
=

4! · 5 · 6
4! · 2!

=
5 · 6
2

=
5 · 3
1

= 5 · 3 = 15,

3.
(
20

15

)
=

10!

15!(20− 15)!
=

20!

15! · 5!
=

15! · 16 · 17 · 18 · 19 · 20
15! · 5!

=

=
16 · 17 · 18 · 19 · 20

2 · 3 · 4 · 5
=

16 · 17 · 3 · 19
1

= 15 504.

Taking into account Remark 3.1 (p. 53), we can easily justify the following properties:

1.
(
n

0

)
=

n!

0!(n− 0)!
=

n!

1 · n!
= 1,

2.
(
n

n

)
=

n!

n!(n− n)!
=

n!

n! · 0!
=

n!

n! · 1
= 1,

3.
(
n

1

)
=

n!

1!(n− 1)!
=

(n− 1)! · n
(n− 1)!

= n,

4.
(
n

k

)
=

n!

k!(n− k)!
=

n!

(n− k)!k!
=

n!

(n− k)!(n− (n− k))!
=

(
n

n− k

)
,

5.
(

n

n− 1

)
=

(
n

1

)
= n.

The Newton symbol is related to Pascal’s triangle, a fragment of which is presented
below:

0 1
1 1 1
2 1 2 1
3 1 3 3 1
4 1 4 6 4 1
5 1 5 10 10 5 1
6 1 6 15 20 15 6 1
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Pascal’s triangle is an infinite triangular array of numbers, where the element in
row n at position k is equal to

(
n
k

)
, with both rows and elements in the rows numbered

starting from 0. Note that the sides of the triangle contain only the number 1, while each
number inside it is the sum of the two numbers on either side of it in the row immediately
above it. This observation is illustrated by the formula:(

n

k

)
=

(
n− 1

k − 1

)
+

(
n− 1

k

)
, 0 < k < n.

Example 3.4. Let us compare the following examples with Example 3.3 (p. 54):

1. The element in row 5 at position 3 is equal to
(
5

3

)
= 10.

2. The element in row 6 at position 4 is equal to
(
6

4

)
= 15.

At the end of this subsection, we will present the Newton binomial, which is a for-
mula describing the terms of the expansion of powers of the sum of two numbers, valid
for any a, b ∈ R and n ∈ N:

(a+ b)n =

n∑
k=0

(
n

k

)
an−kbk =

=

(
n

0

)
an−0b0 +

(
n

1

)
an−1b1 +

(
n

2

)
an−2b2 + · · ·+

+

(
n

n− 1

)
an−(n−1)bn−1 +

(
n

n

)
an−nbn =

= an + nan−1b+

(
n

2

)
an−2b2 + · · ·+ nabn−1 + bn.

Example 3.5. Using the above formula, we can expand the following expressions:

1. (a+ b)2 =

(
2

0

)
a2−0b0 +

(
2

1

)
a2−1b1 +

(
2

2

)
a2−2b2 = a2 + 2ab+ b2.

2. (a+ b)3 =

(
3

0

)
a3−0b0 +

(
3

1

)
a3−1b1 +

(
3

2

)
a3−2b2 +

(
3

3

)
a3−3b3 =

= a3 + 3a2b+ 3ab2 + b3.

3. (a+ b)4 =

(
4

0

)
a4−0b0 +

(
4

1

)
a4−1b1 +

(
4

2

)
a4−2b2 +

(
4

3

)
a4−3b3 +

(
4

4

)
a4−4b4 =

= a4 + 4a3b+ 6a2b2 + 4ab3 + b4.

Note that the coefficients appearing in the above expressions are consecutive elements of
Pascal’s triangle (p. 54) corresponding to rows 2, 3, and 4.
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3.2. Variations, Permutations, and Combinations

In this subsection, we will sequentially discuss the basic concepts used for counting
the elements of finite sets: variations, permutations, and combinations. Each of these
concepts occurs in two variants: without repetition and with repetition. In the examples
considered, the answers may be large numbers, so it is not necessary to provide final
results as specific numbers; appropriate expressions will suffice.

Definition 3.6. A k-element variation without repetition of an n-element set A,
where k ≤ n, is defined as any k-term sequence of distinct elements, where the terms are
elements of the set A.

The number of all distinct k-element variations without repetition of an n-element
set, where n, k ∈ N and k ≤ n, is equal to

V k
n =

n!

(n− k)!
. (3.1)

Example 3.7. Grandma has 5 grandchildren and bought 8 different chocolates in the
store. In how many ways can Grandma give sweets to the children if each child is to
receive exactly 1 chocolate?

Since Grandma is distributing chocolates, the set of chocolates will beA = {c1, . . . , c8}.
If we establish a certain order for the children (e.g., from the youngest to the oldest), an
example of how Grandma might give chocolates to her grandchildren could be as follows:
the first child receives chocolate c3, the second receives chocolate c1, the third receives
chocolate c8, and the fourth and fifth are given chocolates c5 and c7, respectively. This
distribution can be concisely represented as a sequence: (c3, c1, c8, c5, c7) – it is a 5-term
sequence of distinct elements, whose terms are elements of the set A. Therefore, we have
n = 8 and k = 5. According to the formula (3.1), the number of such variations without
repetition is

V 5
8 =

8!

(8− 5)!
=

8!

3!
= 4 · 5 · 6 · 7 · 8 = 6 720.

We can arrive at the same result through the following elementary reasoning: when choos-
ing a chocolate for the first grandchild, Grandma can choose from 8 different chocolates;
for the second child, her choice decreases to 7 options, for the next two grandchildren she
can choose chocolates in 6 and 5 ways respectively, and the last grandchild can receive
one of the remaining 4 chocolates. By multiplying the number of possible choices at each
step, we obtain the total number of variations

8 · 7 · 6 · 5 · 4 = 6 720.

Definition 3.8. A k-element variation with repetition of an n-element set A is defined
as any k-term sequence whose terms are elements of the set A.

The number of all distinct k-element variations with repetition of an n-element set is
given by

V
k

n = nk, where n, k ∈ N. (3.2)
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Example 3.9. Alicja has a test consisting of 9 questions to solve. For each question, she
can select one of 3 answers (a, b, or c), or she can leave the question unanswered (un).
In how many ways can Alicja complete the test?

For each question, the set of possible choices for Alicja is the same: it will be our set
A = {a, b, c, un}. For example, suppose Alicja answered questions 3, 5, and 8 with
a, answered questions 1 and 7 with b, answered questions 4 and 9 with c, and left
questions 2 and 6 unanswered. This completed test can be described by the variation:
(b, un, a, c, a, un, b, a, c) – a 9-term sequence whose terms are elements of the set A. Thus,
we have n = 4 and k = 9, and the number of such variations with repetition, according
to the formula (3.2, p. 56), is given by

V
9

4 = 49 = 262 144.

Another way to solve this problem is to notice that for each of the nine questions, there
are 4 ways to provide an answer, and then to multiply the number of possibilities for each
question:

4 · 4 · 4 · 4 · 4 · 4 · 4 · 4 · 4 = 49 = 262 144.

Definition 3.10. A permutation without repetition of an n-element set A is defined
as any n-term sequence formed from all the elements of that set, meaning any arrangement
of its elements.

The number of all distinct permutations without repetition of an n-element set is
given by

Pn = n!, where n ∈ N. (3.3)

Example 3.11. An art exhibition is being prepared in the gallery. On a certain wall,
8 selected paintings by Picasso need to be hung in a row. In how many ways can this be
done?

In this problem, the set A is the set of paintings: A = {o1, o2, . . . , o8}. By hanging
the paintings in order from left to right: o5, o8, o2, o7, o1, o6, o3, o4, we obtain an example
of a permutation without repetition: (o5, o8, o2, o7, o1, o6, o3, o4) — an 8-term sequence
whose terms are all the elements of the set A. Since we have n = 8, the number of
permutations without repetition is given by the formula (3.3):

P8 = 8! = 40 320.

We can also look at this problem in a slightly different way. It is enough to notice that
for the first position on the wall we can choose any of the 8 paintings; then for the second
position we can choose one of the remaining 7 paintings; for the third position we can
place one of the 6 paintings not yet chosen; . . . ; for the second to last position we can
choose one of two paintings; and for the last position we hang the final painting. By
multiplying the possibilities at each step we obtain the total number of permutations:

8 · 7 · 6 · 5 · 4 · 3 · 2 · 1 = 8! = 40 320.
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Definition 3.12. A n-element permutation with repetitions of a k-element set
A = {a1, a2, . . . , ak}, in which element a1 appears n1 times, element a2 appears n2 times,
. . . , element ak appears nk times, where n1 + n2 + · · ·+ nk = n, is defined as any n-term
sequence in which element ai appears ni times for i ∈ {1, . . . , k}.

The numbers ni appearing in the above definition are called the multiplicities of
the elements ai in the permutation with repetitions. The number of all distinct n-
element permutations with repetitions having multiplicities n1, n2, . . . , nk ∈ N, such that
n1 + n2 + · · ·+ nk = n, is given by

Pn1,n2,...,nk
n =

n!

n1! · n2! · · ·nk!
. (3.4)

Example 3.13. In how many ways can 4 orange juices (o), 5 apple juices (a), 3 pineapple
juices (p), and 6 grapefruit juices (g) be arranged in a row on a shelf, assuming that juices
of the same flavor are indistinguishable?

A sample arrangement of the juices could be as follows: the orange juice is in positions
(counting from the left) 7, 8, 13, and 15; the apple juice is in positions 1, 5, 9, 14,
and 17; the pineapple juice is in positions 2, 4, and 10; while the grapefruit juice is in
positions 3, 6, 11, 12, 16, and 18. We can represent this arrangement as a sequence
(a, p, g, p, a, g, o, o, a, p, g, g, o, a, o, g, a, g), whose elements are from the set A = {o, a, p, g}
of juice types. This sequence has 18 elements, and the elements o, a, p, and g appear in
this sequence 4, 5, 3, and 6 times respectively. The number of such permutations with
repetitions is given by the formula (3.4):

P 4,5,3,6
18 =

18!

4! · 5! · 3! · 6!
= 514 594 080.

Definition 3.14. A k-element combination without repetition of an n-element set A,
where k ≤ n, is defined as any k-element subset of that set.

The number of all distinct k-element combinations without repetition of an n-element
set is given by

Ck
n =

(
n

k

)
=

n!

k!(n− k)!
, where k ≤ n, n, k ∈ N. (3.5)

Example 3.15. At a party, there were 14 acquaintances. How many handshakes occurred
if each person greeted every other person?

Let us denote the set of acquaintances as A = {z1, z2, . . . , z14}. Each handshake
involves a pair of acquaintances: for example, if persons z6 and z11 shook hands, we have
a two-element combination without repetition of the form {z6, z11}. Thus, we have n = 14
and k = 2, and therefore the formula (3.5) tells us that the number of such combinations
without repetition is given by

C2
14 =

(
14

2

)
=

14!

2!(14− 2)!
=

14!

2! · 12!
=

13 · 14
2

= 91.
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Before the next definition, we will informally introduce the concept of a multiset,
which can be regarded as a generalization of the concept of a set. In multisets, as in
sequences, elements can occur more than once, and two multisets are considered equal if
the multiplicities of the same elements are equal. However, unlike sequences, and similarly
to sets, the order in which we list the elements of a multiset is not important. For example,
the multisets {a, a, b, c} and {b, a, c, a} are considered identical because they contain the
same elements with the same multiplicities, while the multiset {a, b, c} will be different
from them because the multiplicity of element a in this set is different.

Definition 3.16. A k-element combination with repetitions of an n-element set
A = {a1, a2, . . . , an} is defined as any sequence (k1, k2, . . . , kn) such that k1 + · · ·+ kn = k,
where ki ∈ N0 for i ∈ {1, . . . , n}.

The combination with repetitions defined above can be interpreted as a multiset con-
taining k elements, in which element ai appears with multiplicity ki, for i ∈ {1, . . . , n}.
The number of all distinct k-element combinations with repetitions of an n-element set
is given by

C
k

n =

(
n+ k − 1

n− 1

)
=

(
n+ k − 1

k

)
, where n, k ∈ N. (3.6)

Example 3.17. How many different sets containing 7 balloons can be formed, having an
unlimited number of red (r), green (g), and blue (b) balloons? We assume that balloons
of the same color are indistinguishable.

Let us denote the set of balloon colors as A = {r, g, b}. An example of a set may
contain 2 red balloons, 3 green balloons, and 2 blue balloons, which gives us a 7-element
combination with repetitions of the set of balloon colors in the form (2, 3, 2), meaning a
3-term sequence where 2+3+2 = 7. Another example could be the combination (4, 0, 3),
which is a 3-term sequence where 4 + 0 + 3 = 7, interpreted as a set where there are 4
red balloons, 3 blue balloons, and no green balloons.

In this problem, we have k = 7 and n = 3, so the formula (3.6) tells us that the
number of such combinations with repetitions is given by

C
7

3 =

(
3 + 7− 1

3− 1

)
=

(
9

2

)
=

9!

2!(9− 2)!
=

9!

2! · 7!
=

8 · 9
2

= 36.

3.3. The Multiplication and Addition Principles

In this subsection, we will discuss two additional tools for counting the elements of
finite sets: the multiplication principle and the addition principle. Recall that we defined
the concept of a Cartesian product in subsection 1.3 (Definition 1.19, p. 16).

Theorem 3.18. (Multiplication Principle) If A1, A2, . . . , An are finite sets, then

|A1 ×A2 × · · · ×An| = |A1| · |A2| · . . . · |An|. (3.7)

Example 3.19. If A1 = {1, 2, 3}, A2 = {a, b}, A3 = {2, 3, b, c}, then

|A1 ×A2 ×A3| = |A1| · |A2| · |A3| = 3 · 2 · 4 = 24.
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Example 3.20. Emil decided to have lunch at the bar consisting of soup, a main course,
a salad, and a dessert. In how many ways can Emil compose his meal if he has 2 different
soups, 10 different main courses, 7 different salads, and 3 different desserts to choose
from?

In this problem, the set A1 is the set of soups, A2 is the set of main courses, A3 is
the set of salads, and A4 is the set of desserts, with n = 4. We denote the set of soups
as A1 = {s1, s2}, the set of main courses as A2 = {m1,m2, . . . ,m10}, the set of salads as
A3 = {l1, l2, . . . , l7}, and the set of desserts as A4 = {d1, d2, d3}. An example of Emil’s
lunch can be described as (s2,m5, l4, d3), which means Emil chose soup number 2, main
course number 5, salad number 4, and dessert number 3. Using the formula (3.7, p. 59),
we can calculate the total number of different possible lunches for Emil:

|A1 ×A2 ×A3 ×A4| = |A1| · |A2| · |A3| · |A4| = 2 · 10 · 7 · 3 = 420.

Theorem 3.21. (Addition Principle) If A1, A2, . . . , An are finite pairwise disjoint sets,
meaning Ai ∩Aj = ∅ for i ̸= j, then

|A1 ∪A2 ∪ · · · ∪An| = |A1|+ |A2|+ · · ·+ |An|. (3.8)

Example 3.22. For the sets A1 = {1, 2, 3}, A2 = {5, 7}, and A3 = {4, 9}, we have
A1∩A2 = A1∩A3 = A2∩A3 = ∅, so we can apply the addition principle, which gives us

|A1 ∪A2 ∪A3| = |A1|+ |A2|+ |A3| = 3 + 2 + 2 = 7.

Example 3.23. How many committees consisting of 4 people can be formed from a group
of 9, if two people in this group, Agnieszka and Bogdan, do not want to be in the same
committee?

Let us note that each committee is a subset of the given group of people. Therefore, the
number of all four-person committees is equal to the number of 4-element combinations
without repetition from a 9-element set, which is represented as

(
9
4

)
(Definition 3.14 and

formula (3.5), p. 58). However, we are interested in the number of committees that meet
an additional condition: Agnieszka and Bogdan cannot be selected together. We can
distinguish three subsets among the committees that satisfy this condition:

• A1 — the set of committees that include Agnieszka but do not include Bogdan,

• A2 — the set of committees that include Bogdan but do not include Agnieszka,

• A3 — the set of committees that include neither Agnieszka nor Bogdan.

These sets are pairwise disjoint because they refer to mutually exclusive situations. Let
us observe that:

|A1| =
(
7
3

)
, because we choose 3 people (Agnieszka is already included in the considered

committees) from 7 people (excluding both Agnieszka and Bogdan),

|A2| =
(
7
3

)
, because we choose 3 people (Bogdan is already included in the considered

committees) from 7 people (excluding both Agnieszka and Bogdan),

|A3| =
(
7
4

)
, because we choose 4 out of 7 people for each committee (excluding both

Agnieszka and Bogdan).

Thus, applying formula (3.8), the total number of possible 4-person committees se-
lected from a group of 9 people, to which neither of the two specified individuals belongs
simultaneously, is given by

|A1 ∪A2 ∪A3| = |A1|+ |A2|+ |A3| =
(
7

3

)
+

(
7

3

)
+

(
7

4

)
= 105.
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3.4. Various Problems

When solving combinatorial problems, one can encounter many situations that do not
fit neatly into the schemes presented in subsections 3.2 and 3.3. Usually, solving such
problems requires some experience (hence the many exercises in subsection 3.6) and skill
in selecting the appropriate tools. In this subsection, we will present several practical
tips through examples that may help in solving combinatorial problems, which are not
necessarily standard.

To begin with, let us emphasize that a fundamental issue is a proper understanding
of the problem, as often the solution does not require any calculations, and the answer is
immediate!

Example 3.24. In how many different ways can 6 different greeting cards be placed into
10 identical envelopes? We can put at most 1 card into each envelope, and some envelopes
may remain empty.

Since all envelopes are identical, every arrangement of cards in envelopes will be
indistinguishable from others, so the answer is: there is only 1 way.

Example 3.25. In how many ways can 9 identical pictures be placed into 8 identical
frames? Each frame can contain at most 1 picture, and no picture can be left without
a frame.

Since there are more pictures than frames, it is impossible to arrange the pictures in
the frames such that each frame contains at most 1 picture. Therefore, the answer is:
0 ways.

In the next two examples, we will analyze four situations where order plays an impor-
tant role.

Example 3.26. In a class, there are 27 students: 15 girls and 12 boys. For St. Nicholas
Day, the class organized a lottery with 27 tickets, among which there are exactly 5 winning
tickets. In how many ways can we choose 3 girls and 2 boys who won prizes if:

a) the prizes are identical?

Let A1 be the family of 3-element subsets of the set consisting of 15 girls, and let
A2 be the family of 2-element subsets chosen from the set of 12 boys. The elements
of sets A1 and A2 are combinations without repetition, so we have |A1| =

(
15
3

)
and

|A2| =
(
12
2

)
(Definition 3.14 and formula (3.5), p. 58). To obtain the final answer, note

that any group of five students receiving prizes can be obtained by combining any trio
of girls from set A1 with any pair of boys from set A2. Therefore, we are dealing with
a case of the multiplication principle (Theorem 3.18, p. 59), which means that the
final answer is: |A1 ×A2| = |A1| · |A2| =

(
15
3

)
·
(
12
2

)
.

b) the prizes are distinct?

According to the previous point, we can choose the group of five children who will
receive prizes in

(
15
3

)
·
(
12
2

)
ways. Assuming that the prizes are numbered from 1 to 5,

the order among the children with winning tickets must also be established, such that
the first student receives the first prize, the second wins prize number 2, and so on.
Arranging a set is a permutation without repetition (Definition 3.10 and formula (3.3),
p. 57), and thus we can do this in 5! ways. Therefore, we obtain the final answer:(
15
3

)
·
(
12
2

)
· 5!.
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Example 3.27. The class consists of 20 students. The teacher decided to organize the
work into 5 groups of 4 students each. In how many ways can the division be made if:

a) the groups are numbered from 1 to 5?

In this problem, we are dealing with determining 5 combinations without repetition
(Definition 3.14 and formula (3.5), p. 58) as successive groups. Group number 1 can
be chosen in

(
20
4

)
ways, group number 2 can be chosen in

(
16
4

)
ways, group number

3 can be chosen in
(
12
4

)
ways, group number 4 can be chosen in

(
8
4

)
ways, and group

number 5 can be chosen in
(
4
4

)
ways. Therefore, the answer is

(
20
4

)
·
(
16
4

)
·
(
12
4

)
·
(
8
4

)
·
(
4
4

)
.

b) the groups are not numbered?

According to the above, the number of numbered groups is
(
20
4

)
·
(
16
4

)
·
(
12
4

)
·
(
8
4

)
·
(
4
4

)
.

Note that for each division of the class into 5 unnumbered groups of 4 students, we
can assign numbers to these groups, that is, we can order the groups in exactly 5!
ways (permutation without repetition, Definition 3.10 and formula 3.3, p. 57). Thus,
after removing the numbering, these 5! ways give us the same division of the class into
unnumbered groups. Therefore, the answer is

(
20
4

)
·
(
16
4

)
·
(
12
4

)
·
(
8
4

)
·
(
4
4

)
/5!.

Let us compare this example with Example 3.26 (p. 61). In subsection 3.26a, we
select two subsets: a subset of 3 girls and a subset of 2 boys, but these are subsets from
two different sets – the set of 15 girls and the set of 12 boys. In subsection 3.27a, we
select successive 4-member groups, but these are subsets of the same set of 20 students
in the class; therefore, in subsequent steps, when selecting members for groups 2, 3, 4,
and 5, the number of students from which we choose decreases. In such tasks, it is always
important to pay special attention to the sets from which we are selecting subsets.

Note that in this example alternative solutions are possible. Thus, in subsection a),
we can recognize a permutation with repetitions: each of the n = 20 students is assigned
to one of k = 5 groups, with the requirement that each group number appears 4 times:
n1 = n2 = n3 = n4 = n5 = 4, which gives us the result (Definition 3.12, formula 3.4,
p. 58): 20!/(4!4!4!4!4!). For subsection b), we can carry out the following construction.
The first student must belong to some group. From among the remaining 19 students,
we choose 3 additional members for that group in

(
19
3

)
ways. The first of the remaining

students belongs to another group, and from among the 15 students not yet considered,
we choose 3 members in

(
15
3

)
ways. Continuing this process for subsequent groups, we

have
(
11
3

)
,
(
7
3

)
, and

(
3
3

)
= 1 ways to choose. Ultimately, we can make divisions into

unnumbered groups in
(
19
3

)
·
(
15
3

)
·
(
11
3

)
·
(
7
3

)
ways. We encourage readers to verify (in any

way) that these results are equal to those obtained earlier.

The next four examples illustrate how important the order of drawing and whether
the drawn objects are distinguishable are.

Example 3.28. In a box, there are 9 white balls and 7 black balls. In how many ways
can we draw 6 balls from this box without replacement, among which there will be 2 white
balls and 4 black balls? We assume that balls of the same color are indistinguishable,
and the order of drawing is important.

In this problem, we are dealing with a case of permutations with repetitions (Definition
3.12 and formula (3.4), p. 58). The set A = {b, c} is the set of colors, k = 2, n = 6,
n1 = 2, n2 = 4. Note that the numbers 9 and 7 do not affect the answer here because we
are drawing 2 white balls from 9 identical ones and 4 black balls from 7 identical ones.
Therefore, the answer is 6!

2!·4! .
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Example 3.29. In a box, there are 9 white balls and 7 black balls. In how many ways
can we draw 6 balls from this box without replacement, among which there will be 2 white
balls and 4 black balls? We assume that balls of the same color are indistinguishable,
and the order of drawing is not important.

We want to choose 2 white balls from the 9 available. Since the balls are indistin-
guishable, there is only 1 way to do this. Similarly, for the black balls, since they are
indistinguishable, there is only 1 way to choose 4 balls from the 7 available. Since the
order of drawing is also not important, there is only 1 way to draw such a set of balls.

Example 3.30. In a box, there are 9 white balls and 7 black balls. In how many ways
can we draw 6 balls from this box without replacement, among which there will be 2 white
balls and 4 black balls? We assume that balls of the same color are distinguishable,
and the order of drawing is not important.

This task is analogous to Example 3.26a (p. 61), so the answer is
(
9
2

)
·
(
7
4

)
.

Example 3.31. In a box, there are 9 white balls and 7 black balls. In how many ways
can we draw 6 balls from this box without replacement, among which there will be 2 white
balls and 4 black balls? We assume that balls of the same color are distinguishable,
and the order of drawing is important.

This task is analogous to Example 3.26b (p. 61), so the answer is
(
9
2

)
·
(
7
4

)
· 6!.

At the end of this subsection, we will show through examples that in some problems
it is worthwhile to first consider the opposite condition to that described in the problem.

Example 3.32. In a certain group of 10 people, there are Cezary and Daria. How many
ways can these people be arranged in a line so that Cezary and Daria do not stand next
to each other?

The arrangement of the set is a permutation without repetition (Definition 3.10 and
formula (3.3), p. 57), so the number of ways to arrange 10 people in a line is 10!. Let’s
consider how many possible situations exist where Cezary and Daria stand next to each
other. We can assume that Cezary and Daria are holding hands, and we permute this pair
with the remaining 8 people, which gives us 9! possibilities. Additionally, we can arrange
Cezary and Daria within their pair in 2 ways. Therefore, there are 2 · 9! possibilities to
arrange the 10 people in a line such that Cezary and Daria are next to each other. If
we are interested in the opposite situation, where Cezary and Daria do not stand next to
each other, we simply subtract the obtained result from all possible arrangements of the
entire group in a line, which is (10!− 2 · 9!.

Example 3.33. We roll three six-sided dice: yellow, red, and green. How many possible
situations are there in which the product of the number of spots rolled on the dice is
divisible by 3?

The result of rolling three different dice can be treated as a variation with repetition
(Definition 3.8 and formula (3.2), p. 56). Here, the set A = {1, 2, 3, 4, 5, 6} represents
the possible outcomes of rolling one die. Since n = 6 and k = 3, the total number of
possibilities is 63. The product is divisible by 3 if at least one factor of the product is
divisible by 3. Let’s consider the opposite condition: for the product of the numbers
on the three dice to not be divisible by 3, the result on each die cannot be divisible by
3, meaning it must belong to the set A′ = {1, 2, 4, 5}. Therefore, the total number of
rolls of three dice for which the product of the numbers is not divisible by 3 is 43 (again
a variation with repetition, where n′ = |A′| = 4 and k′ = 3). To find the number of
possibilities when the product of the numbers is divisible by 3, we simply subtract the
obtained result from the total number of possible outcomes when rolling 3 dice: 63 − 43.
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3.5. Inclusion-Exclusion Principle and
Dirichlet’s Box Principle

At the end of this chapter, we will present the inclusion-ixclusion principle and Dirich-
let’s box principle in their simplest forms. Recall that if we want to count the number of
elements in the sum of pairwise disjoint sets, we use the addition principle 3.21 (p. 60).
If the sets are not pairwise disjoint, we need an additional tool.

Theorem 3.34. (Inclusion-Exclusion Principle) If A1, A2, . . . , An are finite sets, then∣∣∣∣∣
n⋃

i=1

Ai

∣∣∣∣∣ = |A1 ∪A2 ∪ · · · ∪An| =

=

n∑
i=1

|Ai| −
n∑

i,j=1
i<j

|Ai ∩Aj |+
n∑

i,j,k=1
i<j<k

|Ai ∩Aj ∩Ak| − · · ·+ (−1)n−1

∣∣∣∣∣
n⋂

i=1

Ai

∣∣∣∣∣ . (3.9)

The formula (3.9) is complex. To understand what it entails, let us consider the
inclusion-exclusion principle for two sets. The number of elements in the set A1 ∪ A2 is
usually less than |A1|+ |A2|, because the elements in the intersection A1 ∩ A2 (the gray
area in the diagram below) are counted twice. To obtain the correct result, the term
|A1 ∩A2| must be subtracted:∣∣∣∣∣

2⋃
i=1

Ai

∣∣∣∣∣ = |A1 ∪A2| = |A1|+ |A2| − |A1 ∩A2|.

A1 A2

A similar reasoning can be applied for three sets. The number of elements in the set
A1∪A2∪A3 is generally less than the sum |A1|+ |A2|+ |A3|, because the elements in the
intersections A1 ∩ A2, A1 ∩ A3, and A2 ∩ A3 (the gray areas in the diagram below) are
counted twice. Therefore, the terms |A1∩A2|, |A1∩A3|, and |A2∩A3| must be subtracted
from |A1|+ |A2|+ |A3|. However, this way, the elements in the intersection A1 ∩A2 ∩A3

(the dark gray area in the diagram below) are completely omitted. To correct this, the
term |A1 ∩A2 ∩A3| must be added back:∣∣∣∣∣

3⋃
i=1

Ai

∣∣∣∣∣ = |A1 ∪A2 ∪A3| =

= |A1|+ |A2|+ |A3| − |A1 ∩A2| − |A1 ∩A3| − |A2 ∩A3|+ |A1 ∩A2 ∩A3|. (3.10)

A1 A2

A3
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Example 3.35. In a class of 30 students, 20 are learning English, 15 are learning German,
and 10 are learning French. Among them, 6 students are learning both English and
German, 5 students are learning both English and French, and 6 students are learning
both German and French. There are no students who are not learning any language. How
many students are learning all three languages?

Let us denote by E the number of students learning English, by G the number of
students learning German, and by F the number of students learning French. Then,
according to the formula (3.10, p. 64), we have:

|E ∪G ∪ F | = |E|+ |G|+ |F | − |E ∩G| − |E ∩ F | − |G ∩ F |+ |E ∩G ∩ F |,
thus

|E ∩G ∩ F | = |E ∪G ∪ F | − |E| − |G| − |F |+ |E ∩G|+ |E ∩ F |+ |G ∩ F | =
= 30− 20− 15− 10 + 6 + 5 + 6 = 2,

therefore, 2 students are learning all three languages.

The following theorem, although simple in its statement, is widely used in many areas
of mathematics.

Theorem 3.36. (Dirichlet’s Box Principle) If the set A = A1 ∪ A2 ∪ · · · ∪ Am contains
n elements, where n > m, then at least one set Ai, i ∈ {1, . . . ,m} contains at least 2
elements.

The name of the above theorem refers to a less formal but equivalent and more intuitive
formulation of this principle:

If n objects are distributed into m boxes and n > m, then at least one box
contains at least 2 objects.

With the help of this theorem, one can justify, for example, that among 13 people
there must be at least two born in the same month. To do this, it is enough to take 12
boxes labeled with the names of the months and "put" into them the people who were
born in each month. Since there are fewer people than boxes, at least one box will contain
2 (or more) people, which means they were born in the same month.

Example 3.37. Prove that among any seven different integers, there are two numbers
whose sum or difference is divisible by 10.

Let the boxes be labeled:

{0}, {5}, {1, 9}, {2, 8}, {3, 7}, {4, 6}.
We place each of the seven considered numbers in the box labeled with the remainder
of that number when divided by 10; note that the numbers appearing in the box labels
exhaust all possible remainders when divided by 10. Since there are 6 boxes and 7 num-
bers, according to Theorem 3.36, at least one of the boxes contains at least two numbers.
If it is the box labeled {0} or {5}, then the numbers in that box give a remainder of 0 or
5, respectively, when divided by 10, so both their sum and difference are divisible by 10.
The labels of the remaining boxes are of the form {k, 10 − k} where k ∈ {1, 2, 3, 4}. In
the case where one of these boxes contains two numbers, we must consider two scenarios.
In the first case, both numbers give a remainder of k when divided by 10, or both give
a remainder of 10 − k. In this case, their difference when divided by 10 will yield a re-
mainder of 0, meaning it will be divisible by 10. In the second case, one of these numbers
has the form 10i+k, while the other has the form 10j+10−k, for some integers i, j ∈ Z.
Thus, their sum takes the form 10i+ k + 10j + 10− k = 10(i+ j + 1), which is therefore
divisible by 10.
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3.6. Exercises

Variations without Repetition
Exercise 3.1. Grandma has 5 grandchildren and bought 8 different chocolates in the
store. In how many ways can Grandma give sweets to the children if each child is to
receive exactly 1 chocolate? (Example 3.7, p. 56.)

Exercise 3.2. In the souvenir shop, we have 9 types of postcards available (each in at
least 4 copies). How many ways are there to send 1 postcard to 4 friends, so that each
receives a different postcard?

Exercise 3.3. In a certain factory, it was decided to introduce identification badges for
the employees working there. Each badge is to consist of 4 different letters written in
sequence from the set {A,B,C,D,E, F}. How many different badges can be created this
way?

Exercise 3.4. We are predicting the top 3 places in a competition involving 10 athletes.
How many possibilities do we have, considering the order on the podium?

Exercise 3.5. We roll a die 3 times. How many possible outcomes are there in which
a different number of spots appears on each roll?

Exercise 3.6. We roll 3 dice: green, red, and blue. How many possible outcomes are
there in which each die shows a different number of spots?

Exercise 3.7. In how many ways can we arrange 5 different flowers in 8 different vases
such that each vase can hold at most 1 flower?

Exercise 3.8. In how many ways can 4 people be seated on 10 chairs arranged in a single
row?

Exercise 3.9. In how many ways can we arrange 7 different tablecloths on 9 numbered
tables?

Variations with Repetition
Exercise 3.10. Alicja has a test consisting of 9 questions to solve. For each question,
she can select one of 3 answers, or she can leave the question unanswered. In how many
ways can Alicja complete the test? (Example 3.9, p. 57.)

Exercise 3.11. How many different 9-digit numbers are there (digits can repeat):

a) composed of digits {1, 2, . . . , 9}?

b) composed of digits {1, 2, . . . , 9} that represent the same number regardless of the read-
ing direction?

Exercise 3.12. We flip a coin 8 times, resulting in a sequence of heads and tails. How
many possible outcomes are there?
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Exercise 3.13. How many different ways are there to paint a chessboard consisting of
numbered 8 rows and 8 columns

a) with two colors, b) with three colors,

if we assume that each square must be painted?

Exercise 3.14. How many different ways are there to paint a chessboard consisting of
numbered 8 rows and 8 columns

a) with two colors, b) with three colors,

if not all squares must be painted?

Exercise 3.15. In the souvenir shop, we have 9 types of postcards available (each in at
least 4 copies). How many ways are there to send 1 postcard to 4 friends?

Exercise 3.16. What is the maximum number of different symbols that can be created
in the Braille alphabet? A symbol consists of at least one and no more than six raised
dots arranged in three rows and two columns.

Exercise 3.17. A participant in a football betting pool predicts the outcomes of 12
football matches on one ticket. The possible outcomes are: home win, draw, away win.
How many tickets must be filled out to ensure at least one correct prediction for all 12
matches?

Exercise 3.18. A cylindrical combination lock has 4 coaxial rings, each containing 10
digits. How many attempts must be made in the worst-case scenario to unlock it?

Exercise 3.19. Each of the 12 convicts is to be placed in one of 7 prisons. In how many
ways can the convicts be distributed among these prisons?

Exercise 3.20. To Christopher’s treehouse, there are stairs consisting of 8 steps. In how
many ways can Christopher paint the steps using the following colors: mint green, yellow,
orange, red, and purple? We assume that each step will be painted entirely in one color.

Exercise 3.21. How many different strings composed of 11 beads can be created using
any number of red, white, blue, and green beads? Beads of the same color are indistin-
guishable. We distinguish between the left and right ends of the string.

Exercise 3.22. We roll a die 3 times, recording the number of spots after each roll and
resulting in a sequence of three numbers.

a) How many possible outcomes are there?

b) How many outcomes are there where an even number appears on each roll?

Exercise 3.23. We roll 3 dice: green, red, and blue.

a) How many possible outcomes are there?

b) How many outcomes are there where an even number appears on each die?

Exercise 3.24. How many subsets are there for a set with 17 elements? Compare this
problem with Example 1.12 (p. 14).

Exercise 3.25. There are 9 grooves carved into a key. Each groove has a depth from
0 mm to 7 mm with a step change in depth of 1 mm. How many different keys can be
produced?

Exercise 3.26. In how many ways can we arrange 20 different apples in 5 numbered
boxes, assuming that some boxes may remain empty?
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Permutations without Repetition
Exercise 3.27. An art exhibition is being prepared in the gallery. On a certain wall, 8
selected paintings by Picasso need to be hung in a row. In how many ways can this be
done? (Example 3.11, p. 57.)

Exercise 3.28. How many different 9-digit numbers can be formed using the digits:
1, 2, . . . , 9, in which no digit repeats?

Exercise 3.29. Bartek has 4 sisters. In how many ways can he give a tulip, a sunflower,
a lily, and a carnation to his sisters if each girl receives exactly 1 flower?

Exercise 3.30. In how many ways can a group of 7 people line up at the ticket counter?

Exercise 3.31. Justyna has 6 windows in her apartment and potted plants: a ficus,
a cactus, an orchid, a fern, ivy, and a violet. In how many ways can she arrange the
plants if exactly 1 flower must be placed on each windowsill?

Exercise 3.32. On the shelf, there are 5 different books: a detective novel, a romance,
a horror story, science fiction, and fantasy. In how many ways can all the books be
arranged on the shelf?

Exercise 3.33. Marian has 7 canaries and 7 different cages. In how many ways can he
arrange the birds in the cages if there is to be exactly 1 canary in each cage?

Exercise 3.34. We have purchased 4 different postcards. In how many ways can we send
1 postcard to each of 4 friends?

Exercise 3.35. How many different arrangements of the set A = {1, 2, . . . , n} exist,
where n ≥ 6, such that the numbers 5 and 6 are adjacent in their natural order?

Permutations with Repetition
Exercise 3.36. In how many ways can 4 orange juices, 5 apple juices, 3 pineapple juices,
and 6 grapefruit juices be arranged in a row on a shelf, assuming that juices of the same
flavor are indistinguishable? (Example 3.13, p. 58.)

Exercise 3.37. How many different strings of beads can be created if each string contains
4 red beads, 2 white beads, 3 blue beads, and 2 green beads? Beads of the same color are
indistinguishable. We distinguish between the left and right ends of the string.

Exercise 3.38. In how many ways can we arrange on a library shelf 5 books titled "The
Deluge," 3 books titled "Sir Michael," and 6 books titled "With Fire and Sword"? Books
with the same title are indistinguishable.

Exercise 3.39. In a box, there are 9 white balls and 7 black balls. In how many ways can
we draw 6 balls from this box without replacement, among which there will be 2 white
balls and 4 black balls? We assume that balls of the same color are indistinguishable and
that the order of drawing is important. (Example 3.28, p. 62.)

Exercise 3.40. In the game of "Skat" with 32 cards, 10 cards are dealt among 3 players,
and the remaining 2 cards are placed in the skat (on the table). How many different ways
are there to deal the cards?

Exercise 3.41. How many different 10-digit numbers can we create if we have the digit
set: 5, 3, 3, 8, 8, 8, 2, 2, 2, 2?
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Exercise 3.42. How many different "words" can be formed using all the letters of the
word:

a) ANANAS,

b) MATEMATYKA,

c) KOMBINATORYKA,

d) TOTOLOTEK.

Exercise 3.43. How many different ways are there to paint 10 balls, each of a different
size, using the colors: blue, red, and green, such that there are 5 blue balls, 2 red balls,
and 3 green balls?

Combinations without Repetition
Exercise 3.44. At a party, there were 14 acquaintances. How many handshakes occurred
if each person greeted every other person? (Example 3.15, p. 58.)

Exercise 3.45. On a circle, 15 different points are marked. How many different ninetagon
can be drawn with vertices at these points?

Exercise 3.46. The lottery game "Duży Lotek" involves selecting 6 numbers drawn from
the numbers 1 to 49. How many tickets must be purchased to ensure a grand prize win?

Exercise 3.47. The commander of a police station has 7 police officers at his disposal.
In how many ways can the commander form a 4-person patrol from these officers?

Exercise 3.48. We roll 3 identical dice. How many possible outcomes are there in which
each die shows a different number of spots?

Exercise 3.49. In how many ways can 7 identical tablecloths be arranged on 9 numbered
tables?

Exercise 3.50. We are predicting the top 3 places in a competition involving 10 athletes.
How many possibilities do we have, not considering the order on the podium?

Exercise 3.51. A certain group of students consists of 20 men and 15 women. In how
many ways can a subgroup of 8 people be selected?

Exercise 3.52. In the competition, there are 33 participants, among whom are Krzysztof
and Marcin. The participants compete in groups of three. In how many ways can
Krzysztof choose 2 friends to form a trio?

Exercise 3.53. At a chess tournament, there were 30 participants. How many games
were played if each participant played against every other participant?

Exercise 3.54. In how many ways can we arrange 5 identical flowers in 8 different vases
such that each vase can hold at most 1 flower?

Combinations with Repetition
Exercise 3.55. How many different sets containing 7 balloons can be formed, having an
unlimited number of red, green, and blue balloons? We assume that balloons of the same
color are indistinguishable. (Example 3.17, p. 59.)

Exercise 3.56. How many different sets of 11 beads can be created if we have an un-
limited number of beads in red, white, blue, and green? Beads of the same color are
indistinguishable.
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Exercise 3.57. How many different sets of 9 candies can be created if we have an
unlimited number of chocolate, mint, fruit, nut, and yogurt candies? Candies of the same
flavor are indistinguishable.

Exercise 3.58. In how many ways can we arrange 20 identical apples in 5 numbered
boxes, assuming that some boxes may remain empty?

Exercise 3.59. We roll 3 identical dice.

a) How many possible outcomes are there?

b) How many outcomes are there in which each die shows an even number?

Exercise 3.60. In how many ways can we choose 10 balls from an unlimited supply of
red, blue, and green balls if we want at least 4 red balls? Balls of the same color are
indistinguishable.

Exercise 3.61. We flip 8 identical coins. How many possible outcomes are there?

Exercise 3.62. In how many ways can we choose 5 fruits from 10 identical oranges and
20 identical pears?

The Multiplication Principle
Exercise 3.63. Emil decided to have lunch at the bar consisting of soup, a main course,
a salad, and a dessert. In how many ways can Emil compose his meal if he has 2 different
soups, 10 different main courses, 7 different salads, and 3 different desserts to choose
from? (Example 3.20, p. 60.)

Exercise 3.64. Calculate how many natural divisors the following numbers have (com-
pare with note 2.14 on p. 41):

a) 24, b) 343, c) 25 725, d) 90 000.

Exercise 3.65. Leon has 3 children of different ages, and he reads a book to each of
them separately before bed. The youngest child has 5 books, the middle child has 7, and
the oldest has 10. In how many ways can Dad choose literature to read to the children
tonight?

Exercise 3.66. In the hair salon, there are 5 women: a brunette (brown hair), a black-
haired woman, a blonde, a redhead, and an older gray-haired lady. The hairdresser has
hair dyes in the following colors: brown, black, blonde, and red. In how many ways can
the women’s hair be dyed if they want to change their hair color?

Exercise 3.67. How many different 9-digit numbers can be formed using the digits:
0, 1, 2, . . . , 9, if digits can repeat?

Exercise 3.68. From the elements of the set {0, 1, 2, 3, 4, 5, 6} we create 3-digit numbers.
Calculate how many numbers can be formed that are less than 500. We assume that
digits can repeat.

Exercise 3.69. We have purchased 4 different colored postcards and 4 different black-
and-white postcards. In how many ways can we send each of our 4 friends one colored
postcard and one black-and-white postcard?
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Exercise 3.70. Justyna has 6 windows in her apartment and plants: a ficus, a cactus,
an orchid, a fern, ivy, and a violet. She also has 6 pots: green, red, blue, yellow, purple,
and orange. In how many ways can she plant the flowers in the pots and arrange them if
exactly 1 plant must be placed on each windowsill?

Exercise 3.71. How many ways are there to arrange 5 men and 4 women in a row such
that there are men on both sides of each woman?

Exercise 3.72. Calculate how many ways registration numbers consisting of 2 letters
from the set {A,B,C,D,E} and 6 arbitrary digits can be formed if:

a) letters and digits can repeat,

b) neither letters nor digits can repeat,

c) letters can repeat but digits cannot repeat,

d) letters cannot repeat but digits can repeat.

Exercise 3.73. In the class there are 27 people: 15 girls and 12 boys. In how many ways
can a 3-person representation of the class be selected consisting of 2 girls and 1 boy?

Exercise 3.74. In the class there are 27 students: 15 girls and 12 boys. For St. Nicholas
Day, the class organized a lottery with 27 tickets, among which there are exactly 5 winning
tickets. In how many ways can we choose 3 girls and 2 boys who won prizes if the prizes
are identical? (Example 3.26, p. 61.)

Exercise 3.75. A certain group of students consists of 20 men and 15 women. In how
many ways can a subgroup consisting of 6 men and 7 women be selected?

Exercise 3.76. In a box there are 9 white balls and 7 black balls. In how many ways can
we draw 6 balls from this box without replacement, among which there will be exactly 2
white balls and 4 black balls? We assume that balls of the same color are distinguishable
and that the order of drawing is not important. (Example 3.30, p. 63.)

Exercise 3.77. At a certain Czech university in the first year there are 60 students:
8 Poles, 13 Spaniards, and 17 Germans; the remaining people are Czechs. In how many
ways can we choose a representative group of five people that includes one person from
Poland, Spain, and Germany as well as two people from The Czech Republic?

Exercise 3.78. In lottery game "Duży Lotek," 6 numbers were drawn from numbers
ranging from 1 to 49. How many different bets are possible where exactly 3 numbers were
correctly predicted?

The Addition Principle
Exercise 3.79. How many committees consisting of 4 people can be formed from a group
of 9, if two people from this group, Agnieszka and Bogdan, do not want to be in the same
committee? Hint: consider 3 cases. (Example 3.23, p. 60.)

Exercise 3.80. A certain group of students consists of 20 men and 15 women. In how
many ways can a subgroup consisting of either 6 men or 7 women be selected? Hint:
consider 2 cases.

Exercise 3.81. We roll two dice: a green die and a red die. How many outcomes are
there in which the sum of the rolled spots is even? Hint: consider 6 cases.
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Exercise 3.82. We roll two dice simultaneously: a black die and a white die. Determine
the number of rolls in which:

a) the number of spots on the white die is less than the number of spots on the black die
(hint: consider 6 cases),

b) the number of spots on the black die is not less than the number of spots on the white
die (hint: consider 6 cases).

Exercise 3.83. In a certain group of 10 people, there are Cezary and Daria. How many
ways are there to arrange 10 people in a row such that Cezary and Daria stand next to
each other? Hint: consider 2 cases.

Exercise 3.84. In a competition, there are 33 participants, among whom are Krzysztof
and Marcin. The participants compete in groups of three. How many groups can be
formed that include Krzysztof or Marcin? Hint: consider 3 cases.

Exercise 3.85. In a competition, there are 33 participants, among whom are Krzysztof
and Marcin. The participants compete in groups of three. How many groups can be
formed that include either Krzysztof or Marcin? Hint: consider 2 cases.

The Multiplication and Addition Principles
Exercise 3.86. A certain group of foreigners consists of 5 Spaniards, 6 Frenchmen, and
8 Italians. In how many ways can a 2-person delegation be selected from this group such
that the individuals in the delegation are not of the same nationality? Hint: consider 3
cases.

Exercise 3.87. In how many different ways can we choose a trio of different numbers
from the numbers 1, 2, . . . , 50, such that their sum is odd? Trios that differ only in order
are considered the same. Hint: consider 2 cases.

Exercise 3.88. In lottery game "Duży Lotek," 6 numbers were drawn from the numbers
1 to 49. How many different bets are possible where at least 3 numbers were correctly
predicted? Hint: consider 4 cases.

Exercise 3.89. To withdraw money from an ATM, one must use a card and enter a 4-
digit PIN on a 10-digit keypad. Filip hasn’t used his card in a long time and doesn’t
remember his PIN exactly, but he recalls that the second and third digits are odd, and
the sum of the two outer digits equals 5. Calculate how many times at most Filip will
have to enter his PIN to get cash. Remember that 0 is an even digit. Hint: consider 6
cases.

Exercise 3.90. To open a briefcase, one must correctly set 3 small cylinders at the lock.
Each cylinder has digits from 0 to 9. President Ireneusz has been on a long vacation and
hasn’t opened the briefcase in a while, but he remembers that the first and last digits are
even, and the middle digit is a prime number. Calculate how many cylinder settings he
will have to check in the worst case to open the briefcase. Remember that 0 is an even
digit. Hint: consider 4 cases.
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Exercise 3.91. Morse code letters are formed from sequences of dots and dashes, where
these symbols can repeat. How many letters can be formed using:

a) exactly 4 symbols,

b) at most 4 symbols,

c) no fewer than 3 and no more than 6 symbols.

Exercise 3.92. Each alphanumeric character can be assigned a sequence composed of the
digits 0 and 1. If different characters correspond to different sequences, this assignment
is called a code. How many characters can be encoded using sequences of no more than
eight elements?

Exercise 3.93. From a group of 18 students, consisting of 9 boys and 9 girls, we select
a non-empty subset consisting of an equal number of girls and boys. In how many ways
can we do this?

Various Problems
Exercise 3.94. From the elements of the set {0, 1, 2, 3, 4, 5, 6} we create 3-digit numbers.
Calculate how many numbers can be formed that are less than 500 and have 3 different
digits.

Exercise 3.95. In a train compartment, there are 8 numbered seats arranged in two
opposite rows of 4 seats each. Five people entered the empty compartment: Anna, Beata,
Cecylia, Darek, and Edek. The women sat in the same row, while the men sat in the
other row. Calculate how many ways these people could take their seats such that:

a) the women are facing the direction of travel?

b) each man has a woman sitting across from him?

Exercise 3.96. In how many ways can we draw 2 cards sequentially without replacement
from a deck of 52 cards such that the first card is an ace and the second card is not a queen?

Exercise 3.97. In how many ways can we draw 2 cards sequentially without replacement
from a deck of 52 cards such that the first card is a diamond and the second card is not
a queen? Hint: consider 2 cases.

Exercise 3.98. How many natural 8-digit numbers exist such that the product of their
digits in decimal representation equals 12? Hint: consider 3 cases.

Exercise 3.99. In a certain group of 10 people, there are Cezary and Daria. How many
ways can these people be arranged in a line so that Cezary and Daria do not stand next
to each other? Hint: consider the opposite situation. (Example 3.32, p. 63.)

Exercise 3.100. We roll three six-sided dice: yellow, red, and green. How many possible
situations are there in which the product of the number of spots rolled on the dice is
divisible by 3? Hint: how many possible situations exist where the resulting product is
not divisible by 3? (Example 3.33, p. 63.)

Exercise 3.101. One winter evening, 9 friends went to their friend Łukasz’s house. At
the entrance was an empty coat rack where each of them left their coat. When leaving,
they randomly put on their coats. How many situations are there in which at least one
of them returns home wearing a coat that does not belong to them? Hint: how many
possible situations are there where each friend returns home wearing their own coat?
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Exercise 3.102. In a competition involving 33 participants, among whom are Krzysztof
and Marcin. The participants compete in groups of three. How many groups can be
formed that include Krzysztof or Marcin? Hint: how many groups can be formed that do
not include either Krzysztof or Marcin?

Exercise 3.103. In how many arrangements of the letters a, b, c, d, e, f, g will the syllable
cad not appear? Hint: how many arrangements contain the syllable cad?

Exercise 3.104. How many diagonals can be drawn in a convex octagon? Hint: how
many sides does a convex octagon have?

Exercise 3.105. How many three-digit numbers are there that have at least one digit
less than the digits of the number 718? Hint: how many such numbers have all digits
greater than or equal to those of the number 718?

Exercise 3.106. How many ways are there to arrange 53 people in a row such that
a selected group of 12 people stands next to each other?

Exercise 3.107. On a trip to Disneyland in France, there is a group of 30 children:
5 Chinese, 3 Brazilians, 7 Canadians, and the remaining children are French. In how
many ways can all the children be arranged in a row if people from the same country
must stand next to each other?

Exercise 3.108. How many ways are there to place 6 different shirts and 5 different
sweaters in 4 different drawers?

Exercise 3.109. In a souvenir shop, we have 9 types of postcards (each in at least 4
copies). How many ways are there to send 1 postcard to each of 4 friends such that
everyone receives the same postcard?

Exercise 3.110. In how many ways can we distribute 5 identical candies among five
children?

Exercise 3.111. In how many ways can we arrange 5 different flowers in 8 identical vases
such that each vase can hold at most 1 flower?

Exercise 3.112. In how many ways can we arrange 5 identical flowers in 8 identical vases
such that each vase can hold at most 1 flower?

Exercise 3.113. Grandma has 5 grandchildren and bought 8 identical chocolates in the
store. In how many ways can Grandma distribute the sweets so that each child receives
exactly 1 chocolate?

Exercise 3.114. In how many different ways can 6 different greeting cards be placed
into 10 identical envelopes? We can put at most 1 card into each envelope, and some
envelopes may remain empty. (Example 3.24, p. 61.)

Exercise 3.115. In how many ways can 9 identical pictures be placed into 8 identical
frames? Each frame can contain at most 1 picture, and no picture can be left without
a frame. (Example 3.25, p. 61.)

Exercise 3.116. In a box, there are 9 white balls and 7 black balls. In how many ways
can we draw 6 balls from this box without replacement, among which there will be 2 white
balls and 4 black balls? We assume that balls of the same color are indistinguishable and
that the order of drawing is not important. (Example 3.29, p. 63.)
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Exercise 3.117. We roll 3 identical dice. How many possible outcomes are there in
which each die shows the same number of spots?

Exercise 3.118. Bartek has 4 sisters. In how many ways can he give 4 identical roses
to his sisters, if each girl is to receive exactly 1 flower?

Exercise 3.119. There are 27 people in the class: 15 girls and 12 boys. In how many
ways can a 5-member class representation be chosen, consisting of exactly 2 girls and
1 boy?

Exercise 3.120. A game of bridge starts with dealing 52 cards from a standard deck
among 4 players, so that each player receives 13 cards. How many ways are there for
a designated player to receive all cards of the same suit?

Exercise 3.121. In how many ways can 7 identical tablecloths be arranged on 9 identical
tables?

Exercise 3.122. In how many ways can 7 different tablecloths be arranged on 9 identical
tables?

Exercise 3.123. From a deck of 52 cards, we draw x cards without replacement so that
there are cards of each suit among them. The order of drawing is not important.

a) In how many ways can this be done if x = 5?

b) In how many ways can this be done if x = 6?

Exercise 3.124. In a certain town, car license plates start with the letters XY, followed
by 5 characters: digits from 0 to 9 or letters from the Latin alphabet (26 letters).

a) How many possible license plates are there where after XY there are only digits, given
that there is no plate XY 00000?

b) How many possible license plates are there where after XY there are 2 letters followed
by 3 digits?

Exercise 3.125. From a standard deck of 52 playing cards, we draw without replacement
13 cards. How many possible outcomes are there in which we draw exactly 1 ace, exactly
3 kings, and exactly 2 queens? The order in which the cards are drawn is not important.

Exercise 3.126. In how many ways can a non-empty subset of fruits be formed, having
at disposal 13 identical bananas and 11 identical plums?

Exercise 3.127. Calculate how many integer divisors the following numbers have (com-
pare with Remark 2.14, p. 41):

a) 24, b) 343, c) 25 725, d) 90 000.

Exercise 3.128. How many 5-digit numbers greater than 20 000 but less than 40 000 can
be formed using the digits: 1, 2, 3, 4, 5, if:

a) no digit repeats,

b) the choice of digits is unrestricted?
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Exercise 3.129. On a hiking trip, there are 8 girls and 7 boys walking in a line. How
many different ways can they be arranged if:

a) they walk alternately: girl, boy, girl, . . . ,

b) the arrangement in line is arbitrary,

c) boys walk together in one group and girls also walk together in one group.

Exercise 3.130. In a classroom, there are 14 numbered two-person desks. In how many
ways can 14 girls and 14 boys be seated so that:

a) in each desk, a boy sits on the left side and a girl on the right side,

b) in each desk, there is one boy and one girl.

Exercise 3.131. How many monograms (two-letter initials) can be formed from the
letters of the Latin alphabet (26 letters), if:

a) letters in the monogram cannot repeat,

b) letters in the monogram can repeat,

c) letters in the monogram are the same.

Exercise 3.132. In an empty elevator standing on the ground floor, 6 passengers entered.
The elevator goes up, stopping at the next 8 floors. We assume that all passengers will
exit during this ride. In how many ways can passengers exit the elevator if:

a) no additional conditions are imposed?

b) no two passengers will exit on the same floor?

Exercise 3.133. Cities X and Y are connected by 6 roads, and there are 8 roads between
cities Y and Z. In how many ways can one travel

X −→ Y −→ Z −→ Y −→ X,

if:

a) no segment of the route can repeat on the return trip,

b) any segment of the route can repeat on the return trip,

c) one must return via the same route.

Exercise 3.134. In a class, there are 27 people: 15 girls and 12 boys. In how many ways
can a class trio (chairperson, deputy, treasurer) be chosen so that it consists of 2 girls and
1 boy?

Exercise 3.135. In a class, there are 27 students: 15 girls and 12 boys. For Saint
Nicholas Day, the class organized a lottery with 27 tickets, among which there are exactly
5 winning tickets. In how many ways can we choose 3 girls and 2 boys who won prizes if
the prizes are distinct? (See Example 3.26, p. 61.)

Exercise 3.136. In how many ways can 6 objects be paired?
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Exercise 3.137. In a class, there are 27 people: 15 girls and 12 boys. In how many ways
can 3 numbered teams of 9 people be formed if each team must consist of 5 girls and 4
boys?

Exercise 3.138. The class consists of 20 people. The teacher decided to organize work
into 5 groups of 4 people each. In how many ways can the division be made if:

a) the groups are numbered from 1 to 5?

b) the groups are not numbered?

(Example 3.27, p. 62.)

Exercise 3.139. In how many ways can 10 people simultaneously hold 5 phone conver-
sations?

Exercise 3.140. In how many ways can 8 people be arranged in 4 numbered rooms for
2 people each?

Exercise 3.141. In how many ways can 8 out of 9 people be arranged in 4 numbered
rooms for 2 people each?

Exercise 3.142. In a box, there are 9 white balls and 7 black balls. In how many ways
can we draw 6 balls from this box without replacement, among which there will be 2
white balls and 4 black balls? We assume that balls of the same color are distinguishable,
and the order of drawing is important. (See Example 3.31, p. 63.)

Exercise 3.143. In how many ways can you choose from 13 couples one woman and one
man who

a) are married to each other?

b) are not married to each other?

Exercise 3.144. How many numbers greater than 3 000 000 can be formed using the
digits: 1, 2, 2, 4, 6, 6, 6?

Exercise 3.145. We roll a die three times. How many possible outcomes are there in
which exactly 2 different numbers of spots appear?

More Difficult Problems
Exercise 3.146. In a class of 25 students, 5 tickets to the theater are being drawn for
seats numbered: 15, 16, 17, 18, 19, in the last row. We know that the tickets were won
by Waldek and Zenek, but the other 3 winners are still unknown. How many outcomes
of the drawing exist where:

a) Waldek and Zenek will sit next to each other,

b) Waldek and Zenek will not sit next to each other.

Exercise 3.147. In how many ways can the spots numbered from 1 to 6 be arranged on
a cubic die if:

a) all faces of the die are painted in different colors?

b) all faces of the die are painted the same color?
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Exercise 3.148. In commonly used cubic dice, the spots are arranged such that the sum
of the spots on opposite faces equals 7. How many ways can the spots numbered from 1
to 6 be arranged on such a die if:

a) all faces of the die are painted in different colors?

b) all faces of the die are painted the same color?

Exercise 3.149. In how many ways can we seat 6 men and 6 women at a round table
with 12 seats such that no two people of the same gender sit next to each other?

Exercise 3.150. In how many ways can we place 2 kings (one white and one black) on
an m × n chessboard, where m,n ≥ 3, so that they do not stand on adjacent squares?
Adjacent squares are defined as those sharing a side or a corner. Hint: consider 3 cases.

Exercise 3.151. Let A = {1, 2, . . . , k} and B = {1, 2, . . . , n} where k ≤ n. Let
f : A −→ B be a function. How many different:

a) functions f exist?

b) strictly increasing functions f exist?

c) non-decreasing functions f exist?

d) injective functions f exist?

e) constant functions f exist?

3.7. Answers

Answer 3.1.
8!

(8− 5)!
=

8!

3!
= 8 · 7 · 6 · 5 · 4

Answer 3.2.
9!

(9− 4)!
=

9!

5!
= 9 · 8 · 7 · 6

Answer 3.3.
6!

(6− 4)!
=

6!

2!
= 6 · 5 · 4 · 3

Answer 3.4.
10!

(10− 3)!
=

10!

7!
= 10 · 9 · 8

Answer 3.5.
6!

(6− 3)!
=

6!

3!
= 6 · 5 · 4

Answer 3.6.
6!

(6− 3)!
=

6!

3!
= 6 · 5 · 4

Answer 3.7.
8!

(8− 5)!
=

8!

3!
= 8 · 7 · 6 · 5 · 4

Answer 3.8.
10!

(10− 4)!
=

10!

6!
= 10 · 9 · 8 · 7

Answer 3.9.
9!

(9− 7)!
=

9!

2!
= 9 · 8 · 7 · 6 · 5 · 4 · 3
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Answer 3.10. 49

Answer 3.11.

a) 99,

b) 95.

Answer 3.12. 28

Answer 3.13.

a) 264, b) 364.

Answer 3.14.

a) 364, b) 464.

Answer 3.15. 94

Answer 3.16. 26 − 1

Answer 3.17. 312

Answer 3.18. 104

Answer 3.19. 712

Answer 3.20. 58

Answer 3.21. 411

Answer 3.22.

a) 63,

b) 33.

Answer 3.23.

a) 63,

b) 33.

Answer 3.24. 217

Answer 3.25. 89

Answer 3.26. 520

Answer 3.27. 8!

Answer 3.28. 9!

Answer 3.29. 4!

Answer 3.30. 7!

Answer 3.31. 6!
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Answer 3.32. 5!

Answer 3.33. 7!

Answer 3.34. 4!

Answer 3.35. (n− 1)!

Answer 3.36.
18!

4! · 5! · 3! · 6!

Answer 3.37.
11!

4! · 2! · 3! · 2!

Answer 3.38.
14!

5! · 3! · 6!

Answer 3.39.
6!

2! · 4!

Answer 3.40.
32!

10! · 10! · 10! · 2!

Answer 3.41.
10!

1! · 2! · 3! · 4!
Answer 3.42.

a)
6!

3! · 2! · 1!
,

b)
10!

2! · 3! · 2! · 1! · 1! · 1!
,

c)
13!

2! · 2! · 1! · 1! · 1! · 1! · 2! · 1! · 1! · 1!
,

d)
9!

3! · 3! · 1! · 1! · 1!
.

Answer 3.43.
10!

5! · 2! · 3!

Answer 3.44.
(
14

2

)
Answer 3.45.

(
15

9

)
Answer 3.46.

(
49

6

)
Answer 3.47.

(
7

4

)
Answer 3.48.

(
6

3

)
Answer 3.49.

(
9

7

)
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Answer 3.50.
(
10

3

)
Answer 3.51.

(
20 + 15

8

)
=

(
35

8

)
Answer 3.52.

(
33− 1

2

)
Answer 3.53.

(
30

2

)
Answer 3.54.

(
8

5

)
Answer 3.55.

(
3 + 7− 1

7

)
=

(
9

7

)
Answer 3.56.

(
4 + 11− 1

11

)
=

(
14

11

)
Answer 3.57.

(
5 + 9− 1

9

)
=

(
13

9

)
Answer 3.58.

(
5 + 20− 1

20

)
=

(
24

20

)
Answer 3.59.

a)
(
6 + 3− 1

3

)
=

(
8

3

)
,

b)
(
3 + 3− 1

3

)
=

(
5

3

)
.

Answer 3.60.
(
3 + 6− 1

6

)
=

(
8

6

)
Answer 3.61.

(
2 + 8− 1

8

)
=

(
9

8

)
Answer 3.62.

(
2 + 5− 1

5

)
=

(
6

5

)
= 6

Answer 3.63.
(
2

1

)
·
(
10

1

)
·
(
7

1

)
·
(
3

1

)
= 2 · 10 · 7 · 3

Answer 3.64.

a)
(
4

1

)
·
(
2

1

)
= 4 · 2,

b)
(
4

1

)
= 4,

c)
(
2

1

)
·
(
3

1

)
·
(
4

1

)
= 2 · 3 · 4,

d)
(
5

1

)
·
(
3

1

)
·
(
4

1

)
= 5 · 3 · 5.
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Answer 3.65.
(
5

1

)
·
(
7

1

)
·
(
10

1

)
= 5 · 7 · 10

Answer 3.66.
(
3

1

)4

·
(
4

1

)
= 34 · 4

Answer 3.67.
(
9

1

)
·
(
10

1

)8

= 9 · 108

Answer 3.68.
(
4

1

)
·
(
7

1

)
·
(
7

1

)
= 4 · 7 · 7

Answer 3.69. 4! · 4!

Answer 3.70. 6! · 6!

Answer 3.71. 5! · 4!

Answer 3.72.

a) 52 · 106,

b)
5!

(5− 2)!
· 10!

(10− 6)!
=

5!

3!
· 10!
4!

= 5 · 4 · 10 · 9 · 8 · 7 · 6 · 5,

c) 52 · 10!

(10− 6)!
= 52 · 10!

4!
= 52 · 10 · 9 · 8 · 7 · 6 · 5,

d)
5!

(5− 2)!
· 106 =

5!

3!
· 106 = 5 · 4 · 106.

Answer 3.73.
(
15

2

)
·
(
12

1

)
=

(
15

2

)
· 12

Answer 3.74.
(
15

3

)
·
(
12

2

)

Answer 3.75.
(
20

6

)
·
(
15

7

)

Answer 3.76.
(
9

2

)
·
(
7

4

)

Answer 3.77.
(
8

1

)
·
(
13

1

)
·
(
17

1

)
·
(
60− 8− 13− 17

2

)
= 8 · 13 · 17 ·

(
22

2

)

Answer 3.78.
(
6

3

)
·
(
49− 6

3

)
=

(
6

3

)
·
(
43

3

)

Answer 3.79.
(
7

3

)
+

(
7

3

)
+

(
7

4

)

Answer 3.80.
(
20

6

)
+

(
15

7

)
Answer 3.81. 3 + 3 + 3 + 3 + 3 + 3 = 6 · 3
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Answer 3.82.

a) 0 + 1 + 2 + 3 + 4 + 5,

b) 1 + 2 + 3 + 4 + 5 + 6.

Answer 3.83. 9! + 9! = 2 · 9!

Answer 3.84.
(
33− 2

2

)
+

(
33− 2

2

)
+

(
33− 2

1

)
= 2 ·

(
31

2

)
+ 31

Answer 3.85.
(
33− 2

2

)
+

(
33− 2

2

)
= 2 ·

(
31

2

)
Answer 3.86.

(
5

1

)
·
(
6

1

)
+

(
5

1

)
·
(
8

1

)
+

(
6

1

)
·
(
8

1

)
= 5 · 6 + 5 · 8 + 6 · 8

Answer 3.87.
(
25

3

)
+

(
25

1

)
·
(
25

2

)
=

(
25

3

)
+ 25 ·

(
25

2

)
Answer 3.88.(

6

3

)
·
(
49− 6

3

)
+

(
6

4

)
·
(
49− 6

2

)
+

(
6

5

)
·
(
49− 6

1

)
+

(
6

6

)
·
(
49− 6

0

)
=(

6

3

)
·
(
43

3

)
+

(
6

4

)
·
(
43

2

)
+

(
6

5

)
·
(
43

1

)
+

(
6

6

)
·
(
43

0

)
Answer 3.89. 5 · 5 + 5 · 5 + 5 · 5 + 5 · 5 + 5 · 5 + 5 · 5 = 6 · 5 · 5

Answer 3.90. 5 · 5 + 5 · 5 + 5 · 5 + 5 · 5 = 4 · 5 · 5

Answer 3.91.

a) 24,

b) 2 + 22 + 23 + 24,

c) 23 + 24 + 25 + 26.

Answer 3.92.
8∑

i=1

2i

Answer 3.93.
9∑

k=1

(
9

k

)2

Answer 3.94.
(
4

1

)
·
(
7− 1

1

)
·
(
7− 2

1

)
= 4 · 6 · 5

Answer 3.95.

a)
4!

(4− 3)!
· 4!

(4− 2)!
= (4 · 3 · 2) · (4 · 3) =

b)
4!

(4− 3)!
· 3!

(3− 2)!
+

4!

(4− 3)!
· 3!

(3− 2)!
= (4 · 3 · 2) · (3 · 2) + (4 · 3 · 2) · (3 · 2)

= 2 · (4 · 3 · 2) · (3 · 2)
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Answer 3.96.
(
4

1

)
·
(
52− 1− 4

1

)
= 4 · 47

Answer 3.97. 1 ·
(
52− 4

1

)
+

(
13− 1

1

)
·
(
52− 4− 1

1

)
= 48 + 12 · 47

Answer 3.98.
(
8

1

)
·
(
7

1

)
+

(
8

1

)
·
(
7

1

)
+

(
8

2

)
·
(
6

1

)
= 8 · 7 + 8 · 7 +

(
8

2

)
· 6

Answer 3.99. 10!− 2 · 9!

Answer 3.100. 63 − 43

Answer 3.101. 9!− 1

Answer 3.102.
(
33

3

)
−
(
33− 2

3

)
=

(
33

3

)
−
(
31

3

)
Answer 3.103. 7!− 5 · 4! = 7!− 5!

Answer 3.104.
(
8

2

)
− 8

Answer 3.105. 900− 3 · 9 · 2

Answer 3.106. 12! · 42!

Answer 3.107. 5! · 3! · 7! · (30− 5− 3− 7)! · 4! = 5! · 3! · 7! · 15! · 4!

Answer 3.108. 46 · 45

Answer 3.109. 9

Answer 3.110. 1

Answer 3.111. 1

Answer 3.112. 1

Answer 3.113. 1

Answer 3.114. 1

Answer 3.115. 0

Answer 3.116. 1

Answer 3.117. 6

Answer 3.118. 1

Answer 3.119. 0

Answer 3.120. 4

Answer 3.121. 1

Answer 3.122. 1
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Answer 3.123.

a)
(
4

1

)
·
(
13

2

)
·
(
13

1

)
·
(
13

1

)
·
(
13

1

)
,

b)
(
4

2

)
·
(
13

2

)
·
(
13

2

)
·
(
13

1

)
·
(
13

1

)
+

(
4

1

)
·
(
13

3

)
·
(
13

1

)
·
(
13

1

)
·
(
13

1

)
.

Answer 3.124.

a) 105 − 1,

b) 262 · 103.

Answer 3.125.
(
4

1

)
·
(
4

3

)
·
(
4

2

)
·
(
52− 12

7

)
Answer 3.126. 14 · 12− 1

Answer 3.127.

a) 2 ·
(
4

1

)
·
(
2

1

)
= 2 · 4 · 2,

b) 2 ·
(
4

1

)
= 2 · 4,

c) 2 ·
(
2

1

)
·
(
3

1

)
·
(
4

1

)
= 2 · 2 · 3 · 4,

d) 2 ·
(
5

1

)
·
(
3

1

)
·
(
4

1

)
= 2 · 5 · 3 · 5.

Answer 3.128.

a) 2 · 4 · 3 · 2 · 1 = 2 · 4!,

b) 2 · 5 · 5 · 5 · 5 = 2 · 54.

Answer 3.129.

a) 8! · 7!,

b) 15!,

c) 2 · 8! · 7!.

Answer 3.130.

a) 14! · 14!,

b) 14! · 14! · 214.

Answer 3.131.

a) 26 · 25,

b) 262,

c) 26.
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Answer 3.132.

a) 86,

b) 8 · 7 · 6 · 5 · 4 · 3.

Answer 3.133.

a) 6 · 8 · 5 · 7,

b) 6 · 8 · 6 · 8,

c) 6 · 8.

Answer 3.134.
(
15

2

)
·
(
12

1

)
· 3! =

(
15

2

)
· 12 · 3!

Answer 3.135.
(
15

3

)
·
(
12

2

)
· 5!

Answer 3.136.
(
6
2

)
·
(
4
2

)
·
(
2
2

)
3!

= 5 · 3 · 1

Answer 3.137.
(
15

5

)
·
(
12

4

)
·
(
10

5

)
·
(
8

4

)
·
(
5

5

)
·
(
4

4

)
Answer 3.138.

a)
(
20

4

)
·
(
16

4

)
·
(
12

4

)
·
(
8

4

)
·
(
4

4

)
,

b)
(
20
4

)
·
(
16
4

)
·
(
12
4

)
·
(
8
4

)
·
(
4
4

)
5!

=

(
19

3

)
·
(
15

3

)
·
(
11

3

)
·
(
7

3

)
·
(
3

3

)
.

Answer 3.139.
(
10
2

)
·
(
8
2

)
·
(
6
2

)
·
(
4
2

)
·
(
2
2

)
5!

= 9 · 7 · 5 · 3 · 1

Answer 3.140.
(
8

2

)
·
(
8− 2

2

)
·
(
8− 4

2

)
·
(
8− 6

2

)
=

(
8

2

)
·
(
6

2

)
·
(
4

2

)
·
(
2

2

)

Answer 3.141.
(
9

2

)
·
(
9− 2

2

)
·
(
9− 4

2

)
·
(
9− 6

2

)
=

(
9

2

)
·
(
7

2

)
·
(
5

2

)
·
(
3

2

)

Answer 3.142.
(
9

2

)
·
(
7

4

)
· 6!

Answer 3.143.

a) 13,

b) 13 · 12.

Answer 3.144.
6!

1! · 2! · 3!
+

6!

1! · 2! · 2! · 1!

Answer 3.145.
(
3

2

)
· 6 · 5.
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Answer 3.146.

a)
(
23

3

)
· 4! · 2,

b)
(
23

3

)
· 5!−

(
23

3

)
· 4! · 2.

Answer 3.147.

a) 6!,

b) (1 + 4) · 3! = 5 · 3!.

Answer 3.148.

a) 6 · 4 · 2 = 23 · 3!,

b) 2.

Answer 3.149.
2 · 6! · 6!
2 · 6

= 5! · 6!

Answer 3.150. 4(mn− 4) + [2(m− 2) + 2(n− 2)](mn− 6) + (m− 2)(n− 2)(mn− 9)

Answer 3.151.

a) nk,

b)
(
n

k

)
,

c)
(
n+ k − 1

k

)
,

d)
n!

(n− k)!
,

e) n.



Chapter 4

Sample Exam Questions

Question 4.1. Assume that the statement p ⇒ q is false. Provide the truth values of
the statements:

a) p ∧ q, b) p ∨ q, c) q ⇒ p.

Question 4.2. For which values of p1, p2, . . . , pn does the statement:

a) p1 ∧ p2 ∧ · · · ∧ pn have a value of 1,

b) p1 ∧ p2 ∧ · · · ∧ pn have a value of 0,

c) p1 ∨ p2 ∨ · · · ∨ pn have a value of 1,

d) p1 ∨ p2 ∨ · · · ∨ pn have a value of 0.

Question 4.3. Derive the law of negation of equivalence.

Question 4.4. Let A,B ⊆ Ω. Determine the sets:

a) A ∪ (A ∩B), b) A ∩ (A ∪B), c) A ∪A′, d) A ∩A′.

Question 4.5. Provide an example of non-empty sets A and B such that A×B = B×A.

Question 4.6. Give an example of a relation that:

a) is symmetric but not antisymmetric,

b) is not symmetric but is antisymmetric,

c) is neither symmetric nor antisymmetric,

d) is symmetric and antisymmetric.

Question 4.7. Let R be a symmetric relation, but not reflexive. Check if the relation R
can be a transitive relation.

Question 4.8. Determine the number of factors in the expression
∏
i,j≥0

i+j=10

ai,j .
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Question 4.9. Expand the following expressions:

a)
3∑

k=1

4∏
j=1

ak,j ,

b)
3∏

k=1

4∑
j=1

ak,j ,

c)
3∑

k=1

4∏
j=1

(ak + bj),

d)
3∏

k=1

4∑
j=1

(ak + bj),

e)
3∑

k=1

4∏
j=1

(ak · bj),

f)
3∏

k=1

4∑
j=1

(ak · bj).

Question 4.10. Draw the graphs of the functions f1(x) = ⌊x⌋, f2(x) = ⌈x⌉, f3(x) = ⟨x⟩.

Question 4.11. Answer whether there exists a number x ∈ R such that ⌈x⌉ − ⌊x⌋ = 2.

Question 4.12. Answer the following questions.

a) Is the sum/difference/product of two even numbers an even number?

b) Is the sum/difference/product of two odd numbers an odd number?

c) Is the sum/difference/product of two numbers divisible by k ∈ N also divisible by k?

d) Is the sum/difference/product of two numbers that give a remainder r when divided
by k ∈ N also a number that gives a remainder r when divided by k?

Question 4.13. Answer the following questions. Consider all possibilities.

a) Is the sum/product of 3 even numbers an even number?

b) Is the sum/product of 3 odd numbers an odd number?

c) Is the sum/product of 3 numbers divisible by k ∈ N also divisible by k?

d) Is the sum/product of 3 numbers that give a remainder r when divided by k ∈ N also
a number that gives a remainder r when divided by k?

Question 4.14. Formulate the divisibility rules for the numbers: 28, 39, and 42.

Question 4.15. Describe the workings of the Sieve of Eratosthenes.

Question 4.16. Answer the following questions. Consider all possibilities.

a) Is the sum/difference/product of two prime numbers a prime number?

b) Is the sum/difference/product of two composite numbers a composite number?

Question 4.17. Answer the following questions. Consider all possibilities.

a) Is the sum/product of 3 prime numbers a prime number?

b) Is the sum/product of 3 composite numbers a composite number?
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Question 4.18. Answer the questions:

a) Does every natural number n > 1 have a prime divisor?

b) Does every natural number n > 1 have a proper prime divisor?

Question 4.19. For fixed numbers a1, a2, . . . , ak:

a) What is the smallest possible value of GCD(a1, a2, . . . , ak), k ∈ N?

b) What is the largest possible value of GCD(a1, a2, . . . , ak), k ∈ N?

c) What is the largest possible value of LCM(a1, a2, . . . , ak), k ∈ N?

d) What is the smallest possible value of LCM(a1, a2, . . . , ak), k ∈ N?

Question 4.20. Consider the formula:

GCD(a1, a2, a3) · LCM(a1, a2, a3) = |a1 · a2 · a3|.

a) Is the above formula true for any numbers a1, a2, a3 ∈ N?

b) Are there numbers a1, a2, a3 ∈ N for which the above formula is true?

Question 4.21. Justify why the Euclidean algorithm will terminate after a finite number
of steps.

Question 4.22. Answer the questions:

a) If the numbers a1, a2, . . . , ak ∈ Z are relatively prime, are they pairwise relatively
prime?

b) If the numbers a1, a2, . . . , ak ∈ Z are pairwise relatively prime, are they relatively
prime?

Question 4.23. Provide the value of Euler’s totient function for a prime number p ∈ P.

Question 4.24. Provide the value of Euler’s totient function for the product p · q, where
p, q ∈ P.

Question 4.25. Answer the questions:

a) What element is located in row 15 at position 9 in Pascal’s triangle?

b) What element is located in row 23 at position 39 in Pascal’s triangle?

c) What is the sum of the elements in rows 4, 5, and 6 of Pascal’s triangle?

d) What relationship do the obtained sums have with the numbers 4, 5, and 6?

e) Do the remaining rows also have this property? Justify your answer.

Question 4.26. Expand the expression (a± b)6.
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Question 4.27. Answer the questions:

a) Consider an n-element permutation with repetitions of the set A = {a1, a2, . . . , ak},
where the number of repetitions of each element ai ∈ A, i ∈ {1, 2, . . . , k}, is equal to
1. To what does this permutation reduce?

b) Consider a k-element combination without repetitions from an n-element set, where
k < n, whose elements are arranged in a sequence. To what does this combination
reduce?

c) Consider a k-element variation without repetitions from an n-element set, where k = n.
To what does this variation reduce?

d) From a combinatorial perspective, how can we name an element of the Cartesian
product A1 ×A2 × · · · ×An, where A1 = A2 = · · · = An are finite sets?

e) Consider the principle of inclusion-exclusion for a collection of finite pairwise disjoint
sets. To what does this principle reduce in this situation?

Question 4.28. Calculate how many people are in a certain group where everyone sings,
paints, or programs. There are 50 singers, 45 painters, and 40 programmers. Additionally,
27 people both sing and paint, 14 people both sing and program, and 24 people both paint
and program. It is also known that the number of people with all three skills is eight
times less than the total number of people in the group.

Question 4.29. Write the principle of inclusion-exclusion for 4 sets.

Question 4.30. Justify that in a group of 8 people, there are at least 2 people born on
the same day of the week.
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