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Streszczenie 

Artykuł podejmuje analizę kluczowych wyzwań etycznych wynikających z implementacji syste-
mów sztucznej inteligencji w medycynie, ze szczególnym uwzględnieniem koncepcji „godnej zau-
fania AI” (trustworthy AI). Autor omawia ramy regulacyjne, takie jak AI Act, rekomendacje WHO  
i OECD, wskazując ich ograniczenia w kontekście praktyki klinicznej. Artykuł prezentuje także wy-
zwania prawne dotyczące odpowiedzialności za decyzje AI w medycynie, w tym problem „black-
box liability” i luki w istniejących regulacjach. Całość uzupełnia propozycja kierunków rozwoju 
etycznych ram projektowania AI, które integrują wymogi prawne z wartościami moralnymi, aby 
wspierać zarówno bezpieczeństwo, jak i podmiotowość pacjenta. 

Słowa kluczowe: sztuczna inteligencja w medycynie, godna zaufania sztuczna inteligencja, 
etyka troski, pryncypializm. 

Współczesna medycyna stosuje szeroki wachlarz narzędzi opartych na 
sztucznej inteligencji w celu wsparcia procesu diagnostycznego i terapeutycz-
nego. Systemy uczące się potrafią analizować ogromne zbiory danych medycz-
nych, rozpoznawać subtelne wzorce w obrazach diagnostycznych, przewidywać 
przebieg chorób oraz optymalizować dobór metod leczenia. Rozwój tych tech-
nologii otwiera nowe możliwości w zakresie poprawy skuteczności terapii, skró-
cenia czasu diagnozy oraz personalizacji opieki nad pacjentem. Jednocześnie 
jednak pojawia się szereg pytań o aspekty etyczne związane z ich wdrażaniem – 
od kwestii odpowiedzialności za decyzje kliniczne podejmowane przez algo-
rytmy, poprzez ochronę prywatności danych medycznych, po zagadnienia rów-
nego dostępu do nowoczesnych rozwiązań. W artykule podjęta zostanie analiza 
kluczowych wyzwań etycznych wynikających z implementacji sztucznej inteli-
gencji w praktyce medycznej, ze szczególnym uwzględnieniem wartości, które 
powinny przyświecać projektowaniu i stosowaniu tych systemów.  
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Definicje sztucznej inteligencji 

John McCarthy – uznany za twórcę pojęcia „sztuczna inteligencja” – w kla-
sycznej definicji z 1955 roku, zawartej w propozycji projektu badawczego Dart-
mouth Summer Research Project on Artificial Intelligence, określał AI jako „naukę 
i inżynierię tworzenia inteligentnych maszyn, zwłaszcza programów komputero-
wych” (McCarthy i in. 1955). McCarthy postrzegał AI jako dziedzinę nauki, której 
celem jest konstruowanie maszyn zdolnych do wykonywania działań, które – 
gdyby były realizowane przez człowieka – uznalibyśmy za inteligentne. Jego uję-
cie miało zatem charakter porównawczy, odwołując się do ludzkich zdolności po-
znawczych i zachowań, które można odwzorować w systemach maszynowych. 

Współcześnie możemy dostrzec zmianę perspektywy badawczej, w ramach 
której akcent zostaje przesunięty na funkcjonalność systemów sztucznej inteli-
gencji, rezygnując z odniesień do ludzkiego myślenia. Przykładem ilustrującym 
tę zmianę jest definicja sztucznej inteligencji zaproponowana przez Kaplana i Ha-
enleina: „Sztuczna inteligencja to zdolność systemu do prawidłowej interpretacji 
danych zewnętrznych, uczenia się na ich podstawie oraz wykorzystywania tej 
wiedzy do osiągania konkretnych celów i zadań poprzez elastyczne dostosowy-
wanie się” (2019, s. 17). Definicja ta jest często przytaczana w literaturze, ponie-
waż kładzie nacisk na proces uczenia się i adaptacji, podkreśla zdolność interpre-
tacji danych oraz działania w oparciu o zdobytą wiedzę.  

Problematyka definicji sztucznej inteligencji nadal stanowi wyzwanie nie 
tylko dla naukowców ale również dla prawodawców. Próby podania legalnej de-
finicji sztucznej inteligencji pojawiają się obecnie na poziomie UE oraz w wielu 
opracowaniach organizacji międzynarodowych, m.in. OECD i UNESCO .  

Przyjęty w maju 2019 r. przez Radę OECD (Organisation for Economic Co-
operation and Development) dokument Recommendation of the Council on Ar-
tificial Intelligence stanowi pierwszy międzyrządowy standard w dziedzinie AI, 
zatwierdzony przez 42 państwa, w tym wszystkie kraje UE oraz m.in. USA, Ka-
nadę, Japonię i Australię. Ma on charakter miękkiego prawa (soft law) – zawiera 
zbiór zasad i zaleceń, które państwa sygnatariusze zobowiązały się wdrażać  
w krajowych strategiach dotyczących sztucznej inteligencji. W dokumencie tym 
AI zdefiniowano następująco: „System sztucznej inteligencji to system oparty na 
maszynie, który dla wyraźnie określonego zestawu celów otrzymuje dane wej-
ściowe, przetwarza je za pomocą algorytmów i modeli, generując wyniki – takie 
jak przewidywania, rekomendacje lub decyzje – które mogą wpływać na środo-
wisko fizyczne lub wirtualne” (OECD 2019, s. 7). 

Innym istotnym dokumentem jest Recommendation on the Ethics of Artifi-
cial Intelligence – pierwszy globalny standard etyczny dotyczący AI, przyjęty jed-
nogłośnie w listopadzie 2021 r. przez 193 państwa członkowskie UNESCO. Rów-
nież ma on status miękkiego prawa. W rekomendacji tej AI została zdefiniowana 
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w następujący sposób: „Systemy sztucznej inteligencji to systemy technolo-
giczne zdolne do przetwarzania danych w sposób autonomiczny lub półautono-
miczny, w celu generowania wyników, takich jak przewidywania, zalecenia lub 
decyzje, które mogą wpływać na środowisko fizyczne lub wirtualne” (UNESCO 
2021). Definicja przyjęta przez UNESCO jest podobna strukturalnie do tej  
z OECD, jednak dodaje element autonomii lub półautonomii oraz osadza pojęcie 
AI w kontekście wartości etycznych i praw człowieka.  

AI Act – Rozporządzenie (UE) 2024/1689 w sprawie sztucznej inteligencji 
przyjęty 13 czerwca 2024 r. i opublikowany w Dzienniku Urzędowym UE 12 lipca 
2024 r., jest pierwszym na świecie kompleksowym aktem prawnym regulującym 
sztuczną inteligencję w oparciu o analizę ryzyka. Ma charakter rozporządzenia, 
co oznacza, że obowiązuje bezpośrednio we wszystkich państwach członkow-
skich UE, bez potrzeby implementacji do prawa krajowego. W akcie tym przyjęto 
następującą definicję AI: „System sztucznej inteligencji oznacza system oparty 
na maszynie, zaprojektowany do działania z różnym stopniem autonomii, który 
może, dla wyraźnie określonych celów, generować wyniki, takie jak przewidy-
wania, zalecenia lub decyzje, wpływające na środowisko, z którym wchodzi  
w interakcję” (Parlament Europejski i Rada Unii Europejskiej 2024). Definicja ta 
rozwija ujęcie zaproponowane wcześniej przez OECD, wprowadzając element 
różnego stopnia autonomii oraz dodając pojęcie „środowiska interakcji”, co po-
zwala precyzyjniej określić zakres regulacji. 

Analiza przedstawionych definicji sztucznej inteligencji wskazuje na ewolucję ro-
zumienia tego pojęcia od jego wczesnych, naukowo-teoretycznych ujęć, po współ-
czesne definicje osadzone w kontekście prawnym i etycznym. Mimo różnic szczegó-
łowych, współczesne akty prawne i rekomendacje organizacji międzynarodowych 
coraz bardziej zbliżają się do spójnego, funkcjonalnego rozumienia sztucznej inteli-
gencji, co ma ułatwić opracowanie jednolitych zasad jej oceny i nadzoru.  

Zastosowania AI w medycynie 

W załączniku I do wspomnianego wyżej AI Act znajduje się lista technik i po-
dejść zaliczanych do gałęzi sztucznej inteligencji. Dokument ten wskazuje, że sys-
temy AI mogą wykorzystywać między innymi: 1) metody oparte na logice i wie-
dzy (systemy ekspertowe, programowanie oparte na regułach), 2) metody sta-
tystyczne, optymalizacyjne i wyszukiwania oraz 3) uczenie maszynowe (w tym 
deep learning) (Parlament Europejski i Rada Unii Europejskiej 2024). 

a) Metody symboliczne – oparte na logice i wiedzy 

Historycznie najstarszą gałęzią sztucznej inteligencji stanowią metody 
oparte na logice i wiedzy, których rozwój w latach 50. XX wieku przebiegał pod 
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silnym wpływem paradygmatu symbolicznego. Podejście to opierało się na zało-
żeniu, że inteligencję można modelować poprzez operowanie na symbolach re-
prezentujących elementy świata i relacje między nimi, zgodnie z regułami logiki 
formalnej. W konsekwencji powstawały systemy przetwarzające jawnie zakodo-
waną wiedzę, których działanie można było w całości wyjaśnić poprzez analizę 
ich struktur logicznych i algorytmów. Przykładami tego typu AI są: a) techniki 
przetwarzania języka naturalnego (NLP) opartego na regułach, b) systemy 
oparte na wiedzy, c) programy i komputery szachowe (m.in. słynny DeepBlue) 
(Flasiński 2024, s. 328).  

Jednym z wczesnych obszarów badań nad SI była komputerowa analiza ję-
zyka naturalnego. W latach 50. i 60. podejmowano pierwsze próby automatycz-
nego tłumaczenia (m.in. eksperyment Georgetown-IBM z 1954 r., w którym 
komputer przetłumaczył 60 zdań z rosyjskiego na angielski). Choć wczesne sys-
temy NLP wykorzystywały głównie proste metody przetwarzania leksykalnego  
i składniowego, stanowiły fundament dla dalszych prac nad reprezentacją se-
mantyki i pragmatyki języka. Rozwój systemów symbolicznych w latach 60. i 70. 
XX wieku obejmował także próby stworzenia interaktywnych programów kon-
wersacyjnych (chatbotów), które umożliwiały komunikację w języku natural-
nym. Ich działanie opierało się na prostych regułach przetwarzania tekstu – do-
pasowywaniu wzorców i podstawianiu przygotowanych wcześniej odpowiedzi 
(Baek i in. 2025). Najbardziej znanym przykładem była ELIZA (Weizenbaum 
1966), która symulowała rozmowę z psychoterapeutą w stylu terapii skoncen-
trowanej na kliencie Carla Rogersa. Choć jej mechanizm działania był wyłącznie 
syntaktyczny – program nie rozumiał sensu wypowiedzi – ELIZA stała się inspira-
cją dla dalszych badań nad konwersacyjnymi interfejsami w medycynie.  

Pierwsze medyczne adaptacje chatbotów regułowych pojawiły się w latach 
70. i 80., głównie jako systemy wywiadu medycznego. Mogły one zadawać pa-
cjentowi pytania o objawy w ustalonej kolejności, a następnie – na podstawie  
z góry określonych reguł – kierować użytkownika do odpowiednich zaleceń lub 
sugerować lekarzowi możliwe rozpoznania. Systemy tego typu były wykorzysty-
wane m.in. do wstępnej oceny ryzyka chorób zakaźnych, zbierania danych w ba-
daniach epidemiologicznych oraz w prostych programach edukacyjnych dla pa-
cjentów. W porównaniu do współczesnych modeli generatywnych, chatboty re-
gułowe były „sztywne” – każdy możliwy scenariusz dialogu musiał być zaprogra-
mowany ręcznie. Ich przewagą była natomiast przewidywalność i pełna kontrola 
odpowiedzi, co w kontekście medycznym zmniejszało ryzyko wygenerowania 
niebezpiecznych lub błędnych informacji (Kaul i in. 2020).  

Koncepcja systemów opartych na wiedzy (knowledge-based systems) wywo-
dzi się z przekonania, że skuteczność SI zależy od jakości i kompletności bazy 
wiedzy dziedzinowej oraz mechanizmu wnioskowania. Pierwsze tego typu sys-
temy, rozwijane pod koniec lat 50., wykorzystywały reguły produkcji typu „je-
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żeli–to” (if–then), umożliwiające generowanie wniosków na podstawie przesła-
nek. Choć ich możliwości były ograniczone, stanowiły one prototypy później-
szych systemów eksperckich, które w kolejnych dekadach znalazły zastosowanie 
m.in. w medycynie.  

Już w latach 60. i 70. XX wieku rozpoczęto próby adaptacji metod przetwa-
rzania symbolicznego do potrzeb klinicznych. Jednym z pierwszych i najbardziej 
znanych projektów był system MYCIN (Uniwersytet Stanforda, początek lat 70.), 
który analizował dane pacjenta (objawy, wyniki badań, masa ciała) i na tej pod-
stawie generował listę prawdopodobnych patogenów bakteryjnych oraz suge-
rował schemat antybiotykoterapii. System ten działał na bazie około 600 reguł 
eksperckich, stosując tzw. backward chaining (wnioskowanie wsteczne), i choć 
nigdy nie został wdrożony w praktyce klinicznej ze względu na ograniczenia 
prawne, jego dokładność w doborze antybiotyków dorównywała specjalistom 
chorób zakaźnych. Innym pionierskim przykładem był CASNET (Causal-Associa-
tional Network) opracowany na Rutgers University w latach 70., wykorzysty-
wany w diagnostyce i leczeniu jaskry. CASNET opierał się na modelu sieci, w któ-
rej reprezentowano relacje między objawami, zmianami patologicznymi i postę-
pem choroby, umożliwiając lekarzowi zarówno ocenę stanu pacjenta, jak i pla-
nowanie terapii. Równolegle rozwijano systemy takie jak INTERNIST-1 (Uniwer-
sytet w Pittsburghu), które posiadały znacznie szerszą bazę wiedzy, obejmującą 
kilkaset chorób wewnętrznych, i służyły wspomaganiu lekarzy podstawowej 
opieki zdrowotnej w procesie diagnostycznym (Kaul i in. 2020).  

Te wczesne systemy symboliczne w medycynie miały jednak istotne ograni-
czenia: wymagały żmudnego tworzenia i aktualizowania baz wiedzy przez eks-
pertów, były mało elastyczne w przypadku nowych chorób lub nietypowych ob-
jawów, a ich skuteczność zależała od kompletności wprowadzonych reguł. Mimo 
to odegrały kluczową rolę w ukształtowaniu podstaw sztucznej inteligencji  
w medycynie oraz zainspirowały rozwój późniejszych systemów eksperckich  
i metod opartych na uczeniu maszynowym. 

b) Metody heurystyczne – optymalizacyjne i wyszukiwania 

W sztucznej inteligencji metody heurystyczne to podejścia, które wykorzy-
stują uproszczone reguły, strategie lub funkcje oceny w celu szybszego znalezie-
nia dobrego rozwiązania problemu, bez gwarancji jego globalnej optymalności. 
Są one szczególnie przydatne w zadaniach, gdzie przestrzeń możliwych rozwią-
zań jest bardzo duża, a metody dokładne byłyby zbyt czasochłonne lub oblicze-
niowo kosztowne. Heurystyki przyjmują różne formy, w zależności od rodzaju 
zadania. W algorytmach wyszukiwania mogą stanowić funkcję szacującą „odle-
głość” od celu, jak w klasycznym algorytmie A*, co pozwala ukierunkować pro-
ces poszukiwania najbardziej optymalnych rozwiązań (Hart i in. 1968). W syste-



164 Marzena FORNAL 

mach opartych na rozpoznawaniu podobieństwa, takich jak case-based reason-
ing (CBR) czy content-based image retrieval (CBIR), heurystyka występuje w po-
staci miar podobieństwa, które określają, jak bardzo dany przypadek lub obraz 
przypomina przypadki już znane (Müller i in. 2004). W obszarze optymalizacji 
szczególną rolę odgrywają tzw. metaheurystyki — ogólne strategie przeszukiwa-
nia przestrzeni rozwiązań inspirowane procesami naturalnymi lub społecznymi, 
takimi jak algorytmy genetyczne, symulowane wyżarzanie, optymalizacja rojowa 
czy algorytmy mrówkowe (Eiben, Smith, 2015). Istnieją również heurystyki do-
menowe, opracowane na podstawie wiedzy ekspertów z danej dziedziny, które 
pozwalają zawęzić obszar poszukiwań do rozwiązań najbardziej prawdopodob-
nych (Shortliffe, Cimino 2013). 

W praktyce klinicznej metody heurystyczne znajdują szerokie zastosowanie. 
W planowaniu radioterapii mogą posłużyć do automatycznego wyznaczania roz-
kładu dawki, zapewniającego maksymalną skuteczność leczenia przy ochronie 
tkanek zdrowych (Mohan i in. 2000). W kardiologii mogą wspierać dobór para-
metrów programowania urządzeń implantowalnych, takich jak stymulatory 
serca, w celu poprawy bezpieczeństwa i efektywności terapii (Wilkoff i in. 2015), 
a w chirurgii robotycznej planowanie trajektorii narzędzi, skracając czas operacji 
i zmniejszając ryzyko powikłań (Taylor, Menciassi 2016; Misra, Reed, Okamura 
2010). W diagnostyce obrazowej heurystyki mogą kierować wyszukiwaniem po-
dobnych przypadków w dużych bazach danych obrazów medycznych, co wspo-
maga proces diagnostyczny, zwłaszcza w rzadkich lub nietypowych przypadkach 
(Begum i in. 2011). Tego typu rozwiązania stosowane są również w zarządzaniu 
ochroną zdrowia — od harmonogramowania bloków operacyjnych (Cardoen, 
Demeulemeester, Beliën 2010; Ernst i in. 2004), przez planowanie tras karetek 
(Brotcorne, Laporte, Semet 2003; Aringhieri i in. 2017), po zarządzanie zapasami 
leków (De Vries, Huijsma 2011; Kelle, Woosley, Schneider 2012). Dzięki swojej 
elastyczności i zdolności do działania w ograniczonym czasie metody heury-
styczne stanowią istotny komponent systemów AI w medycynie, często współ-
pracując z metodami uczenia maszynowego w hybrydowych rozwiązaniach 
wspomagających decyzje kliniczne (Deo 2015).  

c) Płytkie uczenie maszynowe – metody statystyczne i estymacje  
baysowskie 

Pojęcie uczenia maszynowego (machine learning, ML) odnosi się do klasy 
metod obliczeniowych, w których systemy nabywają zdolność wykonywania za-
dań poprzez identyfikowanie wzorców w danych empirycznych, a nie poprzez 
odgórne programowanie reguł (Mitchell 1997; Bishop 2006). W ujęciu funkcjo-
nalnym oznacza to, że model „uczy się” odwzorowania pomiędzy przestrzenią 
wejść a przestrzenią wyjść na podstawie przykładów uczących, a następnie wy-
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korzystuje to odwzorowanie do przewidywania, klasyfikacji bądź rekomendowa-
nia w nowych, wcześniej nieobserwowanych przypadkach. Kluczową cechą ML 
jest zatem zdolność do generalizacji — przenoszenia wiedzy nabytej na zbiorze 
treningowym na populację przypadków spoza tego zbioru (Goodfellow, Bengio, 
Courville 2016). 

W obrębie ML wyróżnia się m.in. nurt określany jako „uczenie płytkie” (shal-
low ML). Obejmuje ono klasyczne algorytmy statystyczno–obliczeniowe, takie 
jak regresja logistyczna, maszyny wektorów nośnych (SVM), drzewa decyzyjne  
i ich kompozycje (np. las losowy), metody oparte na najbliższym sąsiedztwie  
(k-NN) czy klasyfikatory bayesowskie (Hastie, Tibshirani, Friedman 2009). Mo-
dele te działają zwykle w oparciu o niewielką liczbę warstw przetwarzania i wy-
magają uprzedniego zaprojektowania reprezentacji danych przez człowieka 
(tzw. inżynierię cech) (Domingos 2012). Dopiero na tak przygotowanej reprezen-
tacji algorytm uczy się rozróżniać klasy lub przewidywać ryzyko. Do zalet tego 
podejścia należy umiarkowane zapotrzebowanie na dane i moc obliczeniową 
oraz stosunkowo wysoka przejrzystość — łatwiej jest prześledzić, które cechy 
wpłynęły na decyzję modelu (Murphy 2012). Ograniczeniem jest natomiast trud-
ność w uchwyceniu wszystkich istotnych wzorców w przypadku bardzo złożo-
nych, „surowych” danych, takich jak obrazy medyczne wysokiej rozdzielczości 
czy długie nagrania sygnałów. 

Metody statystyczne płytkiego ML od lat stanowią fundament analizy da-
nych klinicznych. Regresja logistyczna leży u podstaw kalkulatorów ryzyka, ta-
kich jak model Framingham, szacujący 10-letnie ryzyko choroby wieńcowej na 
podstawie wieku, płci, ciśnienia i poziomu cholesterolu (D’Agostino i in. 2008). 
W chorobach przewlekłych regresja liniowa pozwala modelować tempo zmian 
parametrów, np. spadku eGFR w przewlekłej chorobie nerek, co ułatwia plano-
wanie dializoterapii (Grams i in. 2022). Podejścia bayesowskie, jak system 
DXplain, generują listę możliwych rozpoznań z przypisanymi prawdopodobień-
stwami, wspierając diagnostykę chorób rzadkich (Barnett i in. 1987). W onkologii 
bayesowska analiza przeżycia umożliwia wcześniejsze i bardziej ostrożne wnio-
skowanie o skuteczności terapii, uwzględniając cenzorowanie danych (Biard i in. 
2021). Integrację danych z różnych źródeł, np. MRI i biomarkerów, wspiera ana-
liza dyskryminacyjna (LDA), klasyfikująca pacjentów i identyfikująca cechy o naj-
większym znaczeniu różnicującym (López i in. 2011). 

Wspólną cechą metod wymienionych w punktach a), b) i c) jest praca na ce-
chach przygotowanych przez człowieka (np. parametrach EKG, prostych miarach 
morfologii zmiany), co sprzyja przejrzystości: łatwo ustalić, które informacje za-
decydowały o wyniku i jak duża jest niepewność prognozy. Dzięki temu klinicysta 
nie obcuje z „czarną skrzynką”, lecz z narzędziem, którego rozumowanie można 
audytować i komunikować pacjentowi. Granice między tymi rodzinami metod 
bywają jednak płynne. Przykładowo, gdy parametry optymalizacyjne są dosto-
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sowywane automatycznie na podstawie oznaczonych przykładów (jak w k-NN, 
SVM czy LDA operujących na przygotowanych zestawach cech), wówczas me-
toda heurystyczna staje się jednocześnie formą płytkiego uczenia maszynowego. 
Odwrotnie — modele uczące się można włączać w procesy optymalizacyjne, 
aby generowały rozwiązania spełniające określone wymagania kliniczne, na 
przykład zapewniały najlepszy kompromis między skutecznością a bezpieczeń-
stwem terapii. 

Z perspektywy regulacyjnej AI Act (Rozporządzenie UE 2024/1689) przyj-
muje definicję funkcjonalną systemu sztucznej inteligencji: jest to system ma-
szynowy, który — dla jawnych lub niejawnych celów — dokonuje wnioskowania 
na podstawie danych wejściowych. Tak sformułowana definicja obejmuje szero-
kie spektrum technologii, ponieważ klasyfikacja danego rozwiązania jako AI nie 
zależy od rodzaju zastosowanego algorytmu, lecz od pełnionej funkcji — a więc 
od tego, czy generuje on decyzje, rekomendacje lub treści intelektualne wpły-
wające na środowisko fizyczne lub wirtualne. W praktyce oznacza to, że pod re-
gulacje AI Act mogą podlegać zarówno systemy oparte na uczeniu maszynowym 
(ML), jak i podejścia czysto statystyczne, estymacje bayesowskie czy metody wy-
szukiwania i optymalizacji (wskazane w załącznikach do wniosku z 2021 r.), o ile 
realizują funkcję inferencyjną.  

W obszarze ochrony zdrowia ostateczna klasyfikacja ryzyka systemu AI jest 
często powiązana z przepisami dotyczącymi wyrobów medycznych (MDR/IVDR). 
Zgodnie z AI Act, jeżeli system jest wyrobem medycznym lub wspiera podejmo-
wanie decyzji klinicznych, automatycznie zostaje zakwalifikowany jako „high-
risk” (art. 6), co wiąże się z koniecznością spełnienia szeregu wymogów, m.in. 
prowadzenia szczegółowej dokumentacji, oceny ryzyka oraz zapewnienia 
udziału człowieka w procesie decyzyjnym (human-in-the-loop). Takie podejście 
znacząco poszerza zakres regulacji, obejmując nimi nie tylko zaawansowane mo-
dele ML, lecz także relatywnie proste narzędzia oparte na optymalizacji dawki 
czy wyszukiwaniu podobnych przypadków. 

d) Głębokie uczenie maszynowe 

Uczenie głębokie (deep learning, DL) to poddziedzina uczenia maszynowego, 
która wykorzystuje wielowarstwowe modele obliczeniowe do automatycznego 
wydobywania i przekształcania cech z danych wejściowych w celu realizacji za-
dań takich jak klasyfikacja, regresja, detekcja obiektów czy generowanie treści. 
Głębokie modele charakteryzują się hierarchiczną strukturą przetwarzania,  
w której kolejne warstwy uczą się coraz bardziej złożonych i abstrakcyjnych re-
prezentacji danych. Kluczową cechą tego podejścia jest zdolność modelu do sa-
modzielnej ekstrakcji cech (feature extraction) bez konieczności ręcznego pro-
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jektowania ich przez człowieka — w przeciwieństwie do wielu klasycznych me-
tod uczenia maszynowego (LeCun, Bengio, Hinton 2015). 

Podstawowym typem modeli stosowanych w uczeniu głębokim są sztuczne 
sieci neuronowe (artificial neural networks, ANN), inspirowane strukturą i zasa-
dami działania ludzkiego mózgu. Ich historia sięga lat 40. XX wieku, kiedy McCul-
loch i Pitts (1943) zaproponowali pierwszy formalny model neuronu. Na prze-
strzeni dekad rozwój ANN doprowadził do powstania współczesnych, wysoce 
złożonych sieci głębokich, stanowiących fundament dla wyspecjalizowanych ar-
chitektur, takich jak konwolucyjne sieci neuronowe (convolutional neural net-
works, CNN), rekurencyjne sieci neuronowe (recurrent neural networks, RNN) 
czy sieci transformatorowe (transformers). Jednak DL nie musi być ograniczone 
do architektur neuronowych (Schmidhuber 2015). 

Konwolucyjne sieci neuronowe stanowią wyspecjalizowany typ głębokich 
sieci neuronowych, który szybko zyskał status standardu w analizie obrazów. Ich 
architektura projektowana jest tak, by automatycznie wydobywać cechy z obra-
zów, zachowując jednocześnie strukturę przestrzenną danych (LeCun, Bengio, 
Hinton 2015). W medycynie CNN odgrywają kluczową rolę w diagnostyce obra-
zowej — od MRI, CT, RTG, USG po PET. Dzięki wyżej omawianym właściwościom 
sieci te osiągają często dokładność porównywalną z ludzkimi specjalistami lub ją 
przewyższają. Na przykład model opracowany przez McKinney i in. (2020) do 
analizy mammografii przewyższył radiologów w wykrywaniu raka piersi, reduku-
jąc fałszywe alarmy o około 5,7%. Podobnie, system Google Health do rozpozna-
wania retinopatii cukrzycowej osiągnął wartość AUC powyżej 0,99, co świadczy 
o niezwykle wysokiej precyzji diagnostycznej (Gulshan i in. 2016). Z kolei w dia-
gnostyce raka płuc system DeepLung osiągnął wydajność diagnostyczną porów-
nywalną z doświadczonymi radiologami (Zhu i in. 2018).W radioterapii CNN są 
wykorzystywane do automatycznej segmentacji narządów krytycznych, co zna-
cząco usprawnia planowanie leczenia (Isensee i in. 2021). W neurologii CNN 
wspierają analizę obrazów mózgu, m.in. w chorobie Alzheimera, a także, gdzie 
dokonują segmentacji guzów mózgu (Korolev i in. 2017). 

Rekurencyjne sieci neuronowe (RNN) to szczególny rodzaj sztucznych sieci 
neuronowych zaprojektowany z myślą o przetwarzaniu danych sekwencyjnych, 
w których kolejność elementów ma istotne znaczenie. W przeciwieństwie do 
klasycznych sieci neuronowych, które traktują każde wejście niezależnie, RNN 
posiadają mechanizm pętli zwrotnych umożliwiający przekazywanie stanu ukry-
tego z poprzednich kroków czasowych do bieżącego. Dzięki temu mogą mode-
lować zależności czasowe oraz kontekstowe, co jest szczególnie istotne w anali-
zie sygnałów fizjologicznych, mowy czy dokumentacji medycznej (Lipton, Berko-
witz, Elkan 2016; Sherstinsky 2020). RNN znalazły szerokie zastosowanie w ana-
lizie sygnałów EKG, gdzie umożliwiają zarówno wykrywanie arytmii, jak i przewi-
dywanie incydentów sercowych. Przykładem jest praca Hannuna i in. (2019),  
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w której model LSTM osiągnął dokładność w klasyfikacji 14 typów arytmii prze-
wyższającą kardiologów. Równie często RRN stosowane jest w analizie EEG, 
m.in. do detekcji napadów padaczkowych oraz monitorowania głębokości znie-
czulenia w czasie rzeczywistym (Mirowski i in. 2009). W obszarze przetwarzania 
języka naturalnego (NLP) w medycynie, RNN umożliwiają automatyczną ekstrak-
cję informacji z elektronicznej dokumentacji medycznej, identyfikację diagnoz 
czy śledzenie przebiegu leczenia pacjenta (Rajkomar i in. 2018).  

Architektura Transformer to przełomowy typ sieci neuronowych zaprezen-
towany przez Vaswaniego i współautorów w pracy Attention Is All You Need 
(2017), który zrewolucjonizował przetwarzanie sekwencji danych. W odróżnie-
niu od rekurencyjnych sieci neuronowych (RNN), które przetwarzają dane krok 
po kroku, transformatory wykorzystują mechanizm uwagi, umożliwiający rów-
noczesne uwzględnianie relacji między wszystkimi elementami sekwencji (Va-
swani i in. 2017; Khan i in. 2022). W medycynie transformatory odgrywają coraz 
większą rolę, zwłaszcza w analizie tekstów klinicznych i integracji danych z róż-
nych źródeł. Modele takie jak BioBERT (Lee i in. 2020) i ClinicalBERT (Alsentzer  
i in. 2019) zostały dostosowane do przetwarzania języka biomedycznego, umoż-
liwiając automatyczną ekstrakcję informacji z elektronicznej dokumentacji me-
dycznej (EHR), prognozowanie ryzyka powikłań, identyfikację diagnoz czy ocenę 
stanu pacjenta na podstawie opisów klinicznych. W jednostkach intensywnej te-
rapii modele te wspierają systemy wspomagania decyzji klinicznych, przewidu-
jąc m.in. ryzyko sepsy czy śmiertelności pacjentów (Huang i in. 2022). Znaczącym 
obszarem rozwoju jest generowanie i analiza raportów medycznych. Transfor-
matory potrafią automatycznie tworzyć opisy badań obrazowych, np. radiogra-
mów klatki piersiowej (Boecking i in. 2022), a także streszczać historię choroby 
w formie użytecznej dla konsylium lekarskiego. W zastosowaniach multimodal-
nych łączą dane tekstowe z obrazowymi i sygnałowymi – przykładem są modele 
BioViL i MedViT, które integrują opis radiologiczny z obrazem MRI lub RTG  
w celu lepszej detekcji nieprawidłowości. Ponadto transformatory stosowane są 
w analizie danych genomowych i proteomicznych, gdzie mechanizm uwagi po-
zwala na wykrywanie istotnych wzorców w sekwencjach biologicznych, a także 
w modelach przewidujących odpowiedź pacjenta na leczenie (Ji i in. 2021). 

Dzięki zdolności do pracy z dużymi, złożonymi i różnorodnymi zbiorami da-
nych, transformatory – w formie dużych modeli multimodalnych– stanowią 
obecnie jeden z najważniejszych kierunków rozwoju sztucznej inteligencji w me-
dycynie. Z tego też powodu, w styczniu 2024 roku Światowa Organizacja Zdrowia 
(World Health Organization, WHO) opublikowała kompleksowe wytyczne doty-
czące etyki i zarządzania LMM w sektorze zdrowia. Dokument ten zawiera ponad 
czterdzieści szczegółowych rekomendacji skierowanych do rządów, twórców 
technologii oraz dostawców usług medycznych, których celem jest zapewnienie 
odpowiedzialnego, bezpiecznego i etycznego wdrażania LMM w praktyce kli-
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nicznej i badaniach (WHO 2024). WHO podkreśla, że LMM mogą znaleźć zasto-
sowanie w wielu krytycznych obszarach ochrony zdrowia, takich jak diagnostyka 
i opieka kliniczna, aplikacje wspierające pacjentów, zadania administracyjne, 
edukacja medyczna, prowadzenie badań naukowych czy rozwój leków. Jedno-
cześnie wskazuje na poważne ryzyka związane z ich stosowaniem: możliwość ge-
nerowania błędnych lub stronniczych treści, zagrożenia dla prywatności i bez-
pieczeństwa danych, a także potencjalny wpływ na jakość relacji lekarz–pacjent 
oraz na umiejętności kliniczne personelu (Gardhouse 2024). 

W AI Act (Regulacja UE 2024/1689) nie wspomina się wprost o LLM, ale ich 
status regulacyjny wynika z ogólnej definicji systemu AI oraz reżimu opartego na 
ocenie ryzyka. AI Act wyróżnia osobną kategorię dla „general-purpose AI” (ogól-
nego zastosowania), dla której obowiązują specjalne wymogi dotyczące trans-
parentności i ewaluacji. LMM, ze względu na wszechstronność, najprawdopo-
dobniej wpisują się w tę kategorię (Gstrein 2024). Jeśli LMM są wykorzystywane 
do zadań wpływających na zdrowie i bezpieczeństwo pacjentów (np. wspoma-
ganie diagnostyki klinicznej), klasyfikowane są dodatkowo jako high-risk AI. 
Oznacza to, że podlegają surowym obowiązkom dotyczącym bezpieczeństwa, 
przejrzystości, dokumentacji, nadzoru człowieka i oceny ryzyka. Warto jednak 
podkreślić, że otwarty charakter definicji oraz brak doprecyzowania statusu 
LMM rodzi wyzwania praktyczne. Przykładowo, w 2024 roku Meta zrezygnowała 
z publicznego udostępnienia swojej multimodalnej wersji modelu LLaMA w Unii 
Europejskiej, wskazując na niepewność regulacyjną w kontekście AI Act oraz wy-
mogów RODO (Weatherbed 2024). 

Godna zaufania sztuczna inteligencja – czyli jaka? 

Pojęcie „godnej zaufania sztucznej inteligencji” (trustworthy AI) zostało wy-
pracowano na gruncie dokumentów i inicjatyw międzynarodowych – zarówno 
na poziomie Unii Europejskiej, jak i polityk krajowych, oraz standardów branżo-
wych. Choć szczegółowe definicje różnią się w zależności od źródła, wspólny jest 
ich normatywno-proceduralny charakter – chodzi o zestaw wymogów prawnych 
i technicznych, których spełnienie ma zagwarantować, że system AI będzie dzia-
łał w sposób bezpieczny, zgodny z prawem i wartościami społecznymi. 

W wytycznych Ethics Guidelines for Trustworthy AI (HLEG 2019), opracowa-
nych dla Komisji Europejskiej, wskazano trzy filary godnej zaufania AI: 
— Zgodność z prawem – przestrzeganie obowiązujących regulacji. 
— Etyczność – działanie w zgodzie z zasadami etycznymi i wartościami społecz-

nymi. 
— Solidność techniczna – bezpieczeństwo, niezawodność, odporność na błędy 

i ataki. 



170 Marzena FORNAL 

Te filary rozwinięto w siedmiu wymiarach oceny, obejmujących m.in. nadzór 
człowieka (human-in-the-loop), ochronę prywatności i danych, przejrzystość  
i wyjaśnialność algorytmów, brak dyskryminacji, pozytywny wpływ społeczny  
i środowiskowy oraz jasne przypisanie odpowiedzialności. Narzędzie ALTAI (As-
sessment List for Trustworthy AI) przekłada te zasady na pytania kontrolne, po-
zwalając ocenić w praktyce, czy system spełnia wymogi nadzoru, odporności, 
przejrzystości, rozliczalności i poszanowania praw człowieka. W Ramowej Kon-
wencji Rady Europy o AI, prawach człowieka, demokracji i rządach prawa (2024) 
akcentuje się konieczność zapewnienia zgodności z prawami człowieka, zasady 
proporcjonalności, przejrzystości w sektorach wrażliwych, oceny wpływu przed 
wdrożeniem oraz możliwości kwestionowania decyzji AI. 

W polskich dokumentach strategicznych – Polityce dla rozwoju AI oraz pro-
jekcie Polityki AI 2025–2030 – zaadaptowano unijne założenia, podkreślając 
m.in., że odpowiedzialność za działanie systemów AI zawsze ponosi człowiek lub 
instytucja, a nie sam „system”, oraz że kluczowym elementem budowania zau-
fania jest przeprowadzanie certyfikacji. 

Synteza tych źródeł pozwala wyróżnić osiem kluczowych cech „godnej za-
ufania” AI: 
1.  Zgodność z prawem i prawami człowieka. 
2.  Etyczność i brak dyskryminacji. 
3.  Przejrzystość i wyjaśnialność algorytmów i decyzji. 
4.  Solidność techniczna i bezpieczeństwo, w tym cyberbezpieczeństwo. 
5.  Ochrona prywatności i właściwe zarządzanie danymi. 
6.  Nadzór człowieka i możliwość ingerencji w decyzje AI. 
7.  Odpowiedzialność i rozliczalność twórców, dostawców i użytkowników. 
8.  Stałe monitorowanie skuteczności i ryzyka po wdrożeniu. 

W kontekście medycznym pojęcie godnej zaufania sztucznej inteligencji  
w tych dokumentach ma dodatkowe, bardziej rygorystyczne znaczenie, bo do-
tyczy systemów wysokiego ryzyka wpływających na zdrowie i życie ludzi. Zgod-
nie z wytycznymi Ethics Guidelines for Trustworthy AI (HELG 2019), kluczowym 
wymogiem jest zapewnienie bezpieczeństwa pacjenta poprzez minimalizację ry-
zyka błędnej diagnozy lub terapii. Konieczne jest prowadzenie walidacji klinicz-
nej algorytmów na reprezentatywnych zbiorach danych, uwzględniających zróż-
nicowanie populacji pacjentów pod względem wieku, płci oraz chorób współist-
niejących. Szczególny nacisk kładzie się na wyjaśnialność (explainability) syste-
mów, czyli dostarczanie diagnoz lub rekomendacji w formie zrozumiałej za-
równo dla lekarza, jak i pacjenta. Istotną zasadą jest także human-in-the-loop, 
czyli obowiązek nadzoru i weryfikacji decyzji AI przez personel medyczny, oraz 
zapewnienie ochrony danych zdrowotnych zgodnie z wymogami RODO. 

Narzędzie samooceny ALTAI przekłada te zasady na pytania kontrolne, obej-
mujące m.in. kwestię nadzoru klinicznego, walidacji międzyinstytucjonalnej, do-
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kumentowania procesu uczenia algorytmu i jego modyfikacji, a także wdrażania 
systemów zgłaszania incydentów związanych z użyciem AI. Podobny kierunek 
wyznacza Ramowa Konwencja Rady Europy o sztucznej inteligencji, prawach 
człowieka, demokracji i rządach prawa (2024), która nakłada obowiązek oceny 
wpływu na prawa człowieka i zdrowie przed wdrożeniem systemu, wymaga pro-
porcjonalności zastosowania AI względem celu klinicznego, gwarantuje pacjen-
towi prawo do informacji o wykorzystaniu AI w procesie diagnostycznym oraz 
możliwość zakwestionowania jej decyzji i uzyskania drugiej opinii. 

W polskich dokumentach strategicznych (Polityka dla rozwoju AI, projekt Po-
lityki AI 2025–2030) podkreśla się, że sztuczna inteligencja w medycynie po-
winna wspierać pracę lekarza, a nie go zastępować, oraz że niezbędnym elemen-
tem budowania zaufania jest certyfikacja kliniczna zgodna z MDR/IVDR. Ważnym 
priorytetem jest eliminacja dyskryminacji w algorytmach oraz zapewnienie inte-
roperacyjności z krajowymi systemami elektronicznej dokumentacji medycznej. 
Z kolei Biała Księga AI w praktyce klinicznej (2022) akcentuje konieczność 
oceny klinicznej wiarygodności systemów w badaniach prospektywnych, za-
pewnienia odtwarzalności wyników (traceability), unikania opóźnień w podej-
mowaniu decyzji ratujących życie oraz szkolenia użytkowników w zakresie 
działania i ograniczeń AI. 

Normy ISO i CEN, w tym ISO/IEC 42001 oraz ISO 14971, precyzują wymagania 
operacyjne dotyczące analizy ryzyka klinicznego, wdrażania procedur ciągłego 
monitorowania skuteczności i bezpieczeństwa systemów po ich implementacji, 
prowadzenia dokumentacji umożliwiającej audyt oraz stosowania mechani-
zmów awaryjnych, takich jak manualne przejęcie kontroli nad decyzją AI. 

W syntetycznym ujęciu godna zaufania sztuczna inteligencja w medycynie 
powinna charakteryzować się następującymi cechami: 
1.  Bezpieczeństwo pacjenta i minimalizacja ryzyka klinicznego. 
2.  Walidacja kliniczna na reprezentatywnych i wysokiej jakości danych. 
3.  Transparentność dla lekarza i pacjenta (wyjaśnialność, oznaczenie użycia AI). 
4.  Ochrona prywatności zgodnie z RODO (szczególna kategoria danych). 
5.  Nadzór lekarza i prawo pacjenta do drugiej opinii. 
6.  Brak dyskryminacji i równość dostępu. 
7.  Śledzenie i audytowalność procesów decyzyjnych AI. 
8.  Stałe monitorowanie skuteczności po wdrożeniu w praktyce klinicznej. 

Obszary problemowe 

Bazując na analizie obowiązujących dokumentów regulacyjnych i strategicz-
nych dotyczących sztucznej inteligencji w ochronie zdrowia, można wyróżnić 
kilka kluczowych obszarów problemowych, które wymagają dalszego doprecy-
zowania oraz zmian legislacyjnych: 
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1.  LUKA W OPERACJONALIZACJI KLUCZOWYCH POJĘĆ  

Chociaż takie dokumenty jak Ethics Guidelines for Trustworthy AI (HLEG 
2019), ALTAI czy AI Act odwołują się do wartości takich jak „przejrzystość”, „wy-
jaśnialność” czy „odpowiedzialność”, brakuje im precyzyjnych, mierzalnych de-
finicji tych terminów. Przejrzystość nie została jednoznacznie określona — pozo-
staje niejasne, czy odnosi się jedynie do dostępu do dokumentacji technicznej, 
czy też zawiera aspekt zrozumiałości działania systemu przez lekarza lub pa-
cjenta. W kontekście wyjaśnialności (explainability), brak rozróżnienia w odnie-
sieniu do konkretnego zastosowania (np. różnice między systemami decyzyj-
nymi dla lekarzy a systemami administracyjnymi) utrudnia ustalenie odpowied-
niego poziomu wyjaśnienia. Odpowiedzialność prawna pozostaje pojęciem ogól-
nym — bez wskazania konkretnych mechanizmów prawnych egzekwowania  
w razie błędu AI. W rezultacie brak precyzyjnych wskaźników i metod oceny sta-
nowi poważną barierę dla organów regulacyjnych i audytorów w egzekwowaniu 
wymogów (Markus, Kors, Rijnbeek, 2020; Cheong 2024). 

2.  LUKA W WALIDACJI KLINICZNEJ SYSTEMÓW AI  

Chociaż walidacja kliniczna jest często wskazywana jako warunek dopuszcze-
nia systemu do użycia, brak jednoznacznych, obowiązkowych protokołów badań 
stanowi istotne wyzwanie. Brakuje standaryzacji metodyki testów klinicznych — 
szczegółowych wymogów co do liczebności próby pacjentów, zróżnicowania de-
mograficznego czy zakresu ośrodków. Wiele systemów jest dopuszczanych wy-
łącznie na podstawie badań retrospektywnych lub danych z pojedynczych klinik, 
co zwiększa ryzyko overfittingu i ograniczonej generalizacji wyników. Ponadto, 
brak wymogu badań typu real-world evidence uniemożliwia pełną ocenę działa-
nia AI w rzeczywistych warunkach klinicznych. Brakuje także kryteriów wymaga-
jących międzynarodowej porównywalności wyników walidacji — co ogranicza 
transgraniczną uznawalność certyfikacji (Morley i in. 2021; Pennestrì 2025). 

3.  LUKA W MONITOROWANIU PO WDROŻENIU (POST-MARKET SURVEILLANCE)  

Dokumenty UE, takie jak AI Act oraz MDR/IVDR, a także wytyczne WHO, 
wskazują na potrzebę monitorowania działania AI po wdrożeniu, jednak formu-
łują to w sposób ogólny (European Medical Device Coordination Group 2025; 
WHO 2024). Brakuje ustalonych minimalnych częstotliwości audytów oraz pre-
cyzyjnych metod monitorowania skuteczności i bezpieczeństwa. Producenci za-
chowują znaczną swobodę w doborze procedur nadzoru (MDCG, 2025). Po-
nadto, nie ma wymogu raportowania zdarzeń near-misses, czyli sytuacji poten-
cjalnie prowadzących do błędu, które zostały wychwycone i skorygowane — 
choć stanowiłyby one wartościowy materiał do doskonalenia systemu (Babic et 
al. 2025). Równie płytko rozwinięty pozostaje mechanizm publicznego informo-
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wania o problemach AI po wdrożeniu — dostęp pacjentów i środowiska medycz-
nego do raportów o incydentach jest ograniczony (Muralidharan, 2024). Brakuje 
także centralnego rejestru incydentów związanych z AI w medycynie — analo-
gicznego do systemów funkcjonujących w lotnictwie czy farmakologii (Babic i in. 
2025; Dolin i in. 2025). 

4.  LUKA W ODPOWIEDZIALNOŚCI PRAWNEJ 

W obecnym stanie prawnym brakuje jednoznacznych zasad rozdzielania od-
powiedzialności pomiędzy producenta, dostawcę, wdrażającego i użytkownika 
AI w przypadku szkody pacjenta. Szczególnie problematyczna jest kwestia tzw. 
black-box liability, czyli sytuacji, gdy algorytm podejmuje decyzję w sposób nie-
transpatentny, a szkoda wynika z błędu systemu. Tradycyjne ramy odpowie-
dzialności, oparte na koncepcjach wady produktu czy zaniedbania, są niewystar-
czające w obliczu złożonych i autonomicznych mechanizmów decyzyjnych AI 
(Duffourc 2023; Ebers 2022). Problemy z tym związane będą się pogłębiać wraz 
z wzrastającą autonomią systemów typu LMM. EU AI Act i projekt Dyrektywy  
o odpowiedzialności za sztuczną inteligencję (AILD/PLD) wskazują kierunek 
zmian, m.in. przez uwzględnienie oprogramowania jako produktu i łagodzenie 
reguł dowodowych, lecz w sektorze zdrowia wciąż brakuje konkretnych, prak-
tycznych wytycznych (Rada Unii Europejskiej 2022a, 2022b).  

5.  LUKA W INTEROPERACYJNOŚCI I STANDARYZACJI DANYCH 

Integracja AI z elektroniczną dokumentacją medyczną w UE stoi przed wy-
zwaniem braku pełnej harmonizacji norm interoperacyjności, takich jak 
HL7/FHIR czy DICOM (Bender, Sartipi 2013; Mandel i in. 2016). Dzisiejszy system 
ochrony zdrowia opiera się na sieci archaicznych systemów i różnorodnych stan-
dardach, co utrudnia efektywną wymianę danych między AI a systemami klinicz-
nymi. Dodatkowo brakuje wytycznych dotyczących jakości danych treningo-
wych, zwłaszcza w kontekście brakujących danych (missing data) i ich wpływu 
na wyniki AI (Rajkomar i in. 2019). 

6.  LUKA W OCHRONIE PRYWATNOŚCI W PRAKTYCE KLINICZNEJ 

Regulacje skupiają się głównie na zgodności z RODO, ale brakuje szczegóło-
wych wytycznych odnośnie sytuacji, gdy AI wymaga dostępu do dużych, zdecen-
tralizowanych zbiorów danych (np. w modelach federated learning). Choć FL po-
maga chronić prywatność, nadal wymaga wsparcia zaawansowanymi techni-
kami, takimi jak anonimizacja, szyfrowanie czy audyt (Rieke i in. 2020). Ponadto, 
mechanizmy uzyskiwania świadomej zgody pacjenta na ponowne użycie jego 
danych w szkoleniu AI są niewystarczająco określone – co rodzi wątpliwości 
etyczne i prawne co do autonomii pacjenta (McKeown i in. 2021). 
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7. LUKA W UWZGLĘDNIANIU SPECYFIKI GENERATYWNEJ AI 

W 2024 roku Światowa Organizacja Zdrowia opublikowała pierwsze wy-
tyczne dotyczące Large Multi-Modal Models (LMMs) – generatywnych modeli AI 
zdolnych do przetwarzania różnych rodzajów danych i generowania wielorakich 
rezultatów (WHO 2024). Jednak w dokumentach UE i Polsce wciąż brakuje szcze-
gółowych przepisów odnoszących się do zastosowania tego typu modeli w me-
dycynie – na przykład w tworzeniu dokumentacji klinicznej czy wspieraniu pro-
cesu diagnostycznego. Równie istotna pozostaje luka w regulacjach dotyczących 
zarządzania ryzykiem występowania tzw. „halucynacji” (nieprawdziwych, gene-
rowanych przez model treści) oraz konieczności filtrowania wygenerowanych 
wyników pod kątem trafności i bezpieczeństwa (Nori i in. 2023). 

8.  LUKA W EDUKACJI I KOMPETENCJACH UŻYTKOWNIKÓW 

Dokumenty akcentują potrzebę nadzoru człowieka, lecz nie precyzują mini-
malnych standardów szkoleniowych dla lekarzy oraz personelu medycznego  
w zakresie stosowania AI. Brakuje jednolitych ram edukacyjnych definiujących, 
jakie kompetencje powinni posiadać użytkownicy AI, by korzystać z niej odpo-
wiedzialnie i efektywnie (Li i in. 2023; Thomas i in. 2021). Badania wyraźnie 
wskazują potrzebę wprowadzenia AI do nauczania klinicznego — zarówno po-
przez tworzenie ram kompetencyjnych, jak i włączanie programów szkolenio-
wych do programów kształcenia. W dodatku aktualnie brak regulacji określają-
cych odpowiedzialność lekarzy, gdy podejmują decyzje opierając się na reko-
mendacjach AI, których nie są w stanie w pełni zrozumieć lub ocenić (van de 
Sande i in. 2021). 

Dlaczego sama zgodność z regulacjami nie wystarcza? 

Sama zgodność sztucznej inteligencji z regulacjami prawnymi nie stanowi 
wystarczającego kryterium, aby uznać system AI za technologię godną zaufania 
w kontekście medycyny. Ramy prawne, takie jak AI Act, raporty WHO czy reko-
mendacje OECD, definiują pojęcie trustworthy AI przede wszystkim przez pry-
zmat formalnych i technicznych wymogów, obejmujących m.in. wyjaśnialność, 
brak stronniczości, bezpieczeństwo czy zgodność z obowiązującym prawem. Są 
to kryteria konieczne, zapewniające minimalny poziom ochrony pacjenta, lecz w 
praktyce klinicznej nie obejmują one pełnego spektrum warunków, w których 
zaufanie może się rzeczywiście wytworzyć i utrwalić. 

Zaufanie, jak podkreśla Baier (1986), ma charakter relacyjny i zawsze wiąże 
się z podatnością strony ufającej, która oddaje część kontroli nad swoim losem, 
opierając się na kompetencjach, intencjach i integralności drugiej strony. W me-
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dycynie relacja ta jest z natury asymetryczna: pacjent, pozbawiony pełnej wiedzy 
medycznej i często działający w warunkach stresu oraz choroby, znajduje się  
w pozycji szczególnej zależności. Im większa jest ta asymetria, tym silniejsze – 
według Baier – stają się etyczne zobowiązania strony posiadającej przewagę, 
obejmujące troskę, dobrą wolę i działanie w najlepszym interesie drugiego  
człowieka. 

Podobną perspektywę rozwija etyka troski (Gilligan 1982; Tronto 1993; Ne-
delensky 2021), dla której uznanie i ochrona podatności drugiej osoby oraz pod-
trzymywanie relacji umożliwiającej zachowanie godności i podmiotowości sta-
nowią fundament odpowiedzialnego postępowania. Inspiracje te znajdują swoje 
źródło w myśli Emmanuela Levinasa (1969), który wskazuje, że relacja z Innym 
rodzi bezwarunkową odpowiedzialność – nie wynikającą z kontraktu transakcyj-
nego, lecz z samego faktu spotkania z drugim człowiekiem. 

Uwzględnienie wymiaru relacyjnego zaufania w procesie projektowania 
sztucznej inteligencji w ochronie zdrowia wymaga, aby systemy te były kon-
struowane w sposób, który od początku integruje zasady pryncypializmu (auto-
nomii, nieszkodzenia, dobroczynności i sprawiedliwości) oraz wartości troski  
i odpowiedzialności. Po pierwsze, oznacza to konieczność zapewnienia transpa-
rentności działania, obejmującej zarówno techniczną wyjaśnialność algoryt-
mów, jak i komunikację wyników w formie zrozumiałej dla użytkownika końco-
wego (Komija Europejscka 2019; Floridi 2019), a także informowanie o roli jaką 
system AI odgrywa w procesie leczenia. Po drugie, system powinien być projek-
towany w duchu proaktywnej troski – tak, aby nie tylko minimalizować ryzyko 
błędu (zasada nieszkodzenia), lecz również wspierać dobrostan pacjenta (zasada 
dobroczynienia), np. przez uwzględnianie komfortu psychicznego, prywatności  
i możliwości uzyskania drugiej opinii (Beauchamp, Childress 2019; Vallor 2016). 
Po trzecie, projektowanie powinno uwzględniać zarządzanie konfliktem warto-
ści wbudowanym w działanie systemu – poprzez implementację procedur waże-
nia zasad w przypadku ich kolizji, a także poprzez umożliwienie użytkownikowi 
(pacjentowi lub lekarzowi) podjęcia ostatecznej decyzji w sytuacjach granicz-
nych (Childress 1997; O’Neill 2002). Po czwarte, konieczne jest przeciwdziałanie 
nadużyciom wynikającym z asymetrii informacyjnej pomiędzy twórcami sys-
temu a jego użytkownikami, m.in. przez jawne informowanie o ograniczeniach 
danych treningowych, marginesach błędu oraz poziomie niepewności rekomen-
dacji (Floridi 2019; WHO 2021). 

Z tej perspektywy „godna zaufania AI” w medycynie to nie tylko system speł-
niający określone normy regulacyjne, lecz także taki, który aktywnie wzmacnia 
relację lekarz–pacjent, chroni godność chorego, umożliwia mu odzyskanie po-
czucia wpływu (np. poprzez dostęp do drugiej opinii czy możliwość zakwestio-
nowania decyzji algorytmu) oraz przekazuje informacje w sposób zrozumiały  
i dostosowany do indywidualnego kontekstu. Sama zgodność z regulacjami 
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może zapewnić poprawność proceduralną, lecz dopiero uwzględnienie wymiaru 
relacyjnego pozwala mówić o technologii rzeczywiście godnej zaufania, która nie 
tylko optymalizuje proces diagnostyczny lub terapeutyczny, lecz także wspiera 
fundamentalne więzi społeczne i moralne leżące u podstaw opieki medycznej. 
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Trustworthy Artificial Intelligence in Medicine 

Abstract 

The article examines the issue of ethical evaluation and implementation of artificial intelligence 
systems in medicine, with particular emphasis on the concept of “trustworthy AI.” It discusses 
regulatory frameworks such as the AI Act, and the recommendations of the WHO and OECD, high-
lighting their limitations in the context of clinical practice. The article also presents legal challenges 
related to liability for AI-driven decisions in medicine, including the problem of “black-box liability” 
and gaps in existing regulations. The discussion is complemented by a proposal for the develop-
ment of ethical design frameworks for AI that integrate legal requirements with moral values,  
in order to support both patient safety and patient autonomy. 

Keywords: Artifical inteligence in medicine, trustworthy artifical inteligence, principialism, eth-
ics of care.
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